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Yeasts are unicellular fungi that do not form fruiting bodies. Although the yeast lifestyle has 

evolved multiple times, most known species belong to the subphylum Saccharomycotina (syn. 

Hemiascomycota, hereafter yeasts). This diverse group includes the premier eukaryotic model 

system, Saccharomyces cerevisiae; the common human commensal and opportunistic pathogen, 

Candida albicans; and over 1,000 other known species (with more continuing to be discovered). 

Yeasts are found in every biome and continent and are more genetically diverse than angiosperms 

or chordates. Ease of culture, simple life cycles, and small genomes (~10–20 Mbp) have made 

yeasts exceptional models for molecular genetics, biotechnology, and evolutionary genomics. 

Here we discuss recent developments in understanding the genomic underpinnings of the making 

of yeast biodiversity, comparing and contrasting natural and human-associated evolutionary 

processes. Only a tiny fraction of yeast biodiversity and metabolic capabilities has been tapped by 

industry and science. Expanding the taxonomic breadth of deep genomic investigations will 

further illuminate how genome function evolves to encode their diverse metabolisms and 

ecologies.

Graphical abstract

A brief history of yeast evolutionary genomics

The Saccharomyces cerevisiae genome was the first eukaryotic genome sequenced [1], a 

collaborative feat that enabled two decades of innovation and discovery. C. albicans soon 

followed [2], as well as a handful of relatives in both clades and a smattering of 

taxonomically diverse species [3–8]. S. cerevisiae became a proving ground for new 

genomic technologies, such as deleting and barcoding genes for functional profiling [9]. 

Early comparative studies pioneered the now commonplace use of genome sequencing to 
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address specific functional and evolutionary hypotheses, such as using conserved genomic 

regions to identify functional DNA sequence elements [3,4]. These genomes began to 

catalyze research in many other fields, resulting in important advances to our understanding 

of the evolution of genome content and organismal traits [10,11], phylogenetics [12], and 

cis-regulatory element prediction [13]. By the last comprehensive review of yeast 

evolutionary genomics in 2010 [14], the genomes of 26 yeast species had been sequenced, 

still mostly in the two clades containing S. cerevisiae and C. albicans. With the 

popularization of next-generation sequencing, the genomes of 40 additional species have 

been published in the last five years, while 20 more are publicly available but await formal 

publications (Figure 1). Nonetheless, most yeast biodiversity remains unexplored at the 

genomic level (Figure 2).

Yeast mating systems

Most yeasts have true sexual cycles, but some manifest complex parasexual cycles (non-

meiotic processes involving mitotic recombination and chromosome loss), whereas others 

are thought to be asexual. This multiplicity of forms and sexual cycles led to a byzantine 

nomenclature system that is undergoing a radical simplification, which will ultimately result 

in a taxonomy based on phylogeny (Box 1). Although asexual strains achieve higher 

laboratory fitness [15], they seem not to persist or undergo frequent cladogenesis. Sex may 

increase the rate of adaptation to novel environments and help purge deleterious alleles 

[16,17]. Thus, most yeast clades harbor at least some sexual taxa, which likely reflect their 

ancestral states. Sexual cycles exist in both obligately outcrossing (heterothallic) species, 

where mating types reside in different individuals, as well as in species that can self-fertilize 

(homothallic).

Self-fertilization in S. cerevisiae and relatives is achieved through the tight regulation of the 

HO gene, which encodes a homing endonuclease co-opted from an intein selfish element 

[18]. The Ho protein cuts the active mating cassette, allowing for homology repair by one of 

two silent mating cassettes, thereby switching the mating type and enabling clonal mother-

daughter mating. Interestingly, Kluyveromyces lactis HO has been replaced by MATα3, 

another selfish element co-opted from a DNA transposon [19,20]. A simpler two-locus 

system that switches mating types by inversion has evolved in the clade containing Ogataea 

(Hansenula) polymorpha and Komagataella (Pichia) pastoris [21]. Here inversion simply 

switches which of the two mating loci is present in active chromatin, and thus determines 

which is expressed. These genetic systems have profound effects on maintaining local 

genetic variation [22] and generating genome instability [23] at the mating-type locus.

The genetic regulatory networks that control the batteries of genes necessary for each mating 

type have been investigated extensively in several species, establishing a paradigm for both 

the logic and molecular mechanisms by which such networks evolve. Several genetic 

changes can facilitate the evolutionary rewiring of regulatory networks, including the 

duplication of regulators and partitioning of target genes [24], intercalation of new 

regulators [25], and alteration of binding site specificity [26]. Most such changes are thought 

to occur through selectively neutral mechanisms, often resulting in the same network output. 

These studies have established rewiring as a common feature in regulatory network 

Hittinger et al. Page 3

Curr Opin Genet Dev. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



evolution and have shown how neutral changes can profoundly shape evolutionary 

outcomes.

Metabolic diversity, ecology, and biotechnology

Thanks to their diverse metabolisms, yeasts exhibit a remarkable range of ecologies, 

including methanol consumption in O. polymorpha and K. pastoris; xylose fermentation in 

Scheffersomyces (P.) stipitis and Spathaspora passalidarum; lipid production in Yarrowia 

lipolytica and Lipomyces starkeyi; human pathogenesis in C. albicans and C. 

(Nakaseomyces) glabrata; and cotton pathogenesis in Eremothecium (Ashbya) gossypii [27] 

(Figure 1). Many of these metabolic capabilities are exploited in various biotechnological, 

food, and beverage industries. For example, S. cerevisiae is the workhorse of the 

multibillion-dollar brewing, wine-making, baking, and biofuel industries, but other 

commonly used species include Kazachstania exigua (sourdough), Cyberlindnera jadinii 

(syn. C. utilis, food additives), K. pastoris (heterologous protein production), and E. gossypii 

(riboflavin). Nonetheless, these well-known yeasts represent a scant slice of yeast 

metabolisms and ecologies, and most species remain unharnessed by industry and only 

modestly explored by science.

Yeast ecological niches require more study, especially in natural settings, but what limited 

information exists suggests that yeast niches are partitioned by many parameters, including 

temperature, pH, radiation, insect and plant hosts, and metabolism [27–29]. For example, 

Saccharomyces and relatives have evolved an extreme preference for fermenting glucose 

into ethanol, even in the presence of oxygen, a process known as Crabtree-Warburg Effect 

or aerobic fermentation. This “make-accumulate-consume” strategy provides a powerful 

ecological advantage by exploiting the rich reserves of simple sugars in sap, fruit, and other 

sources [30–33]. Other genera, such as Scheffersomyces and Spathaspora, have adapted to 

living in the guts of wood-consuming beetles and are capable of fermenting xylose, the 

second most abundant monosaccharide in woody plant material, which is of critical 

importance to the lignocellulosic biofuel industry [11,34,35]. Some traits are unique, such as 

a requirement for carbon dioxide in Cyniclomyces [36], while others, such as temperature 

preferences, evolve quickly [27–29]. A handful of lineages have evolved into commensals 

and/or pathogens of mammals and birds, exhibiting increased thermophily, the loss of key 

metabolic functions, increased biofilm-forming ability, and the acquisition of new traits to 

evade the host immune system [2,7,8,37].

The genetic outlines underlying some of these remarkable innovations are beginning to be 

understood. Some differences evolve rapidly and can be explained by one or two genes. For 

example, there is widespread variation in the catabolism of disaccharides, perhaps because 

extracellular cleavage often sets up a “prisoner’s dilemma” where competitors can consume 

the monosaccharide intermediates [29]. Other traits, such as galactose catabolism, seem to 

be lost frequently [10,38] (and potentially regained [39]), correlating with the loss of several 

genes. Aerobic fermentation is thought to involve many genetic changes in glycolytic and 

mitochondrial pathways and has evolved only a handful of times [30–33]. Strikingly, many 

of these pathways underwent parallel evolutionary changes during the acquisition of aerobic 
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fermentation by the lineage leading to S. cerevisiae and the highly divergent lineage leading 

to Brettanomyces (Dekkera) bruxellensis [30,32].

Much remains to be understood about the forces driving most yeast radiations (Figure 2). 

For example, dozens of species evolved from clades associated with fruit-rot and tree-flux 

habitats to exploit the diverse chemistries associated with different species of cacti, which, 

in turn, have been exploited by several different cactophilic Drosophila and sap beetle 

species that feed on these yeasts [27,28]. Most species of the Starmerella clade are 

associated with Hymenoptera species, while yeasts of the genus Ogataea frequently inhabit 

leaf litter where methanol consumption may be beneficial [21,27,40]. Little is known about 

the genetic underpinnings of these ecological innovations, except that they must rely, at least 

partly, on metabolism. Metabolic traits, which can be easily studied in the lab and whose 

genetic basis is often well understood from model organisms, are therefore uniquely suited 

to provide the thin end of a wedge to open an understanding of yeast diversification.

Hybridization, introgression, and horizontal gene transfer

One of the most important paradigm shifts catalyzed by broader yeast genome sequencing is 

a realization of the prevalence of gene sharing through hybridization, introgression, and 

horizontal gene transfer (HGT), especially among domesticated strains. Perhaps the most 

iconic examples are the lager-brewing yeasts, which were recently shown to be 

allopolyploids of S. cerevisiae and the recently discovered species S. eubayanus [41,42]. 

Alloploids of S. cerevisiae x S. kudriavzevii are also used in brewing, wine fermentation, and 

cider fermentation [43]. Conversely, strains of S. uvarum used in cider and champagne 

fermentation have acquired genes from several Saccharomyces species, but most wild 

strains lack these introgressions [44].

Fewer alloploids are known outside of the genus Saccharomyces, and all are from industrial 

or clinical settings. In the genus Zygosaccharomyces, a miso production strain [45] and a 

sparkling wine contaminant [46] are allopolyploids. Echoing the recent status of S. 

eubayanus, genome sequencing showed Millerozyma (P.) sorbitophila, a sorbitol 

contaminant, to be an interspecies hybrid of Millerozyma (P.) farinosa and a yet-to-be-

identified congeneric species [47]. Similarly, genome sequencing of a wine spoilage strain 

purported to be B. bruxellensis revealed it to be allotriploid [48]. Several clinical isolates 

from the C. parapsilosis species complex are also interspecies hybrids [49].

In addition to hybridization, many strains of S. cerevisiae used in industry have picked up 

genes through introgression from various Saccharomyces species [44,50,51], as well as from 

more distantly related yeasts through HGT [52–54]. HGT is not restricted to strains grown in 

artificial environments but also occurs at a low, but significant, rate across the yeast 

phylogeny, influencing the content of both the nuclear [55] and mitochondrial genomes [56]. 

For example, a recent examination of fungal metabolic pathways inferred that 1.8% of yeast 

metabolic genes have undergone HGT at some point in their history [57]. HGT has 

influenced individual genes, sometimes repeatedly [33,53,58]; entire metabolic pathways 

[59]; and larger genomic fragments [52], although the latter has only been observed in 

industrial strains [52,55]. Although it is thought that conjugation, transformation, and viral 
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transduction are involved in filamentous fungi [60], less is known about the mechanisms 

that facilitate yeast HGT. Interestingly, a recent study showed that experimental rates of 

bacteria-to-yeast HGT can be strongly influenced by gene presence/absence polymorphisms 

in non-essential yeast genes [61].

Resequencing dynamic genomes

Yeast genomics has greatly enhanced our understanding of the evolutionary dynamics of 

natural populations, among domesticated strains, during infections, and during laboratory 

experiments. Aside from S. cerevisiae [51], population genomic studies have characterized 

the metabolic, genetic, and biogeographic diversity of S. paradoxus [62], S. kudriavzevii 

[38], and S. uvarum [44], making this genus one of the few where population genomic 

datasets exist for the majority of known species [63]. Large-scale population genomic 

studies in other yeasts remain rare, but a recent investigation of the stability of the unusual 

GC content of a chromosome-arm in Lachancea kluyveri is an undeniable harbinger of the 

future [64]. Remarkably, estimates of the frequency of outcrossing (~10−5) in L. kluyveri are 

similar to Saccharomyces [22], suggesting that key lifestyle parameters may be conserved 

across vast timespans, different ecologies, and different mating-type control systems.

Genome resequencing has allowed experimental evolution studies in S. cerevisiae to rapidly 

move from identifying specific adaptive mutations [15,65,66] to examining pools of variants 

undergoing clonal interference [67,68] to massively parallelized tracking of individually 

tagged lineages [69]. Although the most advanced genetic tricks are not available for other 

yeasts, some of these approaches have even been extended to study the evolution of clinical 

isolates of C. albicans during the course of infection [70,71]. Collectively, these studies 

paint the portrait of a dynamic genome that can be pushed easily toward evolving a variety 

of traits. Indeed, a provocative corollary is that the trillions of scattered cells belonging to 

each yeast species are being exposed to potentially quite different selective pressures, 

ultimately engendering different genomic outcomes that must be reconciled.

Which microevolutionary processes explain macroevolutionary patterns?

Juxtaposing data from laboratory evolution and population genomic studies to the data from 

comparisons of distantly related genomes raises an interesting paradox: rapid, radical, and 

sometimes irreversible changes regularly occur across microevolutionary timescales, and 

yet, relative stability persists over macroevolutionary ones. Some common types of 

mutations, such as aneuploidy [66], are unlikely to be fixed in a species because these low 

frequency polymorphisms are easily reversed. Others, such as interspecies hybridization and 

the loss of mating pathways, can expose lineages to Muller’s Ratchet and eventual 

extinction. Many of the most readily acquired mutations are further predicted to reduce or 

eliminate gene activity, especially in regulatory genes [15,65,66,71].

Certainly, many lineages have lost specific genes, networks, and traits, but even when they 

arise as conditionally advantageous mutations, several forces likely act to limit the impact of 

the most radical changes over geological timescales. First, species are seldom exposed to 

static environments that allow conditionally useful genes to be tossed aside. Rather, they 

must be able to thrive and complete their life cycles in fluctuating environments. Second, 
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individuals exchange genes with other members of their species, which may exist across a 

range of environments, allowing genes to be reintroduced if a loss was only transiently 

beneficial. Third, although the mutations may be rarer than nonsense or frameshift 

mutations, more specific regulatory mutations are likely to arise eventually [72]. Fourth, 

horizontal gene transfer (HGT) may allow genes to be reacquired from other organisms 

[55,59]. Finally, lineages that have lost key functions may be less likely to undergo 

cladogenesis or be more susceptible to extinction.

Given the currently limited sampling of yeast genomes, one might justly ask whether we are 

missing a trend of widespread, but undetected, gene loss and gene sharing that will be 

revealed as all the branches of the phylogeny are filled in. Many additional congeneric 

hybrids at the tips of the phylogeny will undoubtedly be discovered. Nonetheless, as with 

most gene loss events, hybridization events are generally neutral or short-lived adaptations 

to extreme conditions. Allopolyploidization results in whole genome duplications (WGDs) 

[73], which are relatively easy to detect, thanks to pioneering work that inferred the WGD in 

the lineage leading to S. cerevisiae by comparing this genome to itself [74]. Although that 

solitary WGD event had a tremendous and lasting impact on duplicate gene function and 

genome structure in over 50 species of Saccharomycetaceae, including S. cerevisiae [75], 

the frequency with which yeast WGD descendants persist is clearly much lower than in 

angiosperms, where most lineages have undergone multiple rounds of WGD [76]. Finally, 

HGT is responsible for a non-trivial number of yeast adaptations, but the rate remains much 

lower than in bacteria [57].

Prospects for the future

As with all organisms, yeast genome sequences comprehensively describe their genetic 

makeups, but historical and genetic processes that have sculpted their evolution are best 

understood through a comparative lens. Remarkably, several ambitious projects promise to 

enhance dramatically the genome sampling of fungal biodiversity at both the population and 

species levels, including the 1KFG Project surveying the entire spectrum of fungal diversity 

(http://1000.fungalgenomes.org), the 1002 Yeast Genomes Project focusing on S. cerevisiae 

(http://1002genomes.u-strasbg.fr), the Dikaryome Consortium (http://dikaryome.org), the 

iGénolevures Consortium (http://gryc.inra.fr), and the Y1000+ Project focusing on the 

subphylum Saccharomycotina (http://y1000plus.org).

At least for the yeasts, these projects stand a chance of saturating two key dimensions of 

known biodiversity: genetic depth and taxonomic breadth. Just as a genome sequence 

definitively describes what genes are present in an organism, only a complete clade of 

genomes can fully chronicle their evolution and enable the study of genetic and functional 

diversification across taxa, niches, and time. With these projects underway and with perhaps 

the most advanced armamentarium for functional dissection at hand, the genetic features that 

cause some species to make beer, others to inhabit cacti, and still others to cause lethal blood 

infections are finally coming into focus. The yeasts are rising to the challenge to create an 

unparalleled model of eukaryotic genome evolution.
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Box 1

One Fungus, One Name (1F1N) and the Phylogenomic Future of Yeast 
Taxonomy

Despite the considerable progress made classifying yeasts using multi-locus DNA 

sequence data, critical gaps remain. Many genera are paraphyletic or polyphyletic, while 

many taxonomic circumscriptions at or above the family level are poorly supported or 

completely lacking. Further complicating matters, many species are assigned to large, 

polyphyletic, anamorphic (no known sexual state) genera (e.g. Candida), rather than to 

allied teleomorphic (sexual) genera. Due to a recent revision in the International Code of 

Nomenclature for algae, fungi, and plants (formerly the International Code of Botanical 

Nomenclature), anamorphs and teleomorphs can now, for the first time, be reassigned to 

monophyletic genera that contain species both with and without known sexual cycles. 

This long-overdue change presents a timely opportunity to formulate a comprehensive 

and stable yeast taxonomy based on complete genetic data. Well-circumscribed 

monophyletic genera (and higher order taxa) will finally provide evolutionary geneticists, 

mycologists, biotechnologists, and clinicians with phylogenetically informative names to 

aid in the design of experiments and the interpretation of data. In this review, the current, 

formally recognized genus names are shown first with alternative names in parentheses. 

In some cases, such as the affinity of C. glabrata with Nakaseomyces, there is strong 

phylogenomic support and a virtual certainty that the species will be ultimately 

reassigned to a particular genus; in other cases, phylogenomic analyses and further 

taxonomic consensus will be required.

Hittinger et al. Page 15

Curr Opin Genet Dev. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Key traits and phylogenetic relationships of the 86 yeasts of the subphylum 
Saccharomycotina whose genomes have been sequenced
The topology of the cladogram has been estimated conservatively from previous analyses 

using genome [12,23] or multi-locus sequence data [27,36]. Major clades [36] are color-

coded (clade names are shown in Figure 2). Only one reference genome per species is 

included with preference given to the highest quality and/or most widely used reference 

genome. Only publicly available genome assemblies are included. Interspecies hybrids are 

discussed in the text but are not shown here. WGD, whole genome duplication; recent work 

has shown that the WGD was caused by an allopolyploidization event that occurred between 

Hittinger et al. Page 16

Curr Opin Genet Dev. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



an early member of the Zygosaccharomyces/Torulaspora clade and an early member of the 

Kluyveromyces/Lachancea/Eremothecium clade, thus making this part of the phylogeny a 

network, rather than a tree [73]. CTG clade, yeasts using an alternate codon table where 

CTG encodes serine, instead of leucine. JGI, genomes publicly available on MycoCosm at 

http://genome.jgi-psf.org/programs/fungi/index.jsf, which are subject to the usage terms of 

the DOE Joint Genome Institute until formal publication. GB1, GenBank Accession 

CCBQ000000000; GB2, Genbank Accession JPPO00000000; GB3, GenBank Accession 

AEOI00000000; GB4, GenBank Accession LCTY00000000.
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Figure 2. Most yeast clades remain underrepresented by genome sequence data
Estimated species counts for each major yeast clade [36] (light colors) are compared with 

the number of publicly available genomes from each clade (dark sliver within larger 

triangles). In addition to the 807 species shown, approximately 400 anamorphic species (e.g. 

Candida spp.) currently lack a clear phylogenetic placement. As the phylogeny is resolved, 

these species will be reassigned to genera and higher taxonomic ranks consistent with their 

phylogeny (Box 1). Color codes are the same as in Figure 1.
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