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Abstract

Objective—Brain regions are localized for resection during epilepsy surgery based upon rare 

seizures observed during a short time period of intracranial EEG (iEEG) monitoring. Interictal 

epileptiform bursts, which are more prevalent than seizures, may provide complementary 

information to aid in epilepsy evaluation. In this study, we leverage a long-term iEEG dataset from 

canines with naturally occurring epilepsy to investigate interictal bursts and their electrographic 

relationship to seizures.

Methods—Four dogs were included in this study, each previously monitored with continuous 

iEEG for periods of 475.7, 329.9, 45.8, and 451.8 days respectively for a total of over 11,000 

hours. Seizures and bursts were detected and validated by two board-certified epileptologists. A 

published Bayesian model was applied to analyze the dynamics of interictal epileptic bursts on 

EEG and compare them to seizures.

Results—In three dogs, bursts were stereotyped and found to be statistically similar to periods 

before or near seizure onsets. Seizures from one dog during status epilepticus were markedly 

different than other seizures in terms of burst similarity.

Significance—Shorter epileptic bursts explored in this work have the potential to yield 

significant information about the distribution of epileptic events. In our data, bursts are at least an 
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order of magnitude more prevalent than seizures and occur much more regularly. Our finding that 

bursts often display pronounced similarity to seizure onsets suggests that they contain relevant 

information about the epileptic networks from which they arise and may aide in the clinical 

evaluation of epilepsy in patients.
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Introduction

Epilepsy affects 60 million people worldwide, of whom one third have seizures not 

controlled with medications 1. For many patients who are refractory to medications, surgical 

intervention is the only possibility for cure. Prior to surgical resection, patients with 

neocortical epilepsy typically undergo intracranial EEG (iEEG) monitoring to localize the 

seizure onset zone. Unfortunately, after undergoing extensive pre-surgical evaluation, often 

lasting several weeks, only ~50% of patients with neocortical epilepsy will become seizure-

free or have a significant reduction in their seizure burden following surgery 2. A long-

standing goal of the epilepsy research community is to identify electrophysiological 

biomarkers of epileptic networks and their dynamics to better target anti-seizure therapies, 

particularly surgery and implantable devices. The identification and validation of these 

biomarkers necessitates long-term iEEG recordings through which many repeated 

observations can be detected and analyzed.

In prior work from our lab, we presented recordings from a novel implantable device that 

continuously records iEEG for prolonged periods 3. Six dogs with naturally occurring 

cryptogenic localization related epilepsy were monitored for over 11,000 hours with 16 

intracranial electrodes, eight implanted over each hemisphere. Over 200 ictal events which 

showed remarkable similarity to human seizures were recorded across these canines. 

Background EEG and interictal bursts of epileptiform discharges in these animals were also 

indistinguishable from human iEEG recordings. This work validated canines with 

spontaneous seizures as a promising model of human epilepsy and provides a rich dataset of 

unprecedented length for biomarker detection and analysis.

One potential biomarker of interest is interictal bursts observed on human iEEG as well as 

on our canine recordings. These bursts have been described in various studies as brief 

rhythmic discharges (BRDs) and brief potentially ictal rhythmic discharges (B(I)RDs) 3–8 

and have been associated with epilepsy and cerebral trauma. These patterns exhibit 

similarities to electrographic seizures in that they are paroxysmal, stereotyped, and can 

evolve temporally and spatially. However, it is currently not known how these epileptiform 

bursts relate to epileptic networks, their dynamics, or if they quantitatively resemble 

epileptic seizures. Some investigators differentiate between bursts and seizure by an 

arbitrary duration set at 10 seconds, which we investigate and address in the discussion 

below. Furthermore, since interictal bursts occur much more regularly than seizures, they 

may aid in the localization of epileptic networks for surgical resection or serve as an 

important feature in seizure prediction.
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The primary goal of this study is to investigate interictal bursts and to determine their 

relationship to clinical seizures on continuous iEEG from canines with naturally occurring 

epilepsy. Specifically, we aim to characterize interictal bursts and determine their dynamic 

similarity to seizures. Assessing the relationship between bursts to well-established seizures 

will allow us to determine the importance of these epileptiform discharges and to justify 

future in-depth studies of these interictal patterns. Furthermore, we can improve our 

understanding of how these bursts relate to seizures and potentially shed light on 

mechanisms of seizure onset and propagation.

A secondary goal of this study is to focus on the challenges presented by new devices that 

continuously monitor and process human data over long periods – “big neural data”. This 

work has evolved and improved steadily over recent years, embodied in devices to detect, 

predict and respond to seizures in several new implantable devices3,9,10. Traditionally, iEEG 

is interpreted by human readers and marked by hand. The large archive of continuous data 

analyzed for this project required rigorous, automated methods for detecting and processing 

bursts of activity. In this study we leverage automated, machine learning approaches to data 

reduction to study interictal bursts in data streams too long and complex to be marked 

manually by human readers. These methods offer more flexibility and the ability to learn 

patterns from data, a substantial improvement from rule-based methods employed in 

epilepsy monitoring equipment and implantable anti-seizure devices currently being 

deployed.

Methods

Dataset

Four dogs originally described in Davis et al., 2011 were included in this study each 

monitored with continuous iEEG for periods of 475.7, 329.9, 45.8, and 451.8 days 3. All 

dogs were observed to have spontaneous focal epilepsy of unknown etiology with secondary 

generalization. All dogs exhibited focal onset seizures with and without generalization. The 

dogs were normal on physical and neurological exam with no history of trauma. The dogs 

were housed at BioAssist Inc., a USDA Class R research facility located in Vacaville, CA. 

None of the dogs were on antiepileptic medication at the start of the study. One of the four 

dogs included in the present study died from status epilepticus during the monitoring period, 

after which phenobarbital (PHB) therapy was initiated in all remaining dogs. The results 

from this dog are discussed separately.

Each dog exhibited similar seizure symptomatology. Typically, focal seizures with 

secondary generalization proceeded in four phases. The first phase lasted 5–12 seconds and 

started with vigorous side-to-side shaking of the head, or jerking of the head followed by 

shaking, with altered awareness. The second tonic phase lasted 2–15 seconds with extensor 

rigidity of the jaw and opisthotonus of the head, neck, and limbs. These tonic movements 

were followed by rhythmic clonic jerking of the limbs, which were initially rapid (25–30 

seconds) but slowed to resembled post-ictal running movements (10–50 seconds). In the 

recovery phase, the dogs lay quietly in lateral recumbency, with occasional jerks and 

hyperventilation.
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Event Detection

Both seizures as well as interictal bursts were initially detected with a sensitive line-length 

detector and subsequently validated manually. Line-length is a feature that incorporates both 

the amplitude and frequency components of a signal and has been shown to be robust for 

detection of epileptiform events 9. Detections that were interrupted by data dropout from 

device dysfunction or repair were eliminated from analysis. Three channels with significant 

electrode artifacts in dog 4 were also omitted from analysis.

To detect seizures, the average line-length feature was calculated across all 16 channels with 

a 2-second moving window, and candidate event EEG clips with line-length above a 

specified threshold were saved. Thresholds for each dog were individually set to be of high 

sensitivity and low specificity in order to capture all events. Clinical seizure candidates were 

validated with simultaneously video by a consensus of two board-certified epileptologists 

(B.L. and G.W.).

To detect interictal bursts, a similar line-length detector was used and candidate bursts were 

further refined by both quantitative and qualitative criteria. We excluded candidate events 

with maximum average line length feature values two times above the maximum value 

observed during known ictal events, since artifacts often displayed large-amplitude, high-

frequency noise simultaneously on all channels. We eliminated candidate non-seizure events 

with above-threshold activity shorter than 500 ms and longer than 30 seconds. Longer 

events were manually reviewed to insure that real clinical events were not eliminated. Burst 

detections were validated by a consensus of two board-certified epileptologists (B.L. and 

K.D.).

After interictal epileptiform burst and seizure detections were finalized, each iEEG event 

was low-pass filtered at 100 Hz and downsampled from 400 Hz to 200 Hz, preserving event 

features relevant to clinical practice while reducing computational burden. iEEG voltages in 

each event were rescaled to [−10, 10] based on data that lies within a 99% confidence 

interval. This scaling prevents the extreme outliers from compressing the majority of the 

data and is necessary for numerical stability of statistical inference, but no data in any event 

was discarded.

Once the events (bursts and seizures) were identified, we then aimed to parse the dynamic 

activity of each event into states and determined the relationship between bursts and 

seizures. This is described below, and readers are referred to the supplementary materials for 

technical details.

Modeling

In order to assign a state to each timepoint during the bursts as well as seizures, we looked 

directly at the evolution of raw EEG voltages across time. This approach is similar to that 

which an epileptologist would use to analyze EEG, and captures evolving trends within 

time-traces. Here, we use an autoregressive hidden Markov model (AR-HMM) to parse the 

voltage signal into interpretable states that “switch”.. Specifically, we model a single 

channel’s activity as switching between a set of autoregressive (AR) processes, which are 

each locally stationary to account for the non-stationary properties of EEG. From a 
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particular configuration of channel states, we can then assign global event states at any point 

in time11. This global event state, capturing the activity of all channels, is the focus of our 

analysis and the basis for determining similarity between two events.

Notably, two extensions make this model suitable for this analysis. We mimic focal changes 

in the iEEG by allowing channels to share AR states and allowing asynchronous state 

switching. Finally, a spatial constraint is added due to the physical electrode configuration, 

allowing for spatial propagation of activity and more tractable statistical inference. Readers 

are referred to the supplementary materials and published literature for further details and 

technical implementation 10,11.

Event comparisons

For each dog, all bursts and seizure events, regardless of focality were modeled together. 

This allows sharing of event states between both bursts and seizures as well as comparing 

dynamic similarity between events. We then ask the question: what parts of a seizure are 

most similar to bursts? This can be answered by determining the similarity of the timepoints 

in a seizure to all bursts. Specifically, we first calculate the probability that a given timepoint 

in a seizure is assigned to the same state as a given timepoint in a burst. This probability is 

derived from the Bayesian estimation of the AR-HMM model, and readers are referred to 

the supplementary materials and references for further details 12,14,15. Secondly, we take the 

maximum probability across all time points in the given burst to find the similarity between 

the seizure timepoint and the given burst. Finally, we average this probability across all 

bursts to obtain the similarity between a given timepoint in a seizure and all bursts. 

Intuitively, this represents the average probability that a given time point in a seizure 

clusters with a burst.

The model inference and analysis were run primarily on a cluster of ten 8-core Amazon EC2 

machines (http://aws.amazon.com/documentation/), linked together into a cluster with the 

third-party StarCluster (http://star.mit.edu/cluster/). Matlab code for this model is available 

online (www.seas.upenn.edu/~wulsin).

Results

Table 1 summarizes resulting data segments containing event detections analyzed for each 

of the four subject dogs. Bursts were on average 3.97 seconds long with a standard deviation 

of 2.48 seconds. The 95% interval is between 1.2 seconds and 11.08 seconds. Qualitative 

analysis of bursts indicates that they are very similar to the bursts described in human EEG. 

Figure 1 shows examples of 4 bursts from one dog in this study, which is representative of 

all animals monitored for this experiment. Figure 1A shows a burst of sharply contoured 

rhythmic alpha activity present over both hemispheres, most prominent at channels L5, L6, 

R3, and R4. In Figure 1B, a burst of diffuse rhythmic gamma activity most marked at 

channels L4, L5, R3 and R4 is present. The sharply contoured burst of rhythmic gamma 

activity is more focal in Figure 1C in the left hemisphere channels 4 and 5. Figure 1D also 

shows a burst of more focal sharply contoured beta activity also in the left hemisphere 

channels 4 and 5.
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Do Bursts Correlate with Seizures?

A time line of the seizures (red vertical bars) and sub-clinical bursts (dots scattered 

vertically for display) is shown in Figure 2 for each dog over the span of the dog’s entire 

continuous recording. Note that most seizures occur in clusters spaced a few hours from 

each other. A correlation analysis of burst distribution with seizure distribution indicated 

that bursts tended to cluster around seizures in dog 2, though not tightly (r=0.31, p=0.006). 

This pattern was not evident in the other dogs and bursts did not statistically predict seizures 

in any of the 4 subjects.

Bursts Characteristics and Similarity to Seizures

An example of event state assignments over EEG is shown in Figure 3. In panel A, the full 

seizure and 5 seconds of the seizure onset are shown. The colors beneath each EEG 

represent the state assignment at each timepoint. In panel B, the state assignments are shown 

for two bursts with transient decrease in activity in the center. Panel C shows the state 

assignments for the onset of a burst.

Figure 4 shows the average burst similarity for one representative seizure from each dog. In 

three dogs (excluding dog 5, who died from status epilepticus) bursts were stereotyped and 

found to be statistically similar to periods before or near seizure onsets. Higher amplitude 

activity following seizure onset had relatively little similarity with interictal bursts.

Figure 5 shows the averaged burst similarity across all the seizures for each dog 10 seconds 

prior to marked unequivocal electrographic onset (UEO) 12, where each row contains the 

same information in the EEG shown in Figure 3. This displays how the burst similarities 

change across seizures and over each subject’s monitoring period. Of particular interest, 

note how each cluster of seizures (denoted by the horizontal black lines) tends to display 

similar organization. There were few seizures during phenobarbital administration, but the 

relationship of bursts to non-status epilepticus seizures was unchanged.

In dog 2, the first two clusters of seizures have little onset similarity with interictal bursts, 

though the later groups all display strong onset similarities. The high-amplitude seizure 

activity is in general not very similar to the bursts, though very discrete periods of the offsets 

tend to display strong similarities. The less marked similarity present at the end of the 

seizures occur at discrete, low-amplitude post-ictal discharges.

In dog 4, 12 of the 14 seizures recorded occurred within the period of just a few days. These 

all display strong onset similarities with a subset of interictal bursts on iEEG, generally 

those bursts that occur before the large data gap shown in Figure 2. The two seizures 

occurring much later in the record contain similarities across more of the bursts. As in dog 2, 

all of the seizures in dog 4 contain patterns of very brief but very strong similarity at seizure 

offset.

In dog 7, an early cluster of four seizures, as well as a late cluster of 32 seizures which 

occurred within two days also showed onset similarities with the bursts. However, the 

strongest similarity occurs with two clusters totaling 12 seizures. Bursts are similar to 

seizure onsets in the first three groups of seizures.
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Dog 5 is a particularly interesting case in that it contained two main groups of seizures, the 

second of which occurred while the dog was in status epilepticus. The five seizures in the 

first group all contain very strong onset similarities and a few brief periods of offset 

similarity across almost all the bursts, as in dogs 2, 4, and 7. The second group of seizures 

display physiologic changes associated with status epilepticus that manifest in changes in 

iEEG seizure dynamics (Figure 5, see discussion below). During status epilepticus the bursts 

no longer are similar to the seizure onset or offset as seen in prior seizures.

Discussion

EEG representations of seizures can be thought of as observations from a complex 

physiologic network. We have every reason to believe that this network can change, 

especially after acute injury like traumatic brain injury or electrode implantation. We can 

think about these networks as creating a probability distribution of epileptic events, where 

each epileptic event is a sample from this distribution. Perturbations increase the probability 

of certain epileptic events, including seizures. Ideally, clinicians would have a reasonably 

high degree of confidence about the distribution of epileptic events, and thus confidence in 

the probability of future seizures, before making a dramatic clinical decision. However, this 

requires many observations of epileptic events, and often only a few seizures are recorded 

over weeks of intracranial monitoring. Furthermore, the network can generate a multimodal 

seizure distribution, meaning that a patient may have more than one type of seizure which 

could be missed during observations in the Epilepsy Monitoring Unit. Furthermore, the 

network can change, meaning that a seizure observed at one point in time may not be 

representative of events in the future. Can we really be confident in the conclusions we draw 

about the underlying epileptic networks when we have so few observations generated by it?

We believe that the interictal bursts explored in this work have the potential to yield 

significant information about the distribution of epileptic events. Our data shows that bursts 

are at least an order of magnitude more prevalent than seizures and occur much more 

regularly. Interestingly, although our algorithm detected all bursts less than 30 seconds, 95% 

of the finalized bursts were between 1.2 seconds and 11.8 seconds. This aligns with the 10 

second cutoff that originated from the Young Criteria for subclinical seizures which is often 

extrapolated to the intracranial EEG setting by clinicians 17. However, since bursts longer 

than 11.8 seconds were rare, it is plausible that bursts represent a continuous spectrum of 

subclinical seizures and that a longer duration interictal burst may reach a physiological 

threshold for propagation, manifesting as clinical seizures.

We also showed that bursts display pronounced similarity to seizure onsets, suggesting that 

they contain relevant information about the epileptic networks from which they arise. In 

Figure 3, the state assignments of two interictal segments provide insight into the particular 

burst patterns and their similarity to seizure onset. Panel B shows two bursts with state 

assignments similar to high voltage activity at the earliest electrographic onset (EEC). The 

transient decrease in voltage, assigned a “red” state, likely corresponds to a quieting phase 

as seen in Panel C before burst onset. Because these event states are switching between AR 

processes, similar state assignments can be interpreted on a high level as having similar 

evolving frequency compositions. Physiologically, this similarity of bursts to the onset of a 
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seizure may represent “aborted” seizure onsets, and comparing them to seizures may yield 

important mechanistic information on how clinical events are generated and guide surgical 

decision making.

In addition to being similar to seizure onset, we noted that burst similarities were statistically 

similar to seizure offset as well, but not the “middle” of seizures. Similar findings have been 

noted by other investigators who have shown dynamic iEEG network synchronization and 

desynchronization as a seizure progresses 14,15, which is thought to reflect changes in 

network topology. It is, however, not well understood why the “middle” of seizures shows 

decreased network synchronization. Some have postulated that there exists a relationship 

between network topology and bursting dynamics, which is also supported by in vitro 

studies 16,17. It is plausible that bursting activity characterizes a transition between various 

brain states, which would explain the similarity to seizure onsets and offsets, but not the 

middle of seizures.

Dog 5, who unfortunately died from status epilepticus, is a case that allows us to explore 

differences between isolated seizures and status epilepticus. The onsets of the initial isolated 

seizures were similar to interictal bursts. However, seizures that occurred during status 

epilepticus were not similar to the bursts. Although not well established in the literature, 

clinicians often note a substantial change in seizure characteristics during status epilepticus, 

in comparison with isolated spontaneous seizures in the same individual. The lack of burst 

similarity in dog 5 during status epilepticus is consistent with this finding. The transition of 

burst dynamics as this animal entered status epilepticus is also of great interest. The change 

in structure appears to change abruptly within the first several clinical events, suggesting 

that status epilepticus may represent an acute transition in epileptic networks, not a gradual 

transition into a stable, pathological state. However, these anecdotal observations are of only 

one dog, and further study in a larger dataset is needed for confirmation.

Limitations

The observations in this study suffer from several potential short-comings. First, the number 

of animals is quite small, as this was a pilot study meant to gather preliminary data for a 

larger, more detailed study. Though there is variability between dogs in this study, recording 

periods were very prolonged, much longer than previous work in the literature, and our 

conclusions regarding bursts, their relationship to seizures and their clustering behavior are 

supported by a large number of observed events and strong statistical significance.

Secondly, the question of seizure typing and classification in the dogs used in this study is 

one that affects the extension of our findings to human epilepsy. While there is significant 

literature qualitatively describing canine epilepsy 18, there is little published on iEEG in 

these animals, and their epilepsy syndromes are poorly characterized. We have described the 

seizure disorders and EEG in our subject animals previously 3 and found both well localized 

partial onset epilepsy in these animals, as well as poorly localized, regional onset frontal 

lobe seizures, though these were partial in onset. However, the range of patterns observed 

compares well to humans with medically refractory epilepsy undergoing iEEG presurgical 

evaluation. None of the animals monitored in this study appeared to have syndromes 

suggestive of disorders analogous to human primary generalized epilepsy, though these 
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entities are less well described in these animals. Certainly relating our findings to those in 

human epilepsy will require similar extended recordings in patients, in order to determine 

whether our findings hold in the human condition.

Finally, the interictal bursts detected in this study likely encapsulated different subtypes. 

Here, the bursts we studied involved the majority of EEG channels because we were 

interested in the electrographic characteristics of each burst and not the spatial patterns. 

However, there was clear focality in many of these bursts. Furthermore, in the current 

analysis we did not stratify our analyses by the variability in the frequency composition 

(such as those shown in Figure 1). It is possible that a certain subtype of burst with certain 

frequency composition or focality is most similar to seizure onsets, and this is current topic 

of investigation in our lab.

Future directions

We believe we can use burst-burst similarity to determine when the epileptic network has 

stabilized and thus when the seizure observations from that network are truly representative 

of the future events. Based upon the known immunologic reaction to chronic intracranial 

implants and the resulting anatomical changes, 19–24 some investigators postulate that the 

implantation process itself may introduce epileptiform activity that can confound 

localization of epileptiform activity (Hudgins et al., submitted for publication, 2014). 

Current work in our lab is focused on analysis of burst dynamics to determine if these 

patterns can be used as a proxy for network stabilization.

Future research will help determine whether these bursts also contain localization 

information similar to that found in seizures. Since we have established that interictal bursts 

occur with greater frequency than seizures, this information might be harnessed to reduce or 

perhaps eliminate the requirement to record ictal events to map patients for epilepsy surgery 

or device placement. This study was not designed to test this hypothesis, but suggests that 

further investigation in this area could be fruitful. This issue that has not been assessable 

until now, with the appearance of prolonged intermittent recordings and more detailed, 

continuous recordings from devices like the one used in this study25.

Finally, an underlying theme of this research is using unsupervised methods to analyze 

massive streams of continuous iEEG, raising the significance of “big neural data” in clinical 

care. Our ability to analyze and categorize continuous iEEG recordings spanning up to a 

year in duration on Amazon’s Elastic Computing Cloud, suggests a possible paradigm shift 

in epilepsy research and potential clinical care. We now possess tools that make continuous 

access to extremely dense, prolonged and detailed brain recordings possible, with the ability 

to share them world wide on “The Cloud.” These advances have tremendous potential to 

accelerate collaborative research and facilitate rigorous validation of studies like this one. In 

this light, we are posting all of the data from this study on the International Epilepsy 

Electrophysiology Portal (http://ieeg.org) after publication of this study.

Conclusion

We believe that the findings in this study expand our current knowledge about the prevalent 

interictal bursts observed on iEEG and warrant further investigation into the predictive and 
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localizing ability of these patterns. We show that these interictal bursts are very similar to 

both the onsets and offsets of seizures, potentially indicating that the bursts represent 

aborted seizures or changes in brain state. Whether this belief is correct will depend upon 

further human studies, now in progress, on a richer, larger continuous iEEG dataset. We also 

believe that the power of faster digital computers, machine learning, cloud computing and 

“big neural data” are poised to have dramatic impact on epilepsy research and clinical care.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Key Points of Article

• Epileptic bursts, which are more prevalent than seizures, have the potential to 

yield significant information about the distribution of epileptic events

• Bursts display pronounced similarity to seizure onsets and may contain relevant 

information about the underlying epileptic networks.

• The ability to analyze yearlong continuous EEG recordings on Amazon’s 

Computing Cloud suggests a possible paradigm shift in epilepsy research.
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Figure 1. 
Examples of bursts detected on the canine iEEG data. There are 8 electrodes on each 

hemisphere, two parallel strips of four electrodes each. L1-8 are over the left hemisphere 

and R1-8 are over the right hemisphere. An average referential montage is displayed. (A) 
Burst of sharply contoured rhythmic alpha activity seen bilaterally most prominent at 

channels L5, L6, R3, R4. (B) Burst of diffuse rhythmic gamma activity most marked at 

channels L4, L5, R3, R4. (C) Focal burst of rhythmic gamma activity most prominent in L4, 

L5. (D) Burst of focal sharply contoured beta activity most prominent at L4, L5.
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Figure 2. 
Timelines of the seizures (red vertical bars) and sub-clinical bursts (dots jittered vertically 

for display) for each dog over the span of the continuous recording. Gray periods in the 

recording denote times of no available data. The majority of the seizures occur in groups 

spaced a few hours from each other. The last 73 days of dog 004’s record are omitted 

because only bursts excluded during the culling (and no seizures) occurred during that time 

frame.

Davis et al. Page 14

Epilepsia. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Multichannel examples of seizure onset and interictal bursts with corresponding event states. 

Colors below EEG represent state assignment. (A) Full seizure with event state assignments 

for the seizure onset (5 s). (B) Interictal bursts and corresponding state assignments (1 s). 

(C) Interictal EEG showing burst onset (1 s).
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Figure 4. 
Burst similarities for a representative seizure in each dog. Each horizontal line is a channel. 

Vertical lines indicate averaged similarity of given timepoint with all bursts. Red denotes 

timepoints with high similarity to all bursts. Bursts were stereotyped and found to be 

statistically similar to periods before or near seizure onsets.
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Figure 5. 
Burst similarities across all the bursts b (rows) for each seizure in each dog. Horizontal axis 

denotes the time series of each seizure. The vertical axis stacks seizures in time over the 

course of the monitoring period. Horizontal black lines separate clusters of seizures, defined 

as >24 hours apart. Vertical dashes line defines the unequivocal electrographic onset (UEO). 

Red denotes timepoints with high similarity to all bursts.
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Figure 6. 
Burst similarities for the seizures of dog 005 (middle), similar to those shown for the other 

three dogs in Figure 5. An early (top) and late seizure (bottom) in dog005’s status 

epilepticus, where the time points of each seizure are colored based on their similarities to 

the other bursts. Red denotes timepoints with high similarity to all bursts.
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Table 1
Distilled data from the four dogs with recorded iEEG

Initial and final detections are noted. Dog 005* died from status epilepticus during this study.

Dog ID ECoG Time (days) Initial Burst Detections Final Burst Detections Final Seizure Detections#

002 475.7 1,846 740 37

004 329.9 16,026 758 14

005* 45.8 6,437 811 91

007 451.8 11,149 1001 48

#
clinically validated.
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