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African Pygmies practicing a mobile hunter-gatherer lifestyle are phenotypically and genetically diverged from other an-

atomically modern humans, and they likely experienced strong selective pressures due to their unique lifestyle in the

Central African rainforest. To identify genomic targets of adaptation, we sequenced the genomes of four Biaka Pygmies

from the Central African Republic and jointly analyzed these data with the genome sequences of three Baka Pygmies

from Cameroon and nine Yoruba famers. To account for the complex demographic history of these populations that in-

cludes both isolation and gene flow, we fit models using the joint allele frequency spectrum and validated them using inde-

pendent approaches. Our two best-fit models both suggest ancient divergence between the ancestors of the farmers and

Pygmies, 90,000 or 150,000 yr ago. We also find that bidirectional asymmetric gene flow is statistically better supported

than a single pulse of unidirectional gene flow from farmers to Pygmies, as previously suggested. We then applied comple-

mentary statistics to scan the genome for evidence of selective sweeps and polygenic selection. We found that conventional

statistical outlier approaches were biased toward identifying candidates in regions of high mutation or low recombination

rate. To avoid this bias, we assigned P-values for candidates using whole-genome simulations incorporating demography and

variation in both recombination and mutation rates. We found that genes and gene sets involved in muscle development,

bone synthesis, immunity, reproduction, cell signaling and development, and energy metabolism are likely to be targets of

positive natural selection in Western African Pygmies or their recent ancestors.

[Supplemental material is available for this article.]

Recent archaeological and genetic studies suggest that anatomical-
ly modern humans (AMH) originated in Africa prior to 160–190
thousand yr ago (kya) (Cavalli-Sforza et al. 1994; McDougall et al.
2005;GarriganandHammer2006).Before the inventionof agricul-
ture in the Neolithic (∼6–10 kya), hunting and gathering was the
subsistence strategy used by early human societies (Cavalli-Sforza
1986; Scheinfeldt et al. 2010; Hill et al. 2011). Among extant
African human populations, the Pygmies, commonly identified
by their short stature (mean adult height <160 cm), are one of the
few that still predominantly practice a hunting and gathering life-
style. Western Pygmies (e.g., Baka and Biaka) mainly reside in the
rainforest west of the Congo Basin, whereas Eastern Pygmies (e.g.,
Mbuti and Efe) live in and around the Ituri rainforest and further
south extending toward Lake Victoria (Cavalli-Sforza et al. 1994).
Although still living as mobile hunter-gatherers, Pygmies have es-
tablished social and economic contactswithnearby settled farmers

(Cavalli-Sforza et al. 1994; Joiris 2003). For example, the Efe
Pygmies trade forest food to Lese farmers in exchange for cultivated
goods (Terashima1987).Moreover,mostPygmiesnowspeakNiger-
Kordofanian (e.g., Bantu) or Nilo-Saharan languages, possibly ac-
quired from neighboring farmers, especially since the expansion
of Bantu-speaking agriculturalists beginning∼5 kya (Blench2006).

Recent genetic evidence favors a single origin of African
Pygmies (Patin et al. 2009; Batini et al. 2011; Veeramah et al.
2012).Western Pygmies have likely experienced greater genetic ad-
mixture with neighboring farmer populations than Eastern
Pygmies (Patin et al. 2009; Tishkoff et al. 2009; Veeramah et al.
2012; Verdu et al. 2013). Several mitochondrial and multilocus
DNA studies estimated that African Pygmies diverged from the an-
cestors of present-day Niger-Cordofanian agriculturalists ∼60 kya
(95% C.I.: 25–130 kya) (Patin et al. 2009), ∼70 kya (95% C.I.:
51–106 kya) (Batini et al. 2011), and ∼49 kya (95% C.I.: 10–105
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kya) (Veeramah et al. 2012). However, because each of these stud-
ies used <60 loci, they either made strong a priori assumptions to
restrict parameter space in their demographic modeling (Patin
et al. 2009) or did not have sufficient statistical power to infer
gene flow (Batini et al. 2011; Veeramah et al. 2012). Thus, a com-
prehensive understanding of the demographic prehistory of
African Pygmies remains lacking.

Pygmy populations have long been studied because of their
distinct phenotypes, particularly short stature. Physiological evi-
dence suggests that short stature is associatedwith lowgrowth hor-
mone binding protein and insulin-like growth factor-1 (IGF1)
levels in Pygmy groups (Baumann et al. 1989; Dávila et al. 2002).
Using high-density SNP chip data, several population genetic stud-
ies have reported candidates for Pygmy short stature, including
genes in the IGF1 pathway (Pickrell et al. 2009; Jarvis et al. 2012;
Migliano et al. 2013), the iodine-dependent thyroid hormone
pathway (López-Herráez et al. 2009; Migliano et al. 2013), and
the bone homeostatsis/skeletal remodeling pathway (Mendizabal
et al. 2012). Lachance et al. (2012) searched for signals of positive
selection in five high-coverage Western Pygmy genomes and sug-
gested that short staturemay be due to selection on genes involved
in development of the anterior pituitary, as well as the crosstalk
between the adiponectin and insulin-signaling pathways. A more
recent studyusing admixturemapping identified16 regions associ-
ated with height in Batwa Pygmies, which were enriched for SNPs
associatedwithheight inEuropeansand for geneswithgrowthhor-
mone receptor and regulation functions (Perry et al. 2014).

Several hypotheses have been proposed regarding Pygmy ad-
aptation to the dense, humid forest environment, all of whichmay
influence stature. These include thermoregulatory adaptation to
the tropical forest (Cavalli-Sforza 1986), reduction of caloric intake
in a food-limited environment (Shea and Bailey 1996), improved
mobility in the dense forest (Diamond 1991), and earlier reproduc-
tion to compensate for short lifespans (Migliano et al. 2007). In
addition, the equatorial rainforest in Central Africa is enriched
in pathogens and parasites, such as malaria and haemorrhagic fe-
ver (Ohenjo et al. 2006). Loci involved in immunity have thus
been suggested to be targets for adaptation (Jarvis et al. 2012;
Lachance et al. 2012).

Although previous studies have identified many possible tar-
gets of adaptive selection in African Pygmies, challenges remain.
First, demographic events and local genomic architecture (e.g.,
heterogeneity in mutation and recombination rates) can mimic
the genetic patterns generated by adaptation (Schaffner et al.
2005; Teshima et al. 2006). High false positive and false negative
rates are expected in studies that determine candidates of natural
selection based solely on selecting outliers from the distribution
of a test statistic (Jeffreys et al. 2005; Schaffner et al. 2005;
Teshima et al. 2006; Akey 2009). In addition, the large genomic siz-
es of candidate regions (on the order of 100 kb), especially for those
reported in SNP-microarray studies, make inference of the genetic
basis of adaptation difficult.

Understanding genetic adaptation in African Pygmies, there-
fore, requires not only high-coverage whole-genome data, but also
realistic demographic models to assess statistical significance. To
provide a genomic perspective on adaptation in Pygmies, we se-
quenced four Western Biaka Pygmies from the Central African
Republic and combined these data with similar data from three
Baka Pygmies (Lachance et al. 2012) fromCameroon and nine un-
related Yoruba farmers. We inferred the demographic history of
these populations and searched for positive selection using several
complementary statistical methods. We assessed statistical signifi-

cance in our selection scans using genome-scale simulations that
incorporated recombination and mutation rate heterogeneity
along the genome. Finally, we functionally annotated our candi-
dates, and we discuss their biological impact. Our analysis thus
provides unique insights into the complex demographic and adap-
tive history of Western African Pygmies.

Results

Demographic history inference for Western African Pygmies

and farmers

We used the demographic inference tool ∂a∂i (Gutenkunst et al.
2009) to infer the joint demographic history of one farmer
(Yoruba) and two Pygmy (Baka and Biaka) populations using our
high coverage (median = 60.5×) Complete Genomics (CGI) (Drma-
nac et al. 2010) whole-genome data. After removing single-nucle-
otide variants (SNVs) that failed quality control (see Methods), we
used 1.58 million intergenic autosomal SNVs to build a three-pop-
ulation unfolded allele frequency spectrum (AFS) (Methods),
which we statistically corrected to account for ancestral state mis-
identification (Hernandez et al. 2007). We chose this statistical ap-
proach over obtaining consensus outgroup information from
multiple primates for ancestral alleles because the latter causes a
substantial reduction in our data and does not completely alleviate
the problem of ancestral state misidentification (Hernandez et al.
2007). We also found that removing sites within functional
ENCODE elements (Supplemental Material; Gerstein et al. 2012)
had little effect on the resulting AFS (Supplemental Fig. S1), so
we kept those sites in our analysis.

To guide development of three-population models, we first
considered simpler one- and two-population models. These initial
models consistently suggested a more recent divergence between
the two Pygmy populations than between either of those popula-
tions and the farmers. Based on these results and previously pub-
lished inferences (Patin et al. 2009; Batini et al. 2011; Veeramah
et al. 2012; Verdu et al. 2013), we testedmultiple three-population
models, considering a variety of scenarios for gene flow and popu-
lation size changes (Supplemental Table S1). Thebest-fit three-pop-
ulationdemographicmodel,Model-1, had continuous asymmetric
gene flow (composite log-likelihood =−6712) (Fig. 1A; Supplemen-
tal Table 1). The joint frequency spectra resulting from this model
qualitatively reproduce the data (Fig. 1C), although our model
does produce an excess of high-frequency shared variants. In
Model-1, the ancestors of contemporary farmers and Pygmies di-
verged∼156 kya (95%C.I.: 140–164 kya) froman ancestral popula-
tion that had expanded roughly threefold prior to divergence. The
ancestors of the farmers and Pygmies remained isolated until ∼40
kya (95% C.I.: 36–44 kya), at which point bidirectional gene flow
began,with the flowfromfarmers toPygmiesbeing10 timesgreater
than from Pygmies to farmers (Table 1). Following the Pygmy-far-
mer divergence, the effective population size of farmers increased
and the effective population size of Pygmies decreased. The Baka
and Biaka diverged much more recently, ∼5 kya (95% C.I.: 4.7–
5.7 kya). Because our small sample size limits power to infer recent
demographic events (Robinson et al. 2014), we assumed that the
Baka-Biaka divergence did not change the rates of gene flow with
the Yoruba, and our model includes no Baka-Biaka gene flow.

Our second best-fit model involves a recent pulse of unidirec-
tional gene flow from farmers to Pygmies (Model-2) (Fig. 1B,C;
Table1) after thedivergenceof the twopopulations. Themaximum
composite log-likelihoodofModel-2(−7737)is lowerthanModel-1.
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InModel-2, we inferred that Pygmies and farmers diverged∼90 kya
(95%C.I.:85–92kya).Thepulseofgeneflowisestimatedtohaveoc-
curred ∼7 kya (95% C.I.: 6.8–7.7 kya), whereas the inferred admix-
ture proportion in our Pygmy sample resulting from the pulse of
gene flow from the farmers is ∼68% (C.I.: 67.9%–68.2%).

Model selection and validation of demographic inference

We used three approaches to validate our demographic inference
(Methods). First, to remove the effects of linkage, we refit ourmod-
els to a subset of the data in which variant sites were at least 0.01

centiMorgan (cM) apart. The two best-fitting models remained
the same as using the whole data set, and the parameter estimates
were compatible (Supplemental Table S2). Under the assumption
that the likelihoods calculated using the thinned data set are full
likelihoods, we applied the Akaike (AIC) (Akaike 1974) and
Bayesian information criteria (BIC) (Schwarz 1978) for model
selection. Both AIC and BIC prefer the continuous asymmetric
gene-flowmodel to the single-pulse gene flowmodel (Supplemen-
tal Table S2).

As a second validation, we used patterns of linkage disequili-
brium (LD) decay, information not utilized by ∂a∂i. We calculated

Figure 1. Best-fit demographic models and observed and predicted frequency spectra for African farmer (Yoruba) and Pygmy (Baka and Biaka) popu-
lations. (A) The continuous asymmetric gene flow model (Model-1) with the 10 free parameters labeled. (B) The single-pulse admixture model (Model-2)
with the nine free parameters labeled. (C) The marginal spectra for each pair of populations. Row one is data, rows two (Model-1) and four (Model-2) are
models, and rows three and five are Anscombe residuals of model minus data for Model-1 and Model-2, respectively.

Table 1. Parameter estimates and confidence intervals for two best-fit demographic models

Model-1
(Continuous asymmetric gene flow)

Model-2
(Single-pulse gene flow)

Demographic parameters Estimates 95% C.I.d Estimates 95% C.I.d

Na: Ne
a ancestral population 6,727 6,676–6,819 6,735 6,671–6,826

Nep: Ne ancestral population after expansion 20,473 15,560–27,561 15,236 14,436–15,894
NF: Ne contemporary farmer (F) 11,900 11,714–12,138 13,854 13,721–14,055
NP: Ne contemporary Pygmy (P) 5,831 5,631–5,986 5,373 5,217–5,530
Tep: Timeb of ancestral expansion 221,118 210,513–236,634 232,629 223,172 – 244,327
Tsplit-PF: Time of P-F split 155,671 139,661–164,280 89,645 85,503–91,725
Tmig-PF: Time of onset of gene flow between P and F 39,337 36,565–43,550 – –

Tadmixture: Time of admixture from F to P – – 7,136 6,887–7,656
Tsplit-P: Time of split between the two P populations 5,139 4,762–5,630 4,049 3,803–4,396
mPF: Gene flowc (P ← F) 9.0 × 10−4 8.4 × 10−4–9.4× 10−4 – –

mFP: Gene flow (F ← P) 9.1 × 10−5 8.2 × 10−5–1 × 10−4 – –

fadmixture: Strength of admixture (P ← F) – – 0.6799 0.6789–0.6818

Estimates and confidence intervals are shown for effective population sizes (N), times (T) of population divergence and gene flow onset, and levels of
gene flow (m) between farmer (F) and Pygmy (P) populations. Tadmixture and fadmixture refer to the timing and strength of the single-pulse gene flow
from the farmers (F) to Pygmies (P) in Model-2.
aEffective population size in individuals.
bTime in years, assuming 25 years per generation and mutation rate 2.35 × 10−8 per base per generation (Gutenkunst et al. 2009).
cFraction of the population each generation that are new migrants.
dConfidence intervals estimated using 100 conventional bootstraps.
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LD using sliding windows of 0.1 cM in the real data and in simu-
lated whole-genome data, using 100 models drawn from the pa-
rameter confidence intervals of our two best-fit demographic
models. We found that the patterns of LD decay predicted by the
models generally matched the data well for both Pygmies and
farmers (Supplemental Fig. S2), but with discrepancies at different
distance regimes. This comparison of LD decay suggests that the
two best-fit models capture different aspects of the demographic
history of our populations, and not perfectly.

As a third validation, we applied the pairwise sequentially
Markovian coalescent (PSMC) (Li and Durbin 2011) and multiple
sequentially Markovian coalescent (MSMC) (Schiffels and Durbin
2014) as independent means to explore the demographic history
of our populations (Methods). As a test of goodness-of-fit, we ap-
plied both methods to our intergenic data and simulations under
both models (Supplemental Fig. S3). Under Model-1, the PSMC
curves of the simulated Pygmy and farmer genomes split at about
the same time as in the PSMC analysis of the real data, whereas the
two simulated populations of Model-2 do not show clear separa-
tion until ∼70 kya (Supplemental Fig. S3A–C). The MSMC curves
ofModel-1 and those of the real data agreewell, butModel-2 seems
to fit theMSMC curve from the real data poorly (Supplemental Fig.
S3D,E). Together, the PSMC/MSMC results suggest that Model-1
qualitatively fits the data better, and the inferred ancient diver-
gence time in Model-1 is plausible.

In general, these validations suggest that Model-1 is our best
estimate of demographic history for these populations, but it is an
imperfect model. In order to lessen the impact of model misspeci-
fication on our selection inference, we conservatively report candi-
dates under both Model-1 and Model-2.

Prioritizing selection candidates using whole-genome

demographic simulations

Because conventional statistical outlier approaches are prone to
false positives, we used MaCS (Chen et al. 2009) to perform
whole-genome simulations under our realistic demographic mod-
els to assign statistical significance (P-values) in our selection scan
(Methods). Methods for detecting natural selection often rely on
summaries of local genetic variation, and they may be biased by
variation in mutation rate across the genome (Reich et al. 2002;
Drake et al. 2005; Schaffner et al. 2005; Sainudiin et al. 2007).
Indeed, we found that if mutation rate variation is not controlled
for, selection scan candidates are highly enriched in genomic re-
gions with greater heterozygosity (Supplemental Material; Supple-
mental Figs. S4–S7). From here on, we thus used the per-window
mutation rate approach (Methods) for all simulations to account
for possible biases due to genomic mutation rate heterogeneity.
We recognize that this approachmay discount some selection sig-
nals, yielding a more conservative inference of natural selection.
The distribution of P-values was also sensitive to the genetic re-
combination map used in the simulations (Supplemental Figs.
S8, S9). To assess possible biases due to imperfection of the genetic
recombination map, we ran two sets of simulations, using two
published genetic maps: the African American map (Hinch et al.
2011) and the HapMap Yoruba map (Methods; The International
HapMap Consortium 2007). Both these maps likely represent the
recombination process better in the Yoruba than in the Pygmies,
but no Pygmy-specific map is available.

Our top hits are the top 0.5% of windows in the P-value dis-
tribution of each test statistic. To avoid potential biases due to
the choice of map and/or null model, we restricted our candidates

to those that are top hits using all four combinations of the two ge-
netic maps and the two best-fit demographic models. Unless men-
tioned otherwise we report P-values and false discovery rates
obtained using Model-1 and the African American map, because
they are the most conservative (Supplemental Figs. S8, S9).

To illustrate the importance of using P-values to determine
candidates, rather than relying on outliers in the distribution of
a test statistic, we plotted the P-value based on Model-1 as a func-
tion of the G2D statistic for each of the windows (Fig. 2; similar re-
sult holds for the iHS analysis, Supplemental Fig. S10). Quadrant I
contains windows that have extreme G2D values but are not sta-
tistically significant when the confounding effects of demography
and genomic architecture are controlled for. Conversely, Quadrant
III contains windows that are statistically significant even though
their G2D values are not extreme on a genome-wide basis. Because
the association between functional elements (e.g., exon and regu-
latory sequences) and selection is not expected if a large fraction of
significant tests are false positives, we validated our P-value ap-
proach by comparing the spatial distribution of our candidates
for selection with the distribution of known functional sequences
in the genome (Voight et al. 2006; Williamson et al. 2007;
Mendizabal et al. 2012). As expected, we found that our top
hits of the P-value approach were enriched in exons of genes
(one-sided Fisher’s exact test, P = 0.029) (Supplemental Table S3).
Interestingly, we find no enrichment of top hits in regions deemed
functional based on five types of ENCODE (Supplemental
Material; Gerstein et al. 2012) regulatory elements (Methods;
Supplemental Table S3).

Evidence of local adaptation in Western African Pygmies: iHS

To detect recent incomplete selective sweeps, we scanned the ge-
nome using the haplotype-based iHS statistic (Voight et al. 2006)
for the farmer and Pygmy samples separately (Methods). Using
all four simulation sets, we defined Pygmy-specific signals as
those windows that were a top hit (the top 0.5% in the P-value dis-
tribution) in the Pygmy sample, but not in the Yoruba sample (not

Figure 2. Importance of using P-values to define candidates in the G2D
analysis. Each point is a window of 500 single-nucleotide variants, and
shading represents the density of points. The vertical dotted line and the
horizontal dashed line are the top 0.5% significance cutoffs for the G2D
and P-value distributions, respectively. Windows in Quadrant I are outliers
in the G2D distribution but are not statistically significant when the effects
of demography and genome architecture are controlled for. In Quadrant
III are the many windows that are statistically significant even though their
G2D values are modest.
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within the top 1% in the P-value distribution), yielding 35 distinct
genomic regions (Supplemental Table S4). We used a looser
P-value cutoff to define Yoruba top hits in order to bemore conser-
vative in identifying regions as Pygmy specific. We evaluated the
robustness of this prioritization criterion for iHS candidates by re-
peating the same analysis using four and seven individuals ran-
domly sampled from the nine Yoruba genomes. The same
genomic regions were identified as candidates in all experiments,
suggesting that our iHS analysis is consistent even when the sam-
ple size is small.

Five of our candidate regions contain genes associated with
bone synthesis. EPHB1 (locus: Chr 3: 134572433–134716365)
(Fig. 3A) is an ephrin receptor at sites of osteogenesis. Interestingly,
this region has been previously associated with the short stature in
Pygmies (Jarvis et al. 2012). Our candidate region spans ∼140 kb,
containing exon 2 and exon 3 of EPHB1 (which has a size of >460
kb and 16 coding exons). Elevated FST has beenwidely used to infer
selection (Nielsen et al. 2009; Pickrell et al. 2009; Jarvis et al. 2012),
and FST is elevated in this region, althoughwe foundnononsynon-
ymous variants. To further investigate the signal of selection, we
usedhierarchicalclusteringandnetworkanalysisofthephasedhap-
lotypes (SupplementalMaterial) for the region around exon 3 (±10
kb). Interestingly, both analyses suggest that Pygmy and farmer
groups are almost fixed for different haplotypes (Fig. 3B,C). This is
consistent with an incomplete selective sweep (Voight et al. 2006;
Pickrell et al. 2009; Pritchard et al. 2010) and indicative of different

selective pressures in these two groups.
The other four bone synthesis–related
candidates are SLCO2A1 (locus: Chr 3:
133506737–133863702), ZBTB38 (locus:
Chr 3: 141105569–141333249), TSPAN5
(locus: Chr 4: 99496207–99673561), and
GAREM (locus: Chr 18: 29766032–
29896024) (Supplemental Material;
Supplemental Fig. S11).

Consistent with the hypothesis of
selection for mobility (Diamond 1991),
we found candidate loci in several mus-
cle-related genes (Supplemental Table
S4). In particular, OBSCN (spans >150 kb
with 81 exonswithin the candidate locus
Chr 1: 228103665–228842760) (Fig. 4A),
an obscurin gene, has an important role
in the organization of myofibrils during
assembly and may mediate interactions
between the sarcoplasmic reticulum (stri-
ated muscle fibers found in the skeletal
system) and myofibrils (Young et al.
2001; Ackermann et al. 2014). Within
this gene, 16 of 46 nonsynonymous
amino acid variants are predicted as func-
tionally important by either SIFT or
PolyPhen-2. The SNV with the largest
FST (Chr 1: 228475848, rs437129, FST =
0.54) in this region is nonsynonymous
and functionally important (PolyPhen-2
score = 0.968, although SIFT score =
0.43). It is fixed for the ancestral allele
(guanine, panTro3, hg19) in our Pygmy
sample but is segregating at much lower
frequency in our Yoruba farmer sample
(allele frequency for G = 0.39 or 7/18) in

both homozygote and heterozygote forms. The ancestral allele
(G) frequencies of rs437129 in Yoruba, Luhya, and African
American based on the 1000 Genomes Project (Phase I) are 0.551,
0.665, and 0.590 (dbSNP 137). Analyses of the haplotypes between
the two nonsynonymous sites with FST > 0.5 (Chr 1: 228475848
and Chr 1: 228520973, including the 10-kb flanking region) (Fig.
4B,C) suggest the existence of twomajor haplotypes in our sample
that are relatively population specific. We thus postulate that nat-
ural selection might have acted in different directions for this re-
gion between these two groups. Other muscle-related genes
include COX10 (locus: Chr 17: 13911228–14241158) and LARGE
(locus: Chr 22: 34224706–34359718) (Supplemental Material).

Our whole-genome selection scan also identified a variety of
genes (Supplemental Table S4) involved in immune function, one
of the most common targets of adaptive evolution (Williamson
et al. 2007; Barreiro and Quintana-Murci 2009), and in reproduc-
tion, which is compatible with the life-history tradeoff hypothesis
(Migliano et al. 2007). Other functional categories for genes of po-
tential interestwithin the tophits of our iHS signals (Supplemental
Table S4) include energy metabolism, cell signaling, and neural
development.

Evidence of local adaptation in Western African Pygmies: G2D

To complement our iHS scan, we performed a scan using the G2D
statistic (Nielsen et al. 2009), which measures how different the

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F
S

T

SNV, synonymous

R
ec

om
bi

na
tio

n 
R

at
e 

(c
M

/M
b)

0
20

40
60

80
10

0

134.58 134.60 134.62 134.64 134.66 134.68 134.70 134.72

Chromosome 3 position (Mb)

EPHB1

  Farmer

  Western Pygmy

1

1

2

3
3

3
3

6

8

10

34

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

SNP

H
ap

lo
ty

pe

A

B C
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ing columns are SNPs, with gray and black for ancestral and derived alleles, respectively.
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local farmer-Pygmy 2-D joint allele frequency spectrum is from the
genome-wide spectrum. We found low P-value top-hit windows
on all 22 chromosomes (Supplemental Fig. S12). To identify
Pygmy-specific signals of selection, we used the composite likeli-
hood ratio (CLR) (Nielsen et al. 2005) statistic. Our Pygmy-specific
top-hit windows satisfied three conditions for all four simulation
sets: (1) They were in the top 0.5% of the P-value distribution of
the G2D statistic; (2) they were in the top 0.5% of the P-value dis-
tribution of the Pygmy-specific CLR statistic; and (3) they were not
within the top 1% of the P-value distribution of the Yoruba-specif-
ic CLR statistic. This procedure identified seven distinct Pygmy-
specific candidates (Supplemental Table S5), and these candidates
do not overlap with those from iHS scan.

Our top candidate region from the G2D scans (locus: Chr 6:
32968692–33049012; P-value = 9.90 × 10−6, FDR = 0.03) (Fig. 5A)
includes three members of the Class II Human Leukocyte
Antigen (HLA) gene family, HLA-DPB1, HLA-DOA, and HLA-
DPA1, which play a critical role in initiating the immune response
to invading pathogens (Barreiro and Quintana-Murci 2009;
O’Brien et al. 2011). The HLA region has a complex genomic archi-
tecture with several recombination hotspots (Fig. 5A; also see
Jeffreys et al. 2005). To avoid possible artifacts due to sequencing
and genotyping errors, we reanalyzed this region after removing
variants violating Hardy-Weinberg equilibrium, an indicator of
possible genotyping errors. Fourteen of 1478 SNVs in this region
fail the HWE test (cutoff P < 0.05); yet the P-value for this region
remains the same after their removal. Eleven nonsynonymous var-

iants were found in this region; of these
sites, five are predicted to be deleterious
or possibly damaging by SIFT (SIFT score
≤0.05) (Kumar et al. 2009) and/or
PolyPhen-2 (PolyPhen-2 score ≥0.995)
(Adzhubei et al. 2010). Haplotype analy-
ses (Fig. 5B,C) of the regionwith elevated
FST around the gene HLA-DPA1 show
that although the farmer samples possess
two major haplotypes, most of the
Pygmy samples belong to a single hap-
logroup. Because of the existence of sev-
eral recombination hotspots in this
locus, we plotted the diplotypes for this
region in our sample to avoid possible bi-
ases due to phasing error (Supplemental
Fig. S13). Consistent with the haplotype
analyses, most of the Pygmy samples
(five of seven) are homozygous for a sin-
gle diplotype, whereas the farmers have
two diplotypes. We thus hypothesize
that a specific immunity-related pressure
has driven the evolution of this locus in
the Pygmies.

This scan also identified two can-
didate regions that contain genes as-
sociated with bone synthesis and
development. The gene FLNB in the
first region (locus: Chr 3: 57918877–
58055004) encodes filamin B, a multi-
functional cytoplasmic protein that
plays a critical role in skeletal develop-
ment. Flnb knockout mice are pheno-
typically similar to individuals with
spondylocarpotarsal syndrome as they

exhibited short stature and similar skeletal abnormalities
(Farrington-Rock et al. 2008). FLNB is known to be associated
with height in African Pygmies (Jarvis et al. 2012; Lachance et al.
2012) and has also been reported to be associated with osteoporo-
sis in women (Wilson et al. 2009). Although we did not find any
amino acid substitution variants in FLNB in our sample, we did
find many variants with large FST that may lie in regulatory ele-
ments (Supplemental Fig. S14). The second region (locus: Chr 1:
179361049–179468857) contains the gene AXDND1. Although
the function of AXDND1 is unclear, a recent genome-wide associ-
ation study reported a statistically significant association between
this gene and fracture risk. This implies a potential role ofAXDND1
in bone synthesis or musculoskeletal traits (Medina-Gomez and
Rivadeneira 2014).

Other G2D candidate loci include the reproduction-related
gene LAMC1 (locus: Chr 1: 183076845–183184161) and the
gene regulation-related gene ZNF (Chr 19: 12386669–12523799)
(Supplemental Material).

Inference of polygenic selection in Western African Pygmies

To detect polygenic selection that results in small allele frequency
changes at multiple loci involved in a biological function or path-
way (Pritchard et al. 2010; Berg and Coop 2014), we used FST (Weir
and Cockerham’s estimator) (Weir and Cockerham 1984) to esti-
mate the level of population differentiation for each SNVand com-
pared the FST distribution of the SNVs of all genes in a given
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gene set (a specific biological function or pathway) to that in the
rest of our genic sequences. We used 1454 Gene Ontology (GO)
gene sets from the Gene Set Enrichment Analysis (GSEA) project
(Subramanian et al. 2005).

Using the Mann-Whitney U test, we found 113 gene sets that
show significant evidence of having larger FST values compared to
the FST distributions of the rest of genic sequences (one-sided test,
Bonferroni corrected P < 10−10). Surprisingly, however, we also
found as many or more significant gene sets in 72.9% and 48.5%
of our neutral whole-genome simulations under Model-1 and
Model-2, respectively. This suggests that demographic processes
and genomic architecture canmimic the signals of polygenic adap-
tation, and in turn suggests that many of these 113 significant
gene sets are false positives.

Only three of the 113 significant gene sets had significant
Mann-Whitney U tests <5% of the time in all of our neutral
whole-genome simulation sets, and we consider these sets as true
positives (Supplemental Table S6). Among these three gene sets,
there were no overlapping genes, nor did any genes overlap with
those identified in our G2D and iHS analysis, suggesting that the
significance of three gene sets is not due to hitchhiking on selec-
tive sweeps. The two strongest signals of polygenic selection are
both related to immunity (GO categories: “Antigen binding,”
Bonferroni corrected P-value = 2.31 × 10−25; “Pattern recognition
receptor activity,” Bonferroni corrected P-value = 5.04 × 10−14).
The other candidate is “G1 phase of mitotic cell cycle”
(Bonferroni corrected P-value = 1.75 × 10−19). Although the corre-
sponding phenotype for this group is unknown, accurate transi-
tion from G1 phase of the cell cycle is crucial for control of
eukaryotic cell proliferation (Bertoli et al. 2013).

Discussion

Ancient divergence and more recent

gene flow between African farmer and

Pygmy populations

Our demographic inference for the far-
mer (Yoruba) and Western Pygmy hun-
ter-gatherer groups (Baka and Biaka)
offers insight into the demographic dy-
namics of sub-Saharan Africa over the
past hundreds of thousands of years.
The deep divergence time between the
ancestors of the agricultural and Pygmy
groups we found in Model-1 (∼155 kya,
95% C.I.: 139–164 kya) is inconsistent
with several recent publications (Patin
et al. 2009; Batini et al. 2011; Veeramah
et al. 2012), whereas the divergence
time inferred in Model-2 (∼90 kya, 95%
C.I. 85–91 kya) is more consistent with
those earlier studies. Our PSMC analysis
is consistent with old divergence be-
tween the ancestors of the two groups
(Supplemental Fig. S3), and our MSMC
analysis supports Model-1 over Model-
2 (Supplemental Fig. S3); however, these
results must be interpreted carefully
because these methods do not explicitly
model population divergence. Africa ex-
perienced dramatic climate fluctuations
between dry and wet conditions near
the end of Marine Isotope Stage 6 (MIS

6; 190–135 kya) and through the whole MIS 5 (75–135 kya)
(Blome et al. 2012; Rito et al. 2013). It is believed that it was about
this time period when dramatic climate change caused forest
defragmentation in Central Africa. (Blome et al. 2012; Rito et al.
2013; Ziegler et al. 2013). Such environmental changes may give
rise to different niches (e.g., savanna versus forest), and in turn
promoted population isolation and differentiation (Blome et al.
2012, Ziegler et al. 2013). We thus speculate that environmental
change and forest fragmentation may have caused the ancestors
of Pygmy rainforest dwellers to diverge from those of agricultural
groups within the past 75–190 kya.

Both our best-fit models infer asymmetric gene flow, with
greater flow from farmers to Pygmies than vice versa. These infer-
ences are consistent with observed socioeconomic contacts be-
tween contemporary Pygmies and farmers (Terashima 1987;
Bahuchet 2012), and was also observed previously in Patin et al.
(2009). However, Patin et al. (2009) had little power to infer gene
flow since divergence (95% C.I. covers 0). Interestingly, our
Model-2 suggests a single pulse of gene flow from farmers to
Pygmies ∼7 kya, resulting in a ∼68% admixture in our Western
Pygmy sample. This admixture proportion is consistent with the
recent findings of Verdu et al. (2013), who analyzed autosomal
microsatellite data from 23 Central African Pygmy and non-
Pygmy populations and inferred admixture proportions of up to
50%–70% in these Pygmy populations; although recent evidence
shows that admixture proportions may vary between 0%–90%
among individual Pygmies (Patin et al. 2009, 2014; Tishkoff
et al. 2009; Jarvis et al. 2012). This substantial agriculturalist genet-
ic ancestry in Pygmies has been hypothesized to be a consequence
of the recent expansion of Bantu/Niger-Kordofanian-speaking
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Figure 5. Candidate selection signal near HLA-DPA1. (A) As in Figure 3, but for the candidate locus Chr
6: 32968692–33049012. (B,C) As in Figure 3, but for the region Chr 6: 33.03–33.05 Mb with elevated
FST.
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farmers from West Africa ∼5 kya (Cavalli-Sforza 1986; Tishkoff
et al. 2009; Patin et al. 2014). Indeed, our inferred time of admix-
ture coincides with the time of Neolithic agricultural development
in Africa∼5–10 kya (Phillipson 2005), as well as with the estimated
times of agriculturalist expansion for both Bantu-speaking (5.6
kya, 95% C.I.: 3.2–8.2 kya) and Niger-Kodorfanian-speaking (7.3
kya, 95% C.I.: 5.7–9.6 kya) people (Li et al. 2014). Many Pygmies
today speak languages adopted from neighboring Bantu/
Sudanic-speaking farmer groups, withwhom they exchange goods
(Bahuchet 2012). Because the social–economic relationship be-
tween the two groups promotes intermarriage (Terashima 1987,
Bahuchet 2012), this symbiotic bond may contribute to the ob-
served substantial admixture in the Pygmy groups, especially since
the development and expansion of agriculture in Africa.

There are important differences between the approach used
here and those used in earlier demographic studies of African
Pygmies (Patin et al. 2009, Batini et al. 2011, Veeramah et al.
2012). First, we jointly estimated all parameters simultaneously
for a given model, but some previous studies first estimated effec-
tive population sizes and then optimized other model parameters
given the pre-estimated population sizes (Patin et al. 2009). They
thus explored a smaller region of parameter space, potentially bias-
ing their inferences. Second, our inference was based on whole-ge-
nome sequencing data with a relatively small sample size of 16
genomes, whereas these previous studies all used less than 60
loci, but had much larger samples of more than 100 individuals.
Two of these studies (Patin et al. 2009; Batini et al. 2011) inferred
recent population contraction in the Pygmy groups. Our small
sample size limits our power to detect such recent events, but
the simulation study of Robinson et al. (2014) suggests that ∂a∂i
can confidently infer ancient events inmodels of similar complex-
ity to those we infer here.

Our inferred dates are based on a phylogeny-based mutation
rate of 2.35 × 10−8 per-site per-generation (Gutenkunst et al. 2009;
compatible with Nachman and Crowell 2000). This value is com-
patible to those used in those earlier studies, i.e., an autosomalmu-
tation rate of 2.5 × 10−8 and 2.6 × 10−8 per site per generation for
Patin et al. (2009) and Veeramah et al. (2012) and a mitochondrial
substitution rate of 27.8 × 10−8 per site per generation in Batini
et al. (2011). A generation time of 25 yr was used to convert time
estimates to years, although there is some evidence that generation
time may differ between the two populations (Migliano et al.
2007). Our date estimates would be two times older if we used
the rate of ∼1.2 × 10−8 per-site per-generation estimated by recent
pedigree-based whole-genome sequence studies (Conrad et al.
2011; Kong et al. 2012). For example, the split time between the
ancestors of Pygmies and farmers would be pushed back further
to ∼300 kya, which predates the earliest emergence of AMH in
the fossil record ∼200 kya (McDougall et al. 2005; Scheinfeldt
et al. 2010). This deep Pygmy-farmer divergence could be in part
due to imperfections in the model. For example, our model does
not incorporate archaic admixture, which has been reported in
Western African Pygmies (Hammer et al. 2011). Such introgression
might cause us to overestimate the Pygmy-farmer divergence.
Nevertheless, both approaches to estimating the humanmutation
rate have limitations, including inaccuracy of the human-chim-
panzee divergence time in the phylogenetic approach and false
negative mutations in the pedigree sequencing approach
(Veeramah and Hammer 2014). We used the phylogenetic esti-
mate because of its history in population genetics, but caution is
advised when comparing population genetic date estimates with
the fossil record.

Importance of prioritizing selection candidates using P-values
from whole-genome simulations

Our results highlight the importance of using a model-based ap-
proach to assess statistical significance in whole-genome selection
scans. Genomic scan studies using the tail of an empirical sum-
mary statistic distribution (an “outlier” approach) to define a
significance cutoff for positive selection have been highly criti-
cized. Nonselective forces, including demography and local geno-
mic architecture, such as variation inmutation and recombination
rates (Reich et al. 2002; Drake et al. 2005; Jeffreys et al. 2005;
Schaffner et al. 2005; Sainudiin et al. 2007) across loci, can produce
signals similar to positive selection (Tajima 1989; Andolfatto and
Przeworski 2000; Wall et al. 2002; Jensen et al. 2005; Schaffner
et al. 2005; Teshima et al. 2006). For example, we observed that
larger G2D scores are associated with higher heterozygosity
(Supplemental Fig. S6), so candidates determined using an empir-
ical outlier approach might be biased toward regions with higher
mutation rates. Bymatching localmutation rate in our simulations
to local heterozygosity in the data, we eliminate this bias
(Supplemental Fig. S7). Worryingly, the false targets identified by
a genomic scan that fails to account for nonselective forces can
bemisleading because theymight still make biological sense a pos-
teriori (Pavlidis et al. 2012).

Prioritizing selection candidates based on P-values identifies
candidates that would bemissed by an empirical P-value approach
and avoids potential false positive candidates caused by demogra-
phy or recombination and mutation rate variation (Fig. 2). Even
more striking is the high proportion of GO gene sets that are iden-
tified as significant by a Mann-Whitney U test but that are not sig-
nificant when compared against our neutral simulations that
account for demographic history and genomic architecture.
Caution is still advised when interpreting our selection scan re-
sults, particularly for the results of iHS scan, because power may
be limited due to our relatively small sample of seven Pygmies
and nine Yoruba farmers (Pickrell et al. 2009). However, a recent
simulation study showed that iHS has up to 80%power with a sim-
ilar sample size to detect classic hard sweeps (Ferrer-Admetlla et al.
2014).

Candidates of adaptation in Western African Pygmy groups

With our high coverage whole-genome sequencing data, we con-
ducted comprehensive model-based selection scans for Western
African Pygmies using a series of complementary statistical ap-
proaches.Many loci detected byour approach are involved inmus-
cle development, bone synthesis, immunity, reproduction, cell
signaling and development, and energy metabolism (see Results).

Of particular interest are several genomic regions that show
signatures of selection in African Pygmies that might contribute
to short stature. Seven genes known to be associated with bone
synthesis were identified by either iHS or G2D analysis. Among
them, FLNB, EPHB1, and TSPAN5 have been functionally shown
to affect body size through gene knockout or knockdown experi-
ments in mice (Iwai et al. 2007; Farrington-Rock et al. 2008;
Benson et al. 2012; Zhou et al. 2014); and FLNB, AXDND1,
ZBTB38, and GAREM have been shown to be associated with hu-
man height in multiple populations (Lettre et al. 2008; Weedon
et al. 2008; Kim et al. 2012; Wang et al. 2013; Medina-Gomez
and Rivadeneira 2014; Wood et al. 2014). EPHB1 was reported to
be genetically associated with height in African Pygmies (Jarvis
et al. 2012). Interestingly, althoughwe found no nonsynonymous
variants in the locus containing EPHB1, the Pygmy and farmer
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populations are each nearly fixed for a single population-specific
haplotype (Fig. 3B,C), a pattern expected under an incomplete
selective sweep (Voight et al. 2006; Pickrell et al. 2009; Pritchard
et al. 2010). FLNB (locus: Chr 3: 57,918,877–58,055,004) is within
the locus Chr 3: 45–60 Mb that was also previously reported to be
associated with height in Pygmies (Jarvis et al. 2012; Lachance
et al. 2012). Clinically, nonsensemutations in FLNB cause spondy-
locarpotarsal synostosis syndrome (SCT), a recessive disease
characterized by short stature and fusions of the vertebrae and
carpal and tarsal bones (Krakow et al. 2004). Our observation of
many large FST variants within ENCODE regulatory sequences
(Supplemental Fig. S14) around this locus suggests that short stat-
ure inWestern African Pygmies might arise through cis-regulatory
evolution.

Several studies (e.g., Diamond 1991; Venkataraman et al.
2013) have hypothesized that the ability to quickly climb trees
and move in dense forest is a potential adaptation of Pygmy hun-
ter-gatherers. One of our candidates, OBSCN, a myofibrils-regulat-
ing obscurin gene, harbors several highly differentiated, putatively
functionally important SNVs, including rs437129 (see Results).
Our haplotype analyses suggest that rs437129 is associated with
population-specific haplotypes in the Pygmies and the farmers
(Fig. 4B,C), although the signal is noisy. In Pygmies, the fixed allele
of rs437129 is consistent with the ancestral state (panTro3, hg19).
Under a classic selective sweep model, one might expect a derived
beneficial allele to sweep up in frequency, but a nearby ancestral
allele could hitchhike with the selected site (Smith and Haigh
1974). However, selectionmay sometimes favor an ancestral allele
that has been segregating in the population (Pritchard et al. 2010).
Because accessing essential foods is crucial for hunter-gatherers,
mobility-related adaptation to locomotor efficiency amid dense
vegetation has been emphasized in several recent studies
(Diamond 1991; Bramble and Lieberman 2004; Perry and
Dominy 2009). Indeed, Venkataraman et al. (2013) recently pre-
sented evidence of a positive correlation between tree-climbing
ability and muscle fiber length in African Twa and Asian Agta
Pygmies compared to neighboring non-tree-climbing farmers, sug-
gesting that natural selection might have favored anatomical
structures (e.g., muscle fiber length) that promote safe vertical
climbing (Venkataraman et al. 2013). A plausible evolutionary ex-
planation for our observed selective signal is that natural selection
favors the ancestral haplotype ofOBSCN possessed in hunter-gath-
erer Pygmies to adapt specific muscle architecture to locomotor ef-
ficiency, whereas local adaptation outside the forest to an
alternative allele or relaxation of selection might promote the ob-
served population differentiation around this locus. The signal we
found around the gene OBSCN could thus be the first genetic evi-
dence that supports the mobility hypothesis.

We used several complementary statistical tests to detect dif-
ferent modes of adaptation. The haplotype-based iHS test has the
greatest power for detecting recent (<30 kya) incomplete sweeps,
but the AFS-based G2D test is capable of detecting completed
and ongoing sweeps that occurred <300 kya aswell as balancing se-
lection (Sabeti et al. 2006; Nielsen et al. 2009). Our gene set enrich-
ment analysis, on the other hand, has little power to detect sweeps
but can detect polygenic selection (Daub et al. 2013). It is thus not
surprising that there is no overlap among the candidates identified
byour different tests. All three tests did, however, detect regions in-
cluding genes associated with immunity (see Results). The perva-
sive signals of selection on immune function we found in all
three scans are consistent with the view that genes involved in
pathogen response are among the most common targets of adap-

tive evolution (Williamson et al. 2007; Barreiro and Quintana-
Murci 2009; Jarvis et al. 2012; Novembre and Han 2012).

We leveraged whole-genome sequence data from African
Pygmy and agriculturalist populations to infer their prehistory
and search for Pygmy-specific adaptation signals through a care-
fully designed computational and statistical framework. In doing
so, we accounted for many potentially confounding factors, in-
cluding demography and mutation and recombination rate het-
erogeneity. Future work may be needed to account for additional
confounding factors, but we believe the framework presented
here offers great promise for shedding light on the complex demo-
graphic and adaptive history of human populations.

Methods

Whole-genome sequencing data and data quality assurance

Our Biaka Pygmy (N = 4) DNA samples were obtained from public-
ly available cell lines administrated by the Centre d’Etude du
Polymorphism Human Genome Diversity Panel (Li et al. 2008).
Details regarding the Baka Pygmies (N = 3) samples are in
Lachance et al. (2012) and SNP data are available with dbSNP
batch IDs: Lachance2012Cell_snp, Lachance2012Cell_deletion,
Lachance2012Cell_insertion, and Lachance2012Cell_complex_
substitution. Whole-genome sequencing data for the unrelated
Yoruba farmers (N = 9) were downloaded from the CGI data repos-
itory (Drmanac et al. 2010). The median coverage across the sam-
ples was 60.5× (SD = 8.54×). Genome assembly and variant calling
were done using the standard CGI Assembly Pipeline 1.10, CGA
Tools 1.4, and NCBI Human Reference Genome build 37
(Supplemental Material). After applying quality control filters
(Supplemental Material), we found 10,865,288 autosomal single-
nucleotide variants in our samples.

Estimation of demographic parameters using ∂a∂i
We used the allele frequency spectrum (AFS)-based demographic
inference tool ∂a∂i (Gutenkunst et al. 2009) to build and fit our de-
mographic models (Supplemental Material). After additional data
quality control steps, we built an unfolded AFS using 1,575,394
intergenic SNVs, polarized via human-chimpanzee alignment
and statistically corrected to mitigate possible biases due to ances-
tral state misidentification (Supplemental Material). Because link-
age among sites means that ∂a∂i calculates a composite rather than
the full likelihood, confidence intervals of model parameters were
estimated via 100 nonparametric bootstraps of the intergenic data.
These confidence intervals thus account for sampling uncertainty
within the data, but not for systematic uncertainties (e.g., the as-
sumed mutation rate).

Assessment of demographic model

The composite likelihood ∂a∂i calculates is not the full likelihood
due to the linkage. To minimize linkage in our model selection
analysis, we thinned our data by choosing variants at least 0.01
cM apart and refit the candidate models to the resulting sub-data
set. We then calculated AIC (Akaike 1974) and BIC (Schwarz
1978) for model selection. In our comparisons of real and simulat-
ed LD decay, we estimated LD between pairs of variants by their
correlation coefficient (r2) using a genotype code (0, 1, or 2 refer-
ence alleles). We performed our PSMC/MSMC analyses (v0.6.3)
(Li and Durbin 2011; Schiffels and Durbin 2014) using the default
parameters suggested by the authors. To assess variation in the in-
ferred PSMC curves, we analyzed 100 nonparametric bootstraps
using the utility provided with the PSMC software. We used
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MSMC command: msmc –fixedRecombination –skipAmbiguous
on the haplotypes of random Pygmy-Yoruba pairs phased using
the Python scripts from the authors.

Coalescent whole-genome simulations

We used MaCS (Chen et al. 2009) for our coalescent simulations
because of its ability to efficiently perform whole-genome simula-
tions with recombination. To avoid potential underestimation of
recombination rates, we removed the first 5 Mb on each chromo-
some as suggested by the creators of the African American recom-
binationmap (Hinch et al. 2011). For consistency, we also did this
for the HapMap Yoruba map. Tomodel mutational heterogeneity,
we carried out a three-step procedure. First, we divided the genome
into 25,000-bp windows and estimated the population genetic
mutation parameter ûj using ∂a∂i given a demographic model.
Second, we performed each MaCS using a mutation parameter ûj,
the largest θ estimated among all of the windows. Third, for each
window, we adjusted its mutation rate by dropping a proportion
1- (ûj/ûmax) of the simulated variants. All simulations presented
heremodel the effects of demography, recombination heterogene-
ity, andmutation heterogeneity. For our simulations, we excluded
the regions that were excluded in the real data due to our quality
control criteria.

Scan for signals of selection

All test statistics were calculated using predefined sliding windows
of 500 SNVs, with a step size of 100 SNVs. Windows longer than
1 Mb were dropped to avoid complex genomic regions, such as
centromeres or large structure variants. To maximize statistical
power and focus on signals of selection inWestern Pygmies gener-
ally, for all our tests, we combined samples from the two Pygmy
populations because they are so recently diverged. We calculated
statistical significance of each window using our whole-genome
coalescent simulations under the best-fit demographic models.
To account for uncertainty in parameters, we drew 1000 parameter
sets from the confidence intervals from eachmodel, assuming that
they had a multivariate normal distribution. The per-window
P-value was defined as the fraction of simulations with statistic
values greater than or equal to the observed value of the samewin-
dow in the real data. Candidates for each neutrality test were de-
fined as the top 0.5% of the P-value distribution. We then ran
100,000 additional local simulations for each candidate to obtain
a finer P-value resolution.We estimated false discovery rates using
the method of Williamson et al. (2007).

We computed the G2D score defined as in Nielsen et al.
(2009) and the integrated haplotype score (iHS) (Voight et al.
2006) using the software selscan (Szpiech and Hernandez 2014).
Haplotype phasing was done using BEAGLE v3.1.1 (Supplemental
Material; Browning and Browning 2007). To account for possible
biases in the iHS analysis due to phasing errors, haplotype phase
was estimated using the same procedure used for both the real
and simulated data. iHSwas calculatedwith the default parameters
in selscan, standardized, and quantified the strength of selection
following Voight et al. (2006). To search for evidence of polygenic
selection, we downloaded 1454 Gene Ontology gene sets from the
Gene Set Enrichment Analysis (GSEA) project at the Broad
Institute in January 2014 (Subramanian et al. 2005), discarding
13 gene sets that shared >90% of their genes with another set.
One-sided (alternative distribution is greater than the null)
Mann-Whitney U tests were performed in R (R Development
Core Team 2012). In our simulations, the genic FST distributions
were obtained by calculating FST for all SNVs within the same ge-
nomic regions that are defined as genes in the real data (RefSeq,

downloaded from UCSC Genome Browser in May 2013). The like-
lihood of a gene set being significant was calculated as

1−
∑

s[S I(being significant under s)
S| | , (1)

where |S| is the total number of whole-genome simulations; s is a
given whole-genome simulation; and I is an indicator function
of being significant under s.

Data access

The Biaka sequencing data from this study have been submitted
to the NCBI Sequence Read Archive (SRA; http://www.ncbi.nlm.
nih.gov/sra/) under accession number SRP067698. The variants
for Biaka genomes have been submitted to NCBI dbSNP (http://
www.ncbi.nlm.nih.gov/SNP/) under submitter batch ID:
HammerLab_Biaka_CGI.
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