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Abstract

Cancer spread (metastasis) is responsible for 90% of cancer-related fatalities. Informing patient 

treatment to prevent metastasis, or kill all cancer cells in a patient’s body before it becomes 

metastatic is extremely powerful. However, aggressive treatment for all non-metastatic patients is 

detrimental, both for quality of life concerns, and the risk of kidney or liver-related toxicity. 

Knowing when and where a patient has metastatic risk could revolutionize patient treatment and 

care. In this review, we attempt to summarize the key work of engineers and quantitative 

biologists in developing strategies and model systems to predict metastasis, with a particular focus 

on cell interactions with the extracellular matrix (ECM), as a tool to predict metastatic risk and 

tropism.

Graphical abstract

Introduction

Metastasis, the spread of cancer cells from an initial tumor site to other areas of the tissue, or 

to other tissues entirely, is the cause of 90% of cancer-related deaths. Cancer does not 

metastasize randomly, rather each type of cancer exhibits a tissue-specific pattern of spread 

(called tropism) [3]. Some types, like colon [6] and ovarian cancer [7], are dictated by 

circulation patterns and anatomical proximity. But other types of cancer metastasize to 

distant organs independently of circulation. Prostate cancer metastasizes nearly exclusively 
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to the bone [8], pancreatic cancer to the lung and liver, and other types, like breast and non-

small cell lung cancer, spread to many tissues ([3], Figure 1).

By and far, evidence for what might control metastasis to certain tissues, but not others, has 

focused on the genetic determinants of the seed (the cancer cell) that dictate tissue 

selectivity (tropism) [9–13]. Here, we summarize engineered model systems to study the 

role of the soil (the extracellular matrix, ECM) in mediating metastasis. We discuss cell-

ECM interactions and physical forces in guiding metastasis, with a focus on breast cancer. 

We discuss the community’s ability to predict when and where cancer cells will metastasize, 

and speculate what these predictions mean for patient prognosis, surveillance, and drug 

treatment.

Predicting Invasion

Preceding eventual metastatic colonization at a secondary tissue, primary tumor cells must 

first invade through the basement membrane into the surrounding interstitial tissue. Biopsies 

are the gold standard for determining the local invasiveness of a patient’s tumor upon 

diagnosis. There are many biomarkers, such as proteins, miRNAs, and copy number 

alterations that can identify a patient’s tumor as invasive [14–17]. However, biopsies only 

provide one snapshot of a tumor, with limited ability to predict any stochastic changes in 

phenotype or mutations that may occur, thus limiting the future efficacy of a patient’s drug 

treatment regimen. Recently, biologists and engineers have sought to understand how the 

ECM impacts the invasiveness of cancer, and if the ECM itself could be used as a predictive 

biomarker.

Matrix and/or cell stiffness is one such potential predictive marker. Recently a study found 

that mice with more mechanically compliant primary tumors had more aggressive relapsed 

tumors at the time of euthanasia [18]. Shear stress due to fluid flow also induces an 

epithelial to mesenchymal transition (EMT) in ovarian cancer, suggesting that more porous 

tumors are more metastatic [19]. On in vitro 2D surfaces, Leight et al. found that TGF-β1 

induced invasion occurs only on rigid surfaces, thereby linking chemical and physical 

factors on the initiation of EMT [20]. A large study spearheaded by the National Cancer 

Institute (NCI) recently showed that physical differences (such as cell compliance, traction 

forces) are enough to distinguish between a malignant (MDA-MB-231) and normal 

(MCF-10A) cell line [21]. This study required massive efforts across many laboratories, so 

more sophisticated tools, perhaps those that rely on electrical impedance [22] instead of 

individual cell analysis, are required for high-throughput application.

In addition to stiffness, many ECM proteins have documented roles in augmenting or 

abrogating metastasis (for review, see [23]). In fact, Weinberg’s Hallmarks of Cancer was 

recently updated to include the role of the ECM in each step of metastasis [24]. The 

potential for metastasis and the particular distant tissue site may be associated with an 

identifying “ECM signature” [25]. For example, using ECM-binding as a predictive marker 

showed that cancer cell binding to combinations of ECM proteins was sufficient to separate 

metastatic from non-metastatic cell lines [26]. While these are seminal studies, a consistent 

predictive biomarker of disease prognosis, such as the structure of the ECM, or perhaps an 
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individual or set of proteins within the ECM, has yet to be developed. This is imperative to 

translate understanding of the physical relationship between a cell and its ECM to clinical 

treatment.

Where will cancer metastasize?

Given what we know about the heterogeneous nature of tropism, how do we predict where a 

cell will metastasize? Ideally clinicians would be able to predict metastatic location with 

biomarkers in a tumor biopsy or in a blood draw, or with quick in vitro assays. An ideal in 

vitro platform would have controlled, decoupled properties, be highly reproducible, and be 

easily transferrable to different laboratories and clinics. In in vitro models, high invasion, 

motility, and proliferation are generally correlated with metastatic potential. One example 

recently shown by Sheetz and colleagues used simple control of mechanics to report that 

MDA-MB-231 variant cells proliferate in vitro on materials mechanically similar to the 

tissue to which they metastasize to in vivo, (Figure 2, [2]). This work was reproduced in a 

comparative study between ovarian and breast cancer cells (Figure 2, [4]). These examples 

suggest that physical features may filter for populations of breast cancer cells that exhibit 

enhanced proliferative ability at specific secondary tissue sites, and that biomaterial 

platforms with controlled mechanics could be used to identify this proliferative capacity in 

vitro.

Because the tissues recipient of breast cancer metastasis have striking differences in 

microenvironment composition, our lab and others have hypothesized that cell-matrix 

interactions may mediate tropism. We recently showed that integrin-mediated adhesion and 

motility phenotypes of breast cancer cells, compiled into a phenotypic fingerprint using a 

systems biology-like approach, can predict bone, brain, or lung metastasis in breast cancer 

(Figure 2, [1]). In contrast to tools that rely on genetics or fixed tumor tissue (Oncotype DX, 

MammaPrint, MetaSite Breast, and Prosigna), these engineering approaches use live cell 

interactions with the microenvironment and may reveal prognostic results missed by 

traditional approaches.

Tissue-Specific Drivers of Metastasis

Within breast cancer, the pathological subtype of the disease is correlated with different 

rates of metastasis to different tissues (Figure 1c, [5]). Bone metastases are by far the most 

common, occurring in 75% of all metastatic breast cancer patients. Brain metastases, on the 

other hand, are rare, occurring in roughly 15% of all patients, with ER− negative and HER2+ 

subtypes most commonly presenting. Metastasis to the lungs occurs in approximately 25% 

of metastatic patients, with the highest presentations in HER2+, ER−/PR− breast cancer.

Pioneering genetic research has identified a subset of genetic markers associated with tissue-

specific metastasis. These include COX2, ST6GALNAC5, EGFR, HBEGF [12] L1CAM 

and SERPINS [27], and GABA for brain metastasis [28]. Bone tropic populations 

overexpress genes that facilitate metastasis: CXCR4 promotes homing and extravasation, 

MMP1 facilitates invasion, CTGF and FGF5 aid angiogenesis, and IL11 and OPN are 

involved with osteolysis and remodeling the bone matrix [10]. Similar studies using lung-

tropic human cells have identified up to 54 potential genes in mice, most prominently 
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IL13Rα2, SPARC, ID1, and VCAM1, to be involved in breast-to-lung metastasis [13]. 

These genetic markers have thus far provided the only possible predictive biomarkers in the 

primary tumor, and could serve as future therapeutic targets in the clinic.

To augment these genetic efforts, engineers are creating model systems, from simple-to-

complex, to represent these tissue sites. These representations typically focus on healthy 

cells commonly found in these tissues, ECM protein composition, ECM stiffness, and tissue 

dimensionality. Hydrogels are popular tissue mimics because they recapitulate 3D tissue 

structure and physiological water content (Figure 3b) [29]. Natural hydrogels, such as 

collagen-based systems, elicit biochemical cues well, but over-sequester media proteins and 

cannot simultaneously recapitulate tissue stiffness and biochemical properties. While 

synthetic polymers can be independently tuned mechanically and chemically, they can be 

over-simplified, and more fundamental research on tissue properties is needed to make these 

models more tissue-specific. To combine the advantages of both, Beck et al. combined 

tunable, synthetic PEG gels with the common cancer model system Matrigel to investigate 

cell invasion in response to ECM stiffness [30]. Interestingly, they found very similar 

responses by both cancerous and normal cells, as both had reduced proliferation/

morphogenesis in stiff environments. An analogous study used interpenetrating networks of 

Matrigel and alginate (both natural materials with very different properties), and somewhat 

in contradiction to the previous study, could force a malignant transformation in healthy 

breast cells via ECM stiffening [31]. Here, we briefly review approaches used to make these 

platforms more tissue-specific, and research that can be used to improve future tissue design 

parameters, with the hopes of uncovering a consensus of how these matrix features drive 

metastasis.

The most comprehensive study on tissue proteomics is available through the Proteinatlas 

(proteinatlas.org), which has annotated ~17,000 protein-coding genes across 32 tissues using 

both antibodies and RNAseq [32]. The brain ECM consists mainly of hyaluronan (HA) 

bound by lecticans and tenascin-R with some laminin, fibronectin, collagen IV, and heparin 

sulfate proteoglycans [33, 34]. Cancer cell binding to the brain ECM through integrins αvβ3 

and αvβ6 [35] is also a possible biomarker of brain metastasis risk. The composition of the 

lung ECM is primarily elastin, collagen I, laminins, and glycosaminoglycans [36]. 

Upregulation and production of tenascin C, a transient glycoprotein, has been found along 

with lung metastases and is a sign of poor prognosis [13, 37]. Bone is a composite tissue, 

dominated by collagen I on the hard trabecular/cortical bone, and fibrillar collagen I, 

fibronectin, fibrinogen, and proteoglycans throughout the marrow [32].

Researchers are using a variety of techniques to quantify the rigidity of these tissue sites 

(Figure 3). Reports on the mechanical properties (stiffness) of brain tissue are primarily 

limited to elastography [38, 39], a technique not commonly performed on in vitro model 

systems. Obtaining human brain tissue for ex vivo mechanical testing is challenging, 

therefore indentation studies are limited to animal models, and report Young’s moduli 

ranging from 1–2 kPa in Young’s modulus [40]. The stiffness of the lung parenchyma has 

been measured using a variety of techniques in multiple animal models with a Young’s 

modulus ranging from 2 to 8 kPa [41–43]. Trabecular and cortical bone is markedly stiff 

(~10GPa). Our lab recently reported the first physiological values for intact bone marrow 
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tissue stiffness (0.3–24.7 kPa), and we anticipate that improving the mechanical relevance of 

in vitro systems will elucidate mechanisms involved in breast-to-bone cancer progression 

[44].

A key defining characteristic of the skeleton in addition to its high stiffness is its cyclic 

mechanical nature - the primary regulator of bone cell function and remodeling [45], 

alongside increased pressure and fluid shear forces on cells within. When cancer cells arrive 

in the skeleton, they too are exposed to these cyclic signals, such as compression, 

hydrostatic pressure, and fluid shear stress. Tumor formation in the bone is inhibited in both 

breast and ovarian cancer during mechanical load [46, 47]. However, the magnitude of shear 

stresses and strains in the bone ECM are sufficient for driving malignancy in primary cancer 

cells in vitro [48], so understanding these relationships may help predict breast-to-bone 

metastasis.

Engineers have used these analyses as inspiration to create in vitro model systems of brain, 

bone, and lung tissue, to quantify interactions cancer cells with tissue-specific ECMs. In 

vitro models of brain include those based on HA [49], HA crosslinked with PEG [50], silk 

[51, 52], brain tissue slices, microfluidic devices, and some have begun using 3-D 

bioprinting [53, 54]. In vitro, cells that have been selected for lung metastasis have been 

found to grow optimally on intermediately stiff 3D hydrogel environments [2]. 

Decellularized tissues have been used to mimic bone ECM [55], as well as synthetic and 

silk-based scaffolds with either inverted colloidal geometry or electrospinning, 

functionalized with proteins found in bone [56, 57]. When implanted, they can capture 

circulating tumor cells [58].

Microfluidic systems can also capture features of cancer cell extravasation into bone-like 

matrices in the presence of local mesenchymal stem cells (MSCs) and endothelial cells [59]. 

One such lab developed a 3D metastasis model, called rMet, which is composed of ECM 

proteins characterizing of primary and secondary (bone) tissues sites of cancer metastasis 

[60]. Cancer cells that were highly invasive into their bone ECM were also highly metastatic 

to the bone in mice, demonstrating that an in vitro system can be predictive of in vivo 

behavior.

Combined with experimental results, predictive algorithms can be derived and incorporated 

into mechanics simulations. For example, Wang et al. incorporated osteocyte viability 

algorithms into their models simulating disuse and recovery to predict when bone tissue 

would undergo resorption or formation [61]. These types of systems could be used for 

metastasis studies, to predict how cancer cells will behave under a particular mechanical 

environment (e.g. will they be dormant, will they migrate elsewhere, fracture risk after a 

potential drug, etc).

The next step for model systems is to incorporate these matrices with vasculature [62, 63] 

for a more complete assessment of the metastatic cascade, and to translate these 

phenomenological behaviors into biomarkers useful for clinicians and patients at risk of 

metastasis, such as those identified in vivo [64].
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Dormancy

Breakthrough research has revealed the existence of dormant tumor cells: metastasized cells 

quiescent at the metastatic site that may not proliferate, or “awaken” for several years, even 

decades, and are extremely difficult to detect and treat. Local stromal cells in the metastatic 

niche likely play a dominant role in paracrine activation of dormant cells, such as glial cells 

in the brain [65], and hepatocytes and non-parenchymal cells in the liver [66]. Vasculature 

plays a dual role, in some cases maintaining quiescence [67], and releasing the factors 

critical for re-activation in others [68]. Both Ghajar [69] and Aguirre-Guiso et al. [70] have 

proposed a therapeutic regimen to systemically treat possible dormant cells both during and 

after adjuvant therapy.

In vitro, cell adhesion to specific stromal-derived matrices [71], or substrates of particular 

stiffnesses [72] can permit dormancy. Specific combinations of bone marrow or hepatic 

stromal cells can induce breast cancer cell dormancy via cytokine secretion [66, 73]. For 

example, the Griffith lab used an engineered liver tissue to study stromal cell and ECM re-

activation of dormant breast cancer cells in the liver [66]. They found that roughly half of 

infiltrated breast cancer cells were dormant, and not surprisingly, the more aggressive 

MDA-MB-231 cells were more sensitive to re-activation by non-parenchymal cells than the 

luminal MCF7s.

In combination with these systems, traditional culture platforms allow for selection of 

quiescent subpopulations, via isolating dormant cells after therapeutic administration [74] or 

from biomaterial systems that induce dormancy. By coupling these subpopulations with 

engineered microenvironments, it will be possible to accurately determine how therapy may 

be directed to induce dormancy and eradicate quiescent cells, preventing metastatic 

outgrowth altogether [69].

Predicting drug response for metastatic patients

Ideally, once metastasis risk is assessed, developing patient-specific drug regimes will 

follow. Anti-metastasis drugs include those targeted at vascularization, growth in certain 

microenvironments, cell-ECM binding, receptor kinases, and cancer stem cells (Figure 2d–f) 

[75]. In vitro model systems are being developed to test for drug response in more 

physiologically relevant microenvironments that could be tailored to specific tissue sites. A 

recent example is a 4D lung model, in which circulating tumor cells were as resistant to 

cisplatin in the model as they were in vivo, results not captured on 2D surfaces [76]. 

Similarly, combining ovarian cancer cells with fibroblasts in a representative ECM system 

recapitulated in vivo drug response [77]. These types of organotypic representations of tissue 

for drug screening are likely to become increasingly popular with the advent of patient-

derived cultures [78]. These systems can be used with a more reductionist approach as well, 

e.g., ECM stiffness has been reported to be a powerful mediator of drug response for 

paclitaxel [79], ibuprofen [80], and sorafenib [81]. Ideally, the findings demonstrated here 

can be related to quantifiable, predictive biomarkers, informing drug treatment and 

monitoring.
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Conclusions

Our discussion here was limited to experimental model systems to understand, predict, and 

treat metastatic spread. There is a keen need for computational methods to better inform and 

guide these experiments, such as how cells can resist chemotherapy treatment on the basis of 

likely heterogeneous drug distribution [82]. To our knowledge, no in silico approaches have 

been employed at point of care to predict metastatic spread. In addition, we suggest a need 

for computational experts to apply population-level survival models alongside kinetics to 

create a global map of cell trafficking from the primary tumor to eventual metastasis and 

growth in a secondary tissue site. This could include a probabilistic model of mutations 

inducing invasion, trafficking and dispersion throughout the body via circulation, and 

eventual rates of dormancy or rapid growth at a distant site. Experimental model systems are 

growing, and an increasing number of engineers are applying their expertise to cancer 

metastasis. Model system improvements include increasing their throughput, including 

patient-derived cells, and translating their predictive findings into clinically useful 

biomarkers.
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Highlights

• In vitro systems are needed to predict if, when, and where a tumor will 

metastasize.

• The ECM is a major driver of metastasis to specific tissue destinations.

• Mechanical forces play a major role in driving invasion and metastatic 

outgrowth.

• Predictive tools need to be moved toward clinical use, e.g. biomarkers.
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Figure 1. 
Breast cancer metastatic cascade. a) Overview of metastatic process. We focus on steps 2 

and 6 in this review. b) Common sites of breast cancer metastasis, adapted from Barney et al 

[1]. c) Through a large clinical study, Kennecke et al. found correlations with breast cancer 

subtype and frequency of metastases found at specific tissue sites, data reproduced from [5]. 

(ER=estrogen receptor, PR=progesterone receptor, and HER2=human epidermal growth 

factor receptor 2, and TN=triple negative)
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Figure 2. 
Predicting metastasis and potential impact on therapy. a) Cells that metastasized to bone and 

lung in vivo shared similar in vitro motility characteristics, adapted from Kostic et al. [2]. b) 

Mechanosensitivity can be used to distinguish between breast cancer metastatic cells (MDA-

MB-231) and ovarian cancer metastatic cells (SKOV-3), from McGrail et al. [4]. c) Barney 

et al. developed an in vitro screen that used integrin-binding to predict in vivo metastasis to 

the bone, brain, and lung, as well as identify integrin subunits as tissue-specific risk factors 

[1] ADD REFERENCE. d–f) One can envision that these types of predictive screens could 

impact therapy for patients with different risk factors for developing metastatic disease. 

Patients with low risk of metastasis could be shielded from harsh treatment modalities (d), 

whereas patients at risk for metastasis (e, f) could be treated aggressively to help prevent 

metastasis or relapse.
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Figure 3. 
In vitro models of the metastatic niche. a) Common sites of breast cancer metastasis and 

their published stiffnesses (Young’s modulus). These sites consist of tissue-specific cell 

types that are part of the metastatic niche. b) These tissues can be represented by natural 

protein fiber gels or synthetic polymer materials. Polymer matrices can be modified to allow 

for tissue-specific cell-ECM interactions (via integrin binding) by including oligopeptides 

responsible for the integrin-binding domains of full-length ECM proteins typically found in 

these tissues.
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