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Roles of Distal and Genic 
Methylation in the Development of 
Prostate Tumorigenesis Revealed 
by Genome-wide DNA Methylation 
Analysis
Yao Wang1, Rohit Ramakant Jadhav1, Joseph Liu1, Desiree Wilson2, Yidong Chen3, 
Ian M. Thompson4,5, Dean A. Troyer6, Javier Hernandez4, Huidong Shi7, Robin J. Leach2,4,5, 
Tim H.-M. Huang1,5 & Victor X. Jin1,3

Aberrant DNA methylation at promoters is often linked to tumorigenesis. But many aspects of DNA 
methylation remain unexplored, including the individual roles of distal and gene body methylation, 
as well as their collaborative roles with promoter methylation. Here we performed a MBD-seq analysis 
on prostate specimens classified into low, high, and very high risk group based on Gleason score and 
TNM stages. We identified gene sets with differential methylation regions (DMRs) in Distal, TSS, gene 
body and TES. To understand the collaborative roles, TSS was compared with the other three DMRs, 
resulted in 12 groups of genes with collaborative differential methylation patterns (CDMPs). We found 
several groups of genes that show opposite methylation patterns in Distal and Genic regions compared 
to TSS region, and in general they are differentially expressed genes (DEGs) in tumors in TCGA RNA-
seq data. IPA (Ingenuity Pathway Analysis) reveals AR/TP53 signaling network to be a major signaling 
pathway, and survival analysis indicates genes subsets significantly associated with prostate cancer 
recurrence. Our results suggest that DNA methylation in Distal and Genic regions also plays critical roles 
in contributing to prostate tumorigenesis, and may act either positively or negatively with TSSs to alter 
gene regulation in tumors.

Prostate cancer (PCa) is the most common non-cutaneous cancer among men in the United States, and can be 
successfully treated if it is diagnosed early before metastasizing to bones or other organs. Over 240,000 men 
being diagnosed with prostate cancer in the US annually, a majority harbor local or regional disease where the 
long-term prognosis is excellent1. In contrast, the 5-year survival rate is only ~28% for the distant stage prostate 
cancer that already has metastasis in bones or other organs. Radical prostatectomy (RP), a surgical removal of all 
of the prostate gland, the seminal vesicles and the vas deferens, is one of the treatment options when the cancer 
is refined to the prostate. Nearly 40% of the patients undergoing RP present clinic-pathologic features associated 
with increased risk of clinical metastasis such as rising PSA (Prostate Specific Antigen, an indicator of risking 
cancer) , high Gleason score, seminal vesicle invasion or lymph node involvement2–5. By and large, these clinical 
features are used for determining risk group of PCa and there are various classification methods that are adopted 
by different medical organization and entities6. The great heterogeneity in prognoses of patient undergoing RP 
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requires more effort in optimizing patient management to tailor proper treatments7. In this respect, the factors 
that have enhanced capacity to predict risk of metastasis, and death of PCa following RP are indeed crucial for the 
successful treatment and clinical outcome of this disease.

Not only Epigenetic mechanisms, including DNA methylation, are essential for normal development by reg-
ulating gene transcription involved with cell division or differentiation8, but also control a number of key pro-
cesses including tumorigenesis. Many studies revealed that, in disease process such as cancer, abnormal DNA 
hypermethylation in the promoter regions of genes causes transcriptional silencing9. Recent studies show that 
gene body (genic) methylation also plays an important role in the alteration of gene expression10,11. There is a 
causal relationship between genic DNA methylation and gene expression, which indicates that methylation at 
genic regions could be a therapeutic target in cancer12. Distal regulatory elements are also subject to epigenetic 
modification and could be a key feature of the cancer epigenomes13,14.

Many aspects of the regulatory roles of DNA methylation are not fully understood. For instance, the collabora-
tive roles among distal, gene body and promoter methylation besides their individual role remain unknown. It is 
worthwhile to put forth efforts in conducting such genome-wide methylation pattern analysis and understanding 
their impact on gene expression. On this basis, we conducted this study by applying a MBD-seq protocol pre-
viously established in our laboratory15 on a cohort of 32 PCa prostatectomy specimens, as well as 8 normal (N) 
and 12 tumor-adjacent specimens (ADJ). The grouping of patients were determined by applying widely used risk 
classification methods, and the final grouping included low risk (L), high risk (H) and very high risk (VH). The 
result in methylation study was correlated with the RNA-seq data from The Cancer Genome Atlas (TCGA). We 
sought to investigate the methylation pattern in the four genomic regions based on a gene structure, i.e., 5-Distal 
region, TSS, Genic and TES, and to identify genes with differential methylations among tumor and normal sam-
ples. We further perform inter-correlation analysis on those identified differential DMRs between TSS region and 
the other three genomic regions to identify the CDMPs. Next, in order to elucidate the impact of DNA methyla-
tion on gene expression we correlated the significant CDMPs with gene expression values obtained from TCGA 
RNA-seq. IPA analysis on significantly differentially expressed genes in these three groups hinted the involvement 
of AR/TP53 related signaling network, and this pathway associated genes were further investigated in a survival 
analysis. To summarize, we demonstrate DNA methylation in distal and intragenic regions also plays critical roles 
in prostate tumorigenesis, and may act either positively or negatively with TSS to alter gene regulation in tumors. 
The identified gene clusters could be potential biomarkers that might be immensely helpful in the management of 
PCa patients particularly in the process of deciding proper treatment option at the time of RP.

Results
Identification of differential methylation in PCa patient data.  We applied a MBD-seq protocol pre-
viously established in our laboratory15 to investigate differential methylation patterns at a genome wide scale 
on a cohort of 32 PCa specimens, 12 tumor-adjacent specimens, 8 normal tissue specimens. Using LONUT16, 
we were able to utilize up to 95% of raw reads for most of samples with an average of 49.6 million of combined 
sequenced reads for all samples within five groups for the further analysis (Supplemental Table S2). First, for the 
four genomic regions, i.e., Distal, TSS, Genic and TES (as described in Methods), we applied a unsupervised 
K-means clustering method to examine the mean methylation levels at a 100 bp bin-size resolution for five groups 
of samples in four genomic regions for all ~28,000 RefSeq genes (Fig. 1A). The results show that there are clearly 
unique methylation patterns for some genes in each of four genomic regions as well as multiple genomic regions. 
We also found that the methylation patterns in tumor adjacent samples are quite similar to the normal samples. 
Examples of different genomic regions harboring differential methylation are shown in Fig. 1B–D.

Identification of collaborative methylation patterns.  Albeit DNA hyper-methylation is expected to 
be exclusively found in tumor samples compared to normal counterparts, recent studies reveal frequent occur-
rence of DNA hypo-methylation co-existing with hyper-methylation in cancer17. In addition, many studies indi-
cated that the methylation within gene body may be involved in altering gene expression in tumors10,12. Thus, it is 
very interesting to compare the collaborative methylation among different genomic regions in tumor with those in 
non-tumor samples. As a result, for each of the 12 distinct CDMPs as defined in Methods, we have tested the dif-
ferential methylation between four tumor groups (all tumor, L, H, VH) and two non-tumor groups (N and ADJ), 
respectively. As in Fig. 2A, we observed that a significant number of genes have shown both hyper-methylations, 
i.e. tssHyper-distalHyper (S1D1), tssHyper-genicHyper (S1G1) and tssHyper-tesHyper (S1E1), while much less 
but still considerable number of genes have shown both hypo-methylation, i.e. tssHyper-distalHypo (S1D0), 
tssHyper-genicHypo (S1G0) and tssHyper-tesHypo (S1E0). Interestingly, we identified a certain number of genes 
showing opposite differential methylation in any two regions (e.g. hyper in TSS and hypo in Distal). In all, we 
found that: 1) dual hyper-methylations are the most common pattern identified in each of two-group comparison; 
2) differential genes between tumor samples and adjacent samples are more than those between tumor samples 
and normal samples. 3) the number of genes in the other three patterns are far more less, from around one hun-
dred in Distal compared to TSS, to just a dozen in TES compared to TSS region. We further plotted their mean 
methylation of the identified DMR for each set of genes (Fig. 2B); 4) high risk group shows the most instances of 
dual hyper-methylations in more than 5,000 genes, while very high risk group always have lower number of genes 
comparing with high risk group. This pattern is also extensively found in TSS compared to Genic or TES region; 
5) low risk group samples almost always have the least number of genes with differential patterns; 6) very high risk 
group samples have the most number of DMR genes in dual hypo-methylation pattern.

Correlation of gene expression from the RNA-seq data of prostate carcinoma in TCGA.  To 
understand whether the identified distinct CDMPs have influenced the gene expression, we utilized the level-3 
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RNA-seq data of prostate carcinoma from TCGA to correlate with the identified genes associated with CDMPs. 
TCGA RNA-seq fold changes of all genes with DMR in each risk group and DMR are shown in Fig. 3A.

Overall, high risk group samples consist of more DEGs than the other three cancer groups, except in the 
events of dual hypomethylation pattern which are more prevalent in very high risk group. Among the 12 distinct 
CDMPs, S1D1, S1G1 and S1E1 groups have thousands of DEGs. For the other nine groups, the number ranges 
from several to several hundreds. For each of the 12 distinct CDMPs, we summarized the genes that are differ-
ential in any of the four tumor groups comparing with the two non-tumor groups as defined in the last section. 
Then, we compared and examined the DEGs to see whether their associated CDMPs are common or unique in 
TSS compared to one of the other three genomic regions.

1) TSS compared to Distal: Among all those genes showing both hyper-methylations in TSS and Distal region 
(S1D1), 2,715 genes are differentially expressed (1,210 up-regulated and 1,505 down-regulated). In contrast, only 
94 differentially expressed genes are in both hypo-methylation pattern in these two regions (S0D0), including 57 
up-regulated and 37 down-regulated. Similarly, 265 genes from the group with hyper-methylation in TSS and 
hypo DMR in Distal area (S1D0), 102 genes were up-regulated with concomitant down-modulation of 163 genes. 
Lastly, the group with hypo-methylated TSS and hyper Distal DMR has the smallest set of 38 genes (S0D1), 27 up 
and 11 down, respectively. Of note, L1CAM, found in S0D0 and S0D1 group, is expressed in androgen-insensitive 
and highly metastatic PCa cell lines, and is associated with PCa metastasis18. The two CDMPs of TSS hyper, i.e. 
S1D1 and S1D0 are significantly overlapped (hypergeometric distribution p-value =  8.17e-164); the two CDMPs 
of TSS hypo, i.e. S0D1 and S0D0 are also significantly overlapped (p-value =  2.32e-43); there is no significant 
overlap between S1D1 and S0D0, or S1D1 and S0D1 (Fig. 3B). 2) TSS compared to Genic: of 1177 genes showing 
differentially expression in TCGA data and having both TSS hyper and Genic hyper- DMRs (S1G1), 524 of them 
are surprisingly up-regulated. Since hypermethylation in promoter regions are often associated transcription 
silencing, we speculate that these genes might be transcriptionally controlled by gene body methylation resulting 
in up-regulation despite of the promoter hypermethylation. Similarly, S1G1 and S1G0 are overlapped with a 
p-value of 1.76e-08. However, there is no significant overlap between any other two CDMPs. 3) TSS compared to 
TES: There are a total of 1344 DEGs showing both hyper TSS and TES DMRs (S1E1), including 692 up and 652 
down-regulated.

Furthermore, we looked at the overlapping DEGs among different CDMPs. Generally, the three both 
hyper-methylation CDMPs, i.e. S1D1/S1G1/S1E1, have significant overlap (Fig. 3C). Similarly, the three 
both hypo-methylation CDMPs, i.e. S0D0/S0G0/S0E0 also have significant overlaps. This indicated that 
hyper-methylation in TSS region are likely to be accompanied by hyper-methylation in distal, genic as well as 
TES region, and the same for the scenario of hypo methylation in TSS region.

Figure 1.  Differential methylation at a glance. (A) Unsupervised clustering of binned mean methylation 
by region. Each row represents the average methylation of one gene, and each column represents the average 
methylation of one sample group (N, A, L, H, VH), in one genomic region (Distal, TSS, Genic, TES). Columns 
are grouped by genomic region; (B) TSS region of gene GCNT1, shows hyper methylation in N and A group, 
comparing with H and VH risk group; (C) Genic region of Gene JAK2, shows hyper methylation in tumor 
group; (D) Distal region of gene L1CAM, shows hyper methylation in tumor group. Data in B–D are binned 
into 100 bp.
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Finally, we categorized genes that are only differentially expressed in one specific risk group (Supplemental 
Fig. S1). For example, in S0E0 there are 25 genes that are recognized as DEG only in VH risk group, and in S0D0 
there are 73 genes that are only in VH risk group (Fig. 3D). We are particularly interested in genes that are only 
differential in very high risk group, as these genes are potentially associated with cancer progress and metastasis. 
These genes will be further investigated in survival analysis.

Signaling pathway and network analysis.  For these 12 groups of genes showing both differential meth-
ylation and gene expression, we selected seven groups with more than 25 genes in each group and carried out 
network analysis using Ingenuity Pathway Analysis (IPA). Four groups, S1D1, S1D0, S1G1 and S1E1, have been 
shown to be biologically significant and linked to various pathways and networks. For example, the group SID1 
with most number of genes has been identified to be associated with nine sub-networks, including cancer, cell 
death and survival, cellular development and proliferation, as well as DNA replication, recombination and repair. 
With only difference in a few genes from the group S1D1, the networks of both groups S1G1 and SIE1 are almost 
included by the network of S1D1. The pathway illustration by IPA was trimmed and visualized by Cytoscape19 as 
in Fig. 4. The top canonical pathways of each group are shown in Supplemental Fig. S2–S8.

Through a detailed examination of those IPA analyses, the following interesting results have emerged: 1) 
Common top ranked pathways: There are several canonical pathways that are commonly found, including 
G-protein coupled receptor signaling (GPCR), Gα i signaling, Thrombin signaling, cAMP-mediated signaling, 
CREB signaling in neurons, CXCR4 signaling, role of NFAT in cardiac hypertrophy and α -Adrenergic signal-
ing. GPCR signaling20 is known to regulate cellular motility, growth and differentiation, and gene transcription. 
CXCR4 signaling, a member of GPCR family, is also extensively involved in tumor progression, angiogenesis, 
metastasis, and survival21. Gα i has been closely associated with CXCR4 signaling by assisting the mediation of 
CXCR421. PDE4D7, an enzyme related to cAMP-mediated signaling pathway, was reported to be down regulated 
in AR-independent PCa cells and mediating proliferation22. CREB, responding to hormonal stimulation of the 
cAMP pathway, is associated with AR in cancer cells. Nonetheless, Thrombin signaling is reported to contribute 
to more malignant phenotype by activating tumor growth and metastasis23, and overexpression of relaxin is 
associated with accelerated progression of PCa24. NFAT proteins are functional in tumor cells during carcinoma 
progression and impact cell growth, survival, invasion and angiogenesis25. 2) S1D1-specific pathways: In addition 
to the common pathways, S1D1 group has a few specific canonical pathways, including gamma-glutamyl cycle, 

Figure 2.  Differential methylation in each CDMPs. (A) Number of genes with DMRs in each of 12 groups; 
Blue bar represents the comparison between tumor vs normal samples; Green bar represents the comparison 
between tumor vs adjacent tumor samples; (B) Group Mean of each CDMPs, centered by middle point of 
region, extend to up and down 500 bp.
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whereas gamma-glutamylcyclotransferase is a promising diagnostic marker and therapeutic target for prostate 
and various cancers26. Granulocyte adhesion and diapedesis pathway was reported to be found significantly 
enriched in a recent study on mammary cancer development27. There is also protein kinase a (PKA) signaling, 
which is functionally linked to AR in the progression of PCa28. 3) S1G1-specific pathways: S1G1 group also shows 
additional enriched pathways including cardiac β -adrenergic signaling, IL-1 signaling, P2Y purigenic receptor 
signaling, and PKA signaling. β -adrenergic signaling participate in multiple cellular processes that contribute to 
the initiation and progression of cancer, and is associated with cAMP signaling29. Dysregulated activation of the 
IL-1 signaling pathway contributes to cancer progression by creating highly inflammatory environment30. P2Y2 
receptor promotes cell invasion and metastasis in PCa cells31. 4) S1E1-specific pathways: There are several path-
ways that are only found in S1E1 group, including Urea cycle which had been found to be strongly upregulated 
in basal subtype of triple-negative breast cancer32.

Gene function and survival Analysis.  We further performed Go Ontology (GO) functional analysis on 
a total of 139 differentially expressed genes from the IPA analysis (Supplemental Tables S4 and S5) using the 
DAVID tool33,34 and obtained several GO terms clusters related to developmental process, cell differentiation, 
regulation of apoptosis, regulation localization, cell aging, cell motility, and others that are crucial in cancer 
development and metastasis. Many of those genes have been reported as gene signatures or important genes 
in PCa. For example, CDKN1A is reported as one of a two-gene signature, which could distinguish indolent 
prostate tumor from aggressive tumor, and accurately predict outcome of low Gleason score prostate tumors35, 
the other is able to predict survival of castration-resistant PCa36. A mouse model revealed that Axl is an essential 
regulator of PCa proliferation and tumor growth37. COL6A2 was identified as a member of clinically relevant 
androgen-dependent gene signature in PCa38. CXCL12 is known to interact with CXCR4 in modulating PCa cell 
migration, metalloproteinase expression and invasion39. DAB2IP is a unique intrinsic AR modulator in normal 
cells, and likely can be further developed into a therapeutic agent for PCa40. E2F1 was proved to be associated 
with androgen-dependent growth, differentiation and apoptosis of PCa cells41. Down-regulation of MYL9 in 
stroma predicts malignant progression and poor biochemical recurrence-free survival in PCa42. PHLDA3 is iden-
tified as diagnostic and progression biomarkers of PCa43. SMAD3 inhibition rescues cancer cell proliferation in 
PC3 cells44. TYMS is associated with aggressive tumor features and early PSA recurrence in PCa45. Although 
several genes, to our knowledge, haven’t yet reported to be directly associated with PCa, we postulate that these 
genes could be potential biomarkers for PCa.

To further examine the genes that constitute the top ranked pathways identified by IPA analysis, we used 
SurvExpress46 as described in Methods. The Sboner Rubin (Fig. 5A) and Kollmeyer-Jenkins (Fig. 5B) Prostate 
datasets demonstrated significant association with patient survival. Gulzar data set also indicates clear association 

Figure 3.  Correlating with TCGA RNA-seq data. (A) Log2 Ratio between tumor and normal samples, of 
genes that have positive log2 CPM and are identified with DMR; (B) Venn diagram of DEGs belonging to S1D1/
S1D0/S0D1/S0D0 ; (C) Venn diagram of DEGs belonging to S1D1/S1G1/S1E1; (D) Venn diagram of DEGs in 
S1D1, among different risk groups.
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with disease recurrence (Fig. 5C). Analysis on Taylor data sets indicates that they are significantly associated with 
PCa recurrence (Fig. 5D).

For those genes that are only differentially expressed in very high risk tumor group (see Supplemental Table 
S6 for the list of genes), we also conducted survival analysis on Taylor MSKCC Prostate dataset (see Supplemental 
Fig S9). These genes were also significantly associated with PCa metastasis.

Discussion
Despite the notion that DNA promoter hyper-methylation is linked to tumorigenesis is well established9, the roles 
of differential methylation (either hyper or hypo) in distal or gene body haven’t been fully examined. Through an 
integrative genomic analysis on a cohort of 52 PCa samples and non-tumor control, with tumor tissue samples 
being classified into three risk groups (low risk, high risk and very high risk), our study reveals individual roles of 
distal and genic methylation as well as their collaborative roles with promoter in contributing to prostate tumori-
genesis. Interestingly, we observed extensive and intensive tumor hyper-methylations occurring in Distal, Genic, 
and TES regions in additional to in Promoter region (Fig. 1A). Although positively correlated hyper-methylation, 
i.e. TSS and Distal (S1D1), TSS and Genic (S1G1), TSS and TES (S1E1) is shown as a dominant pattern, we found 
other interesting collaborative differential methylation patterns (CDMPs) in this study (Fig. 2A). For example, 
there are a significant number of genes associated with TSS hyper-methylation and Distal hypo-methylation 
(S1D0) or both TSS and Distal hypo-methylation (S0D0). Given that very limited study has been focused on 
this aspect, it is worthwhile to further mechanistically interrogate how this opposite (gain or loss) methylation 
is processed during the tumor progression in the future study. Nevertheless, our current study, for the first time, 
provides a catalog of many newly discovered CDMPs for prostate tumors.

Another surprising observation emerges from our study is that down-regulation of gene expression is not 
prevalent among these genes associated with many different CDMPs (Fig. 3A). For example, of a total of 2851 
DEGs for the combined S1D1, S1G1 and S1E1 groups, more than 40% (1250 genes in total) are noted to be 
up-regulated. These data suggest that gaining methylation in Distal, Genic or TES region might play similarly piv-
otal roles as those at promoters in impacting aberrant gene expression in prostate tumorigenesis. Despite several 
recent genome-wide studies implicate the roles of distal or intragenic methylation with cell or tissue type speci-
ficity or normal or stem cell developmental process12–14, very few studies have been conducted at a genome-wide 
scale to interrogate their roles in cancer stage specificity or cancer progression. By and large, our study provides a 
first genome-wide analysis on the specificity of PCa risk group.

Notably, our in silico IPA analysis hints that many common top ranked pathways are shared among three 
promoter-centered hyper-methylation groups (S1D1, S1G1 and S1E1), with androgen receptor (AR)-centered 

Figure 4.  Network analysis results by IPA carried on gene sets that are differential in TCGA RNA-seq 
data. IPA generated pathways were trimmed to only keep the differential expressed genes that are directly or 
indirectly connected to AR, then visualized by Cytoscape.
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signaling network being predominant. Despite the clear role of AR signaling in PCa, our result for the first time 
suggests a potential functional link between a central regulatory role of AR and DNA methylation in PCa progres-
sion. Undoubtedly, further experimental studies are essentially needed for functional validation of such observa-
tion by deploying the approach of reverse genetics.

The DAVID GO analysis not only confirms many GO terms have been identified in the IPA analysis, but also 
reveals many of those genes previously implicated as gene signatures or important players in the progression of 
PCa. Remarkably, survival analysis indicates these particular sets of genes as significantly enhanced risk factors in 
PCa progression and patient survival (Fig. 5). We predict that these set of genes might be potential biomarkers in 
the process of determining treatment strategy for patient undergone RP for better clinical outcomes.

PCa is the most common cancer among men but could be the least life-threatening if receives proper treatment. 
However, the current prevailing clinical screening or testing approach suffers from limitations because of the ina-
bility to manage patients particularly with respect to prevent over or insufficient treatments. Our genome-wide 
study for the first time provides thousands of differential methylation regions as well as the genes associated with 
many different collaborative differential methylation patterns for PCa. Furthermore, our work provides insight into 
how DNA methylation in Distal and Genic regions might play critical roles in contributing to prostate tumorigene-
sis and henceforth may act either positively or negatively with TSS to alter gene regulation in tumors.

Material and Methods
DNA samples.  DNA samples isolated from 32 prostate tumors, 12 tumor adjacent normal tissues, 8 nor-
mal prostate tissues (Supplementary Table S1) were subjected to subsequent DNA methylation analysis. The 
prostate tumor samples were collected from patients at different stages of tumor advancement while normal 
prostate tissues were obtained from healthy individuals. Informed consent was obtained from patient according 
to IRB protocols approved by the University of Texas Health Science Center at San Antonio and the University of 
Manitoba at Winnipeg, respectively. All experiments were performed in accordance with approved guidelines of 
the Institutional Review Board committee at UTHSCSA.

MBDCap sequencing (MBD-seq).  Methylated DNA was eluted by the MethylMiner Methylated DNA 
Enrichment Kit (Invitrogen) according to the manufacturer’s instructions. Briefly, one microgram of genomic 
DNA was sonicated and captured by MBD proteins. The methylated DNA was eluted in 1 M salt buffer. DNA in 
each eluted fraction was precipitated by glycogen, sodium acetate and ethanol, and was resuspended in TE buffer. 
Eluted DNA was used to generate libraries following the standard protocols from Illumina. Next, MBDCap-seq 

Figure 5.  Survival analysis on public PCa data available by SurvExpress. (A) Survival by month on Sboner 
Rubin PCa data; (B) survival after RRP on Kollmeyer Jerkins PCa data; (C) recurrence on Gulzar PCa data;  
(D) recurrence on Taylor PCa data.
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libraries were sequenced using the Illumina Genome Analyzer II as per manufacturer’s instructions. Image anal-
ysis and base calling were performed with the standard Illumina pipeline.

Bioinformatics analysis of MBD-seq data.  Single-end 50 bp reads were mapped to the UCSC human 
transcriptome (hg18) by Bowtie with parameters as -v 2 -best -k 10. Multiple matched reads were processed by 
LONUT16, a computational tool for locating multiple-matched reads in order to improve the detection of the 
enriched regions for ChIP-seq and MBD-seq data. We retained the multiple matched reads which were in prox-
imity to peaks detected in the uniquely matched reads and combined them with uniquely matched. The combined 
reads were then binned by 100 bp bin-size and normalized by total reads of each sample. A detailed description of 
each individual MBD-seq data is in Supplementary Table S2.

For risk group classification of samples, we combined the result from four methods that were discussed pre-
viously6, as defined by American Urological Association, European Association of Urology, Radiation Therapy 
Oncology Group and National Comprehensive Cancer Network , respectively. For each patient sample, the high-
est risk among the four methods was assigned. Therefore, the total 32 tumor samples were split into three risk 
groups: 13 low risk, 12 high risk, and 7 very high risk (Supplemental Table S1). In order to compare the tumor 
adjacent normal tissues with healthy normal tissues, we selected 12 patients’ adjacent tissues (ADJ) as a separate 
group, hence resulting in five different groups for the initial analysis.

For each transcript in UCSC RefSeq database that has unique transcription start site (TSS) and termination 
site (TTS), it is further divided into four genomic regions by the following manner: Distal (upstream 2–100 Kb), 
TSS (upstream and downstream 2 Kb of 5′ ), TTS (upstream and downstream 1 Kb of 3′ ), and Genic region 
(down 2 Kb of 5′  to up 1 Kb of 3′ ). The reads within the four genomic regions were then used for the differential 
methylation analysis. Differential methylation level at each bin (100 bp) was determined by a rank sum test 
between each tumor group and non-tumor group. For example, for Low risk samples, we compared them with 
normal samples, adjacent samples and normal combined with adjacent samples, respectively. We also combined 
all tumor samples together and did the same comparison with non-tumor samples. For TSS, TES and Distal 
regions, a minimum of three consecutive bins with a P-value less than 0.05, a minimum of 0.2 rpm on average 
in the higher methylated group, and a minimum log2FC of 1 must be considered for a statistically significant 
differential methylation region (DMR). However, a minimum of five consecutive bins is required for a Genic 
region.

We examined the collaborative methylation among different genomic regions in tumor compared to nor-
mal samples. Ideally, there should be 24 collaborative differential methylation patterns (CDMPs) based on any 
combination of two genomic regions associated with the same gene: both hyper-, both hypo-, hyper-/hypo- and 
hypo-/hyper. Considering that the DNA methylation status in a TSS region is critical in regulating tumorigen-
esis, to simplify the number of distinct CDMPs, in this study we only focused on those 12 patterns involved in 
a TSS region, i.e., S1D1 (hyper-TSS and hyper-Distal), S1G1 (hyper-TSS and hyper-Genic), S1E1 (hyper-TSS 
and hyper-TES), S1D0 (hyper-TSS and hypo-Distal), S1G0 (hyper-TSS and hypo-Genic), S1E0 (hyper-TSS 
and hypo-TES), S0D1 (hypo-TSS and hyper-Distal), S0G1 (hypo-TSS and hyper-Genic), S0E1 (hypo-TSS 
and hyper-TES), S0D0 (hypo-TSS and hypo-Distal), S0G0 (hypo-TSS and hypo-Genic), S0E0 (hypo-TSS and 
hypo-TES). We divided each genomic region into 100 bp bins and applied a rank sum test on each individual bin 
between each of three cancer patients (low, high, very high) groups and tumor adjacent normal (ADJ) or healthy 
normal (NORM) groups.

TCGA data and analyses.  RNA-seq datasets in PCa were downloaded from the Cancer Genome Atlas 
(TCGA) data portal (http://tcga-data.nci.nih.gov). We extracted level-3 raw count of genes using the “data 
matrix” tool provided by TCGA data portal. We selected a total of 523 samples, 52 normal and 471 tumor sam-
ples, available with both RNA-seq data and clinical features information for performing the correlation analysis. 
The 471 tumor samples consist of 23 low risk, 252 high risk and 196 very high risk samples. Differential was 
calculated using the edgeR package (version 3.4.2)47 in BioConductor (release 2.13, R version 3.0.2). Genes with 
< 0 cpm in more than 150 of the samples were excluded, and genes with a P-value lower than 0.05 as well as 
log2FC greater than 0.5 were assigned as being differentially expressed. Venn diagram was drawn using online 
tool Venny48.

Correlating result from TCGA data with MBD-seq data.  Since the TCGA data do not have adjacent 
samples, for each CDMP and risk group, a gene is marked as with DMR if it is differential comparing with normal 
or adjacent. Besides, the reference genes and level-3 RNA-seq genes are not mutually inclusive. Therefore, we only 
kept the overlap genes between the two types of data. A heatmap of TCGA RNA-seq fold changes of all overlap-
ping genes in each risk group and DMR are shown in Fig. 3A.

Survival and IPA analyses.  In the IPA analysis, genes that are differential in either all tumor vs normal, or 
tumor subgroups vs normal, were separated into list according to the methylation pattern and used as input to 
search for canonical pathways and networks. The number of genes used in IPA analysis is in Supplemental Table S3. 

SurvExpress46, an online biomarker validation tool and database, was used to explore the patient survival 
or regression outcome. The tool takes gene list as input, as well as additional options for configuration, such as 
censoring, number of risk groups, stratification method, etc., to generate figures including Kaplan-Meier curves 
and gene expression heatmap. In our case, there are seven Prostate databases available, and we selected four 
datasets with the most number of samples, including 140-sample Taylor MSKCC Prostate49, 281-sample Sboner 
Rubin Prostate GSE1656050, 98-sample Gulzar Prostate GSE40272 51, and 596-sample Kollmeyer-Jenkins Prostate 

http://tcga-data.nci.nih.gov
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GSE10645-GPL5858 52. Since some of these data sets do not have the whole genome’s gene expression, the survival 
analysis was only performed on a part of the candidate genes from IPA analysis. We used the default setting of 
SurvExpress so that samples would be divided into two risk groups based on the quantile normalized expression 
in each data set, and there is no stratification.
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