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Even though the inevitable process of aging by itself cannot be considered a disease, it is
directly linked to life span and is the driving force behind all age-related diseases. It is an
undisputable fact that age-associated diseases are among the leading causes of death in the
world, primarily in industrialized countries. During the last several years, an intensive search
of antiaging treatments has led to the discovery of a variety of drugs that promote health span
and/or life extension. The biguanide compound metformin is widely used for treating people
with type 2 diabetes and appears to show protection against cancer, inflammation, and age-
related pathologies. Here, we summarize the recent developments about metformin use in
translational aging research and discuss its role as a potential geroprotector.

Over the past two decades, metformin has
emerged as the first-line treatment for peo-

ple with type 2 diabetes (T2DM) and is the most
widely prescribed antidiabetic drug in the world
(American Diabetes Association 2014). In addi-
tion to its use in T2DM, metformin is being
prescribed for the treatment of polycystic ovary
syndrome, diabetic nephropathy, and gestation-
al diabetes, and has shown early promise as a
treatment for cancer. Historically, despite its
well-accepted antidiabetic properties in the
1950s, and use for hyperglycemia treatment in
England in 1958, metformin remained contra-
indicated largely because of concerns about lac-
tic acidosis and it was not approved by the U.S.
Food and Drug Administration until 1994 (Bai-
ley and Turner 1996; Mahmood et al. 2013). We

now know that the rare event of lactic acidosis
occurs in .0.01 to 0.08 cases (average, 0.03) per
1000 patient-years caused by an insufficient
metformin clearance by the kidneys (Bailey
and Turner 1996). Therefore, the risk of side
effects is relatively low in comparison to the
multiple benefits of metformin.

The exact molecular mechanisms of metfor-
min’s therapeutic action still remain unknown.
Metformin is a biguanide compound originally
derived from a guanidine derivative found in
the plant Galega officinalis. It acts as an insulin
sensitizer and exerts its principal metabolic ac-
tion on the liver. In addition to its glucoregula-
tory action, metformin has gained attention for
its pleiotropic effects and activity in a variety of
tissues, such as muscles, adipose tissue, ovary,

Editors: S. Jay Olshansky, George M. Martin, and James L. Kirkland

Additional Perspectives on Aging available at www.perspectivesinmedicine.org

Copyright # 2016 Cold Spring Harbor Laboratory Press; all rights reserved; doi: 10.1101/cshperspect.a025932

Cite this article as Cold Spring Harb Perspect Med 2016;6:a025932

1

w
w

w
.p

er
sp

ec
ti

ve
si

n
m

ed
ic

in
e.

o
rg

mailto:decabora@grc.nia.nih.gov
mailto:decabora@grc.nia.nih.gov
mailto:decabora@grc.nia.nih.gov
mailto:decabora@grc.nia.nih.gov
http://www.perspectivesinmedicine.org
http://www.perspectivesinmedicine.org
http://www.perspectivesinmedicine.org


endothelium, and brain (Diamanti-Kandarakis
et al. 2010; Foretz et al. 2014). Food intake
(Adeyemo et al. 2014; Pernicova and Korbonits
2014) and body weight (Glueck et al. 2001) are
decreased as a result of a direct action of met-
formin on the hypothalamic centers regulating
satiety and feeding (Stevanovic et al. 2012);
it may also influence metabolic and cellular
processes associated with the development of
chronic conditions of aging, including inflam-
mation, fatty liver, oxidative damage, protein
glycation, cellular senescence, diminished au-
tophagy, apoptosis, and development of several
types of cancer (Isoda et al. 2006; Kita et al. 2012;
Hirsch et al. 2013; Woo et al. 2014). A number
of recent studies support the role of metformin
in improving health span and life span in differ-
ent animal models (Anisimov et al. 2011; Cab-
reiro et al. 2013; Martin-Montalvo et al. 2013;
Anisimov 2014; De Haes et al. 2014). The pos-
sibility exists, therefore, for similar beneficial ac-
tions of metformin in human health and lon-
gevity.

The purpose of this article is to review the
role of metformin as a possible geroprotector
drug. We will try to summarize recent evidence
for the antiaging properties of metformin, the
molecular mechanisms implicated in this role,
and, finally, discuss new (research opportuni-
ties) directions to better understand the trans-
lational potential of metformin.

HOW DOES METFORMIN WORK?

Metformin is excreted intact in the urine, with-
out being metabolized by the liver or kidney.
About 50%–60% of an oral dose is absorbed
into the systemic circulation and distributed in
most tissues at similar concentrations, although
higher concentrations are found in gastrointes-
tinal tract, liver, and kidney (Bailey and Turner
1996; Gong et al. 2012; Pawlyk et al. 2014). Age,
gender, nutritional status, lifestyle, and genetic
variations represent some of the factors that in-
fluence metformin’s susceptibility and distribu-
tion to target tissues. For instance, membrane
transporter polymorphism is a key determinant
in the pharmacokinetic properties of this drug
(Chen et al. 2013; Pawlyk et al. 2014). Metfor-

min exerts its therapeutic effects, through a
number of mechanisms and physiological path-
ways that resemble those generated by caloric
restriction (CR), an experimental model known
to extend life span and health span in various
organisms. Indeed, microarray analyses have
shown that metformin induces the same gene
expression profile as CR (Dhahbi et al. 2005;
Spindler 2006; Martin-Montalvo et al. 2013),
despite no reduction in food intake (Mercken
et al. 2012; de Cabo et al. 2014).

The inhibition of hepatic gluconeogenesis
and lipogenesis by metformin occurs via alter-
ations in cellular energetics. The decrease in cel-
lular respiration that results from metformin’s
inhibition of mitochondrial complex I activity
(El-Mir et al. 2000; Owen et al. 2000) yields
lower ATP levels. Although the interaction with
mitochondrial copper ion appears essential for
the metabolic effects of metformin (Logie et al.
2012), more still needs to be learned about
whether the drug inhibits respiration through
direct or indirect action (Fontaine 2014). The
nonclassical effects of metformin on the expres-
sion of glucose transporters and glycolytic en-
zymes (up-regulation) result indirectly from
mitochondrial respiratory chain inhibition
(Owen et al. 2000). This inhibition of the elec-
tron transport chain (Batandier et al. 2006;
Guarente 2008) combined with the induction
of antioxidant gene expression by the SKN-1/
Nrf2 transcription pathway (Onken and Dris-
coll 2010) provides mechanistic insights into
metformin’s role in lowering the production
of reactive oxygen species (ROS). AMP-activat-
ed protein kinase (AMPK) is a key sensor of
energy status that regulates metabolic energy
balance at whole-body level (Hardie et al.
2012). The increase in AMP/ATP and ADP/
ATP ratios stimulates AMPK (Stephenne et al.
2011); however, metformin can activate AMPK
without eliciting detectable changes in AMP,
ADP, and ATP levels (Hawley et al. 2002). It
was later determined that the tumor suppressor
protein LKB1 (alternatively termed SK11) was
responsible for the activating phosphorylation
of AMPK in response to metformin (Shaw et al.
2005). Indeed, the LKB1–AMPK pathway con-
trols the expression of key hepatic gluconeo-
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genic genes by regulating the transcriptional co-
activator cAMP-response element-binding pro-
tein (CREB)-regulated transcription coactivator
2 (CRTC2, also known as TORC2) (Shaw et al.
2005), a key regulator of fasting glucose metab-
olism (Koo et al. 2005). The role of LKB1–
AMPK as mediator of metformin’s action on
hepatic gluconeogenesis and lipogenesis (Zhou
et al. 2001; Zou et al. 2004; Shaw et al. 2005) was
put to test in studies using conditional Ampk
knockout mice (Foretz et al. 2010). The observed
inhibition of glucononeogenesis, independent
of LKB1–AMPK signaling, was accompanied
by a decrease in hepatic energy state in response
to concentrations of metformin that were far
higher than those reached in hepatic portal
vein after standard treatment (Foretz et al.
2010). When therapeutic concentrations of met-
formin were tested, hepatic gluconeogenesis was
suppressed via AMPK activation (Cao et al.
2014) and formation of AMPK abg complexes
(Meng et al. 2014). The ability of AMPK to im-
prove lipid metabolism helps explain the reduc-
tion in hepatic steatosis by metformin (Woo
et al. 2014), which requires the inhibitory phos-
phorylation of acetyl-CoA carboxylase (ACC)
by AMPK, an essential step toward the lipid-
lowering and insulin-sensitizing effects of met-
formin (Fullerton et al. 2013). Moreover, met-
formin treatment decreases the levels of sterol
regulatory element-binding protein 1 (SREBP-
1), a key lipogenic transcription factor, via direct
phosphorylation by AMPK (Zhou et al. 2001; Li
et al. 2011). The regulation of lipid metabolism
by metformin also takes place by enhancing the
fatty acid b-oxidation pathway (Collier et al.
2006). New molecular mechanisms by which
metformin inhibits hepatic gluconeogenesis
have been proposed and include the ability of
the drug to inhibit adenylate cyclase through
AMP accumulation, thereby blocking the gluca-
gon-signaling pathway (Miller et al. 2013), and
direct inhibition of mitochondrial glycerophos-
phate dehydrogenase (mGPD) (Madiraju et al.
2014). In the latter study, metformin-mediated
mGPD inhibition was accompanied by lower
mitochondrial NADH/NADþ ratios, a result
inconsistent with prior reports showing that
complex I inhibition by metformin increased

this ratio (Owen et al. 2000). The different doses
and route of administration of metformin be-
tween the two studies might explain these dis-
crepancies (Baur and Birnbaum 2014).

Another potential mechanism through
which metformin inhibits hepatic gluconeogen-
esis is the down-modulated expression of genes
encoding for the gluconeogenic enzymes, phos-
phoenolpyruvate carboxykinase (PEPCK), and
glucose-6-phosphatase (G6Pase), a molecular
mechanism that requires AMPK-mediated up-
regulation of orphan nuclear receptor short het-
erodimer partner (SHP) expression (Kim et al.
2008). Additionally, metformin improves glu-
cose homeostasis by promoting an increase in
insulin-independent phosphorylation of insu-
lin receptor and insulin receptor substrates
(IRS)-1 and (IRS)-2, and subsequent transloca-
tion of glucose transporters GLUT4 to the plas-
ma membrane (Gunton et al. 2003; Yuan et al.
2003). The regulation of the incretin hormone
(e.g., glucagon-like peptide 1) and insulin secre-
tory responses with metformin treatment has
been reported (Cho and Kieffer 2011; Maida
et al. 2011; Kim et al. 2014).

Metformin also acts as an inhibitor of
mechanistic target of rapamycin complex 1
(mTORC1) through AMPK-dependent and
-independent mechanisms. AMPK activation by
metformin inhibits the protein kinase mTOR,
thus preventing the phosphorylation of down-
stream targets, including S6K, rpS6, and 4E-BP1
(Dowling et al. 2007). Inhibition of the Ras-relat-
ed GTP binding (Rag) GTPases (Kalender et al.
2010) and up-regulation of REDD1, a hypoxia-
inducible factor 1 (HIF-1) target (Shoshani et al.
2002; Ben Sahra et al. 2011), are among the
AMPK-independent mechanisms by which met-
formin inhibits mTORC1 signaling. Because of
the many faces of mTOR in life span and metab-
olism, it is intriguing that metformin may act as a
potential therapeutic drug for the treatment of
aging and age-related diseases, such as cancer
and metabolic syndrome (Johnson et al. 2013).

METFORMIN AS AN ANTI-AGING DRUG

Recent reviews have reported the geroprotec-
tive effects of biguanides, mainly metformin,
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because of its superior safety profile (Bulterijs
2011; Berstein 2012; Miles et al. 2014). As indi-
cated earlier, metformin treatment enhances
insulin sensitivity, induces glycolysis, and sup-
presses hepatic gluconeogenesis. There is some
evidence that metformin may also have cardio-
protective effects (Eurich et al. 2013; Hong et al.
2013) and contribute to the prevention of some
forms of human cancer (Cazzaniga et al. 2013;
Anisimov 2014; Laskov et al. 2014). This thera-
peutic profile of metformin supports its use for
age-related diseases and longevity. Of sig-
nificance, many studies have confirmed the pos-
itive effect of metformin on life span of worms,
flies, mice, and rats. Moreover, diabetic and car-
diovascular disease patients who are prescribed
metformin have increased rates of survival
(Scarpello 2003; Yin et al. 2013), and it was
recently proposed that metformin might pro-
mote longevity by preventing frailty in older
adults with T2DM (Wang et al. 2014). Chronic
treatment with metformin among patients with
diabetes might reduce the risk of cognitive de-
cline and dementia (Ng et al. 2014; Patrone et al.
2014) and improve survival in several types of
cancer (Greenhill 2015; Ko et al. 2015; Lin et al.
2015; Rego et al. 2015).

STUDIES IN INVERTEBRATE MODELS

Many molecular mechanisms implicated in ag-
ing and age-related diseases have been elucidat-
ed in Caenorhabditis elegans, an experimental
model widely used for the identification of
new pharmacological agents capable of delaying
the aging process (Olsen et al. 2006; Lapierre
and Hansen 2012). Metformin supplementa-
tion (50 mM dose) was found to increase the
mean life span of C. elegans by about 40% with-
out maximum life span extension. This increase
in health span had CR-like features that involved
activation of the LKB1–AMPK–SKN1 pathway
both in wild-type worms and in mutant animals
with disrupted insulin pathway (Onken and
Driscoll 2010). The increase in carbohydrate
levels in metformin-treated worms provides a
good source of ATP to better survive 2 to 3 d
of anoxia exposure through a mechanism that
depends on specific AMPK subunits (LaRue

and Padilla 2011). Active bacterial metabolism
is a critical nutritional requirement for C. ele-
gans life span (Lenaerts et al. 2008; Cabreiro and
Gems 2013). Biguanide-treated worms lived
longer (�30% increase compared with their
normal life span) only when cultured with a
Escherichia coli strain sensitive to the drug,
which contrasts with the pathogenic effects of
drug-resistant bacteria on nematode health and
aging. An alteration in microbial folate and me-
thionine metabolism helps explain the extended
longevity, which is consistent with the notion
that metformin is a CR-mimetic drug. Metfor-
min is primarily used for the management of
hyperglycemia in T2DM, which led Cabreiro
and colleagues to test whether high glucose ad-
versely affected bacterial growth inhibition by
metformin and, consequently, C. elegans lon-
gevity. The reduction in metformin-induced
life span extension in response to glucose sup-
plementation led the investigators to suggest
that altering gut microbiota might represent a
new therapeutic approach for delaying aging
and the treatment of age-related diseases (Ca-
breiro et al. 2013). Conversely, glucose restriction
extends C. elegans life span by inducing mito-
hormesis, a physiological process based on mi-
tochondrial oxidative stress (Schulz et al. 2007;
Zarse et al. 2012). Of significance, metformin-
treated nematodes showed increased respiration
and higher ROS production, consistent with the
generation of a mitohormetic signal (De Haes
et al. 2014). These investigators established that
the mitohormetic signal was propagated by the
hydrogen peroxide scavenger peroxiredoxin
PRDX-2, whose expression was up-regulated
after metformin treatment, and deletion of the
prdx2 gene led to decreased overall life expec-
tancy. C. elegans treated with metformin also
had a youthful morphology for a longer time,
which contributed to their improved health
span (De Haes et al. 2014).

The beneficial effects of metformin on the
life span of nematodes do not appear to be evo-
lutionarily conserved in Drosophila. AMPK ac-
tivation increases life span in Drosophila (Toh-
yama and Yamaguchi 2010; Stenesen et al.
2013), and metformin treatment reduces lipid
storage via robust activation of AMPK without
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promoting longevity in either male or female
flies. Perturbations in intestinal homeostasis
may be responsible for metformin toxicity in
flies when taken in high enough doses (Slack
et al. 2012) and when different antidiabetic
compounds were tested for their potential an-
tiaging properties (Jafari et al. 2007). In the lat-
ter study, metformin given in doses of 0.4, 0.8,
and 1.6 mg/ml did not decrease the mortality
rate in flies (Jafari et al. 2007). Even though the
prolongevity effects of metformin have yet to be
found, this drug can inhibit age- and oxidative-
stress-induced DNA damage and delay stem cell
aging in Drosphilia (Na et al. 2013).

STUDIES IN RODENT MODELS

C57BL/6J mice and Fisher 344 (F344) rats are
the preferred strains of rodents for use in geron-
tological studies (Anisimov et al. 2012). The
physiology of these animals, mainly at the cel-
lular level, is very similar to humans, which al-
lows the study of various compounds for their
life extending properties and the extrapolation
of these findings to human aging. The sole pub-
lication on the impact of metformin in rat lon-
gevity indicated a lack of effect of the biguanine
on mean life span and mean of the last surviv-
ing 10% male F344 rats, compelling the in-
vestigators to question the claims about met-
formin acting as a CR-mimetic drug (Smith
et al. 2010). However, this strain of rats is resis-
tant to the health benefits of CR and, thus, may
provide a partial explanation for the lack of pro-
longevity effects of metformin in F344 rats
(Smith et al. 2010). This study was rather incon-
clusive and new approaches will be required to
determine whether metformin can prolong life
span in rats.

More studies were performed in different
mouse strains using male and female animals.
In general, female mice responded better to
metformin vis-à-vis mean life span extension,
as compared with male mice and rats. Metfor-
min treatment (100 mg/kg in drinking water
for 5 consecutive days every month) signifi-
cantly increased mean (þ8%) and maximal
life span (þ9%) of short-lived, cancer-prone
female HER-2/neu transgenic mice (strain

FVB/N carrying a HER-2/neu oncogene) with
significant reduction in the mean size and accu-
mulation of mammary adenocarcinoma (Ani-
simov et al. 2005a,b). When combined with
melatonin, metformin inhibited the growth of
a HER2 mammary tumor and Ehrlich tumor
growth in mice, whereas metformin treatment
alone was shown to slow down the development
of spontaneous mammary tumors and increase
mean life span in female HER-2/neu transgenic
mice (Anisimov et al. 2010a).

The geroprotective effects of metformin and
its ability to suppress spontaneous tumorigen-
esis were also observed in other mouse strains.
Long-term treatment with metformin sig-
nificantly increased mean (þ37.9%) and max-
imum life span (þ10.3%) of female outbred
SHR mice, and slowed down the age-associated
disturbances in the estrous function without
impacting on body weight or food intake (Ani-
simov et al. 2008). However, metformin treat-
ment did not alter the incidence or mean laten-
cy of tumors, an unexpected finding that was
attributed to the inherent genetic makeup of the
SHR mouse strain. Nevertheless, this result em-
phasizes the fact that metformin can prolong
life independently of its ability to suppress can-
cer (Blagosklonny and Campisi 2008). It is in-
teresting to note that the responsiveness of fe-
male SHR mice to the prolongevity effects of
metformin was dependent of the age of the an-
imals at the onset of treatment. An increase in
the mean life span was observed when met-
formin treatment was started at the age of 3 or
9 mo (þ14.1% and þ6.1%, respectively), but
not at 15 mo of age (Anisimov et al. 2011).
Focusing the analysis on tumor-free mice only,
there was a significant increase (20.7% and
7.1%) but significant reduction (212.8%) in
mean life span when metformin administration
was initiated in 3-, 9-, and 15-mo-old animals,
respectively.

The possibility that metformin can improve
the outcomes of two neurological disorders was
investigated both in male and female mice. In
the first study, different metformin doses (0, 2,
or 5 mg/ml) were given in the drinking water of
5-wk-old transgenic mice with Huntington’s
disease (the R6/2 line with �150 glutamine
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repeats) (Ma et al. 2007). The investigators ob-
served that metformin, only at 2 mg/ml, signif-
icantly increased mean life span (þ20.1%) and
decreased the duration of hind limb clasping, a
phenotypic marker of motor defect, in male but
not female animals. In the second study, three
doses of metformin (0.5, 2, and 5 mg/ml) were
given in the drinking water of male and female
SOD1G93A mice (transgenic model of amyotro-
phic lateral sclerosis [ALS]) from 35 d of age
(Kaneb et al. 2011). Metformin treatment had
no effect on disease onset, progression or sur-
vival in male SOD1G93A mice at any dose while
eliciting a dose-dependent negative neurologi-
cal response in females owing to metformin’s
ability to inhibit estrogen production (Rice
et al. 2009). Inhibition of estrogen can accelerate
ALS progression and reduce life span in female
SOD1G93A mice (Choi et al. 2008). All treatment
groups appeared to weigh less and displayed no
significant differences in their life span, as com-
pared with control mice. However, a tendency
toward increased survival was observed with re-
duction in the dose of metformin (Kaneb et al.
2011).

The notion that the prolongevity effects of
metformin depend on the developmental stage
of the animal at the onset of treatment was fur-
ther explored in inbred male and female 129/Sv
mice (Anisimov et al. 2010b). Addition of met-
formin (100 mg/kg) in drinking water of 3-mo-
old male animals elicited a significant decrease
in mean life span (213.4%) without affecting
maximum life span. A higher incidence of chro-
mosome aberrations was also noted in metfor-
min-treated male mice. In females, metformin
did not influence maximum life span, but it
slightly increased mean and median life span
by 4.4% and 7.8%, respectively, with a sig-
nificant reduction in the total incidence of ma-
lignant tumors. However, an increase of benign
angiogenic tumors was observed in metformin-
treated female mice (Anisimov et al. 2010b).
The reasons for these gender-specific differenc-
es on metformin responses are still under study
and may be attributed to the fact that males and
females have different mechanisms of aging. Po-
tential gender-related variability in outcomes
are exemplified by the next series of reports.

Deletion of ribosomal S6 protein kinase 1
(S6K1), a component of the mTOR pathway,
significantly increased the life span of female
C57BL/6 mice (þ20.4%) without changes
in that of male animals (Selman et al. 2009).
Subcutaneous administration of metformin
(100 mg/kg body weight) in 3-, 5-, and 7-d-
old 129/Sv mouse pups caused an inversion of
the gender response to the prolongevity effects
of the drug (Anisimov et al. 2015). These inves-
tigators reported an increase in mean life span
(þ20%) and a slight maximum life span exten-
sion (þ3.5%) in males who received metformin
neonatally, while a decrease in mean and medi-
an life span (29.1% and 213.8%, respectively)
without significant differences in maximum life
span was observed when female mouse pups
were treated with metformin, as compared with
control animals. The neonatal period is critical
for the development of the hypothalamic cir-
cuits that control energy homeostasis (Contre-
ras et al. 2013) and it has been suggested that
reprogramming of these circuits, especially the
mTOR-signaling pathway, may be part of the
aging process (Blagosklonny 2013). Many as-
pects of aging are controlled by the hypothala-
mus, and alteration of hypothalamic pathways
might allow the manifestations of aging to be
modified (Zhang et al. 2013).

The long-term effects of metformin supple-
mentation (0.1% and 1% w/w) in the food was
performed in male C57BL/6 mice, starting
from the age of 54 wk for the remainder of their
lives (Martin-Montalvo et al. 2013). The mean
life span of mice supplemented with 0.1% met-
formin increased by 5.83%, while that of mice
on 1% metformin was significantly reduced
(214.4%), likely caused by renal failure. Diet
supplementation with 0.1% metformin tended
to preserve body weight with advancing age, a
condition known to increase longevity in mice
(Pearson et al. 2008). There were no significant
differences in the number of pathologies in mice
on 0.1% metformin; however, liver cancer inci-
dence was significantly reduced with 1% met-
formin supplementation (3.3% vs. 26.5% in
metformin- and vehicle-treated mice, respec-
tively) (Martin-Montalvo et al. 2013). An im-
provement in physical performance and glucose
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homeostasis combined with increased insulin
sensitivity, and a reduction in low-density lipo-
protein and cholesterol levels occurred in 0.1%
metformin-fed mice without a decrease in ca-
loric intake. By preserving overall health span in
mice, metformin may prevent the development
of metabolic syndrome through significant re-
duction in oxidative stress and chronic inflam-
mation (Martin-Montalvo et al. 2013). These
investigators reported similar gene expression
patterns in the liver (and skeletal muscle) of
mice fed 40% CR and 0.1% metformin, rein-
forcing the role of metformin as a CR mimetic
(Mercken et al. 2012; de Cabo et al. 2014). Of
significance, the prolongevity effect of metfor-
min was observed also in a second strain of male
mice (hybrid B6C3F1), with a 4.15% increase in
mean life span in response to 0.1% metformin
supplementation in the diet (Martin-Montalvo
et al. 2013).

CONCLUSIONS AND PERSPECTIVES

According to recent published data in different
animal models, metformin appears to be a
promising candidate as a life-extending drug
(Fig. 1). This compound is generally well toler-
ated and its long history of clinical use makes it
an even more attractive candidate. Besides, met-
formin is more beneficial than any other anti-
diabetic drug in reducing age-related diseases
and improving survival in diabetic patients. Al-
though the initial results are very hopeful, more
work is needed to elucidate several aspects that
still remain unclear. Many of these positive re-
sults have been obtained using doses of metfor-
min that exceed therapeutic levels in humans
(Martin-Castillo et al. 2010; Aldea et al. 2014).
Moreover, the modes of administration varied
among research teams, with the addition of
metformin either in drinking water or to the

Increases mean
life span

•

Invertebrate models Vertebrate models

Metformin
supplementation

Increases mean and maximum life span•
Has antitumorigenic properties•
Acts as caloric restriction mimetic•

Shows negative results in neurodegenerative
disorder models

•

Effects are gender dependent in some
strains, different mechanisms of aging in
female/males

•

Effects depends on the age starting the
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•

There is only one study published in rats•
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dependent
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Figure 1. Summary of the effects of metformin supplementation in invertebrate (Caenorhabditis elegans and
Drosophila melanogaster) and vertebrate models (rodents, mainly mice).
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diet. Although female mice were initially found
to show a better response to metformin supple-
mentation, recent results from our laboratory
indicated no gender or stain differences in the
actions of metformin (Martin-Montalvo et al.
2013). Therefore, to establish the molecular
mechanisms and pathways of aging, it is imper-
ative to investigate potential hormone-metfor-
min interactions in male and female animals of
varying ages, as the age of starting metformin
treatment determines whether an increase in
mean and maximum life span occurs (Menen-
dez et al. 2011; Anisimov et al. 2015). There are
not enough studies to conclude whether there
are epigenetic/genetic differences in metformin
effect on aging, life span, and tumorigenesis.
Because not all organisms studied seem to re-
spond positively to metformin supplementa-
tion (e.g., flies and rats), new approaches with
different protocols and experimental designs
would be crucial to understanding how metfor-
min might be a good geroprotector throughout
phylogeny, including in humans.

A new interesting functional interplay has
emerged during the last years that might explain
some of the molecular mechanisms through
which metformin could improve health and
life span. There is some evidence that the
anticancer protection conferred by metformin
treatment may involve the modulation of
miRNAs (Pulito et al. 2014). These small non-
coding RNAs regulate gene expression at the
posttranscriptional level and metformin mod-
ulates miRNAs that regulate apoptosis and in-
hibit proliferation (Li et al. 2012).

Despite these advances, it is the hope that
better coordination among basic and clinical
researchers and use of more sophisticated ap-
proaches will facilitate the development of new
interventions aimed at improving human
health and life span.

ACKNOWLEDGMENTS

This work is supported by the Intramural Re-
search Program of the National Institute on Ag-
ing, National Institutes of Health. CIBER de
Fisiopatologı́a de la Obesidad y Nutrición is
an initiative of ISCIII. The funding agency had

no role in study design, data collection and anal-
ysis, decision to publish, or preparation of the
manuscript.

REFERENCES

Adeyemo MA, McDuffie JR, Kozlosky M, Krakoff J, Calis
KA, Brady SM, Yanovski JA. 2014. Effects of metformin
on energy intake and satiety in obese children. Diabetes
Obes Metab 17: 363–370.

Aldea M, Craciun L, Tomuleasa C, Berindan-Neagoe I,
Kacso G, Florian IS, Crivii C. 2014. Repositioning met-
formin in cancer: Genetics, drug targets, and new ways of
delivery. Tumour Biol 35: 5101–5110.

American Diabetes Association. 2014. Standards of med-
ical care in diabetes—2014. Diabetes Care 37: S14–
S80.

Anisimov VN. 2014. Do metformin a real anticarcinogen? A
critical reappraisal of experimental data. Ann Transl Med
2: 60.

Anisimov VN, Berstein LM, Egormin PA, Piskunova TS,
Popovich IG, Zabezhinski MA, Kovalenko IG, Poroshina
TE, Semenchenko AV, Provinciali M, et al. 2005a. Effect of
metformin on life span and on the development of spon-
taneous mammary tumors in HER-2/neu transgenic
mice. Exp Gerontol 40: 685–693.

Anisimov VN, Egormin PA, Bershtein LM, Zabezhinskii
MA, Piskunova TS, Popovich IG, Semenchenko AV.
2005b. Metformin decelerates aging and development
of mammary tumors in HER-2/neu transgenic mice.
Bull Exp Biol Med 139: 721–723.

Anisimov VN, Berstein LM, Egormin PA, Piskunova TS,
Popovich IG, Zabezhinski MA, Tyndyk ML, Yurova
MV, Kovalenko IG, Poroshina TE, et al. 2008. Metformin
slows down aging and extends life span of female SHR
mice. Cell Cycle 7: 2769–2773.

Anisimov VN, Egormin PA, Piskunova TS, Popovich IG,
Tyndyk ML, Yurova MN, Zabezhinski MA, Anikin IV,
Karkach AS, Romanyukha AA. 2010a. Metformin ex-
tends life span of HER-2/neu transgenic mice and in
combination with melatonin inhibits growth of trans-
plantable tumors in vivo. Cell Cycle 9: 188–197.

Anisimov VN, Piskunova TS, Popovich IG, Zabezhinski
MA, Tyndyk ML, Egormin PA, Yurova MV, Rosenfeld
SV, Semenchenko AV, Kovalenko IG, et al. 2010b. Gender
differences in metformin effect on aging, life span and
spontaneous tumorigenesis in 129/Sv mice. Aging 2:
945–958.

Anisimov VN, Berstein LM, Popovich IG, Zabezhinski MA,
Egormin PA, Piskunova TS, Semenchenko AV, Tyndyk
ML, Yurova MN, Kovalenko IG, et al. 2011. If started
early in life, metformin treatment increases life span
and postpones tumors in female SHR mice. Aging 3:
148–157.

Anisimov VN, Zabezhinski MA, Popovich IG, Pliss GB,
Bespalov VG, Alexandrov VA, Stukov AN, Anikin IV, Ali-
mova IN, Egormin Pcapital A C, et al. 2012. Rodent
models for the preclinical evaluation of drugs suitable
for pharmacological intervention in aging. Expert Opin
Drug Discov 7: 85–95.

M.G. Novelle et al.

8 Cite this article as Cold Spring Harb Perspect Med 2016;6:a025932

w
w

w
.p

er
sp

ec
ti

ve
si

n
m

ed
ic

in
e.

o
rg



Anisimov VN, Popovich IG, Zabezhinski MA, Egormin PA,
Yurova MN, Semenchenko AV, Tyndyk ML, Panchenko
AV, Trashkov AP, Vasiliev AG, et al. 2015. Sex differences in
aging, life span and spontaneous tumorigenesis in 129/
Sv mice neonatally exposed to metformin. Cell Cycle 14:
46–55.

Bailey CJ, Turner RC. 1996. Metformin. N Engl J Med 334:
574–579.

Batandier C, Guigas B, Detaille D, El-Mir MY, Fontaine E,
Rigoulet M, Leverve XM. 2006. The ROS production
induced by a reverse-electron flux at respiratory-chain
complex 1 is hampered by metformin. J Bioenerg Bio-
membr 38: 33–42.

Baur JA, Birnbaum MJ. 2014. Control of gluconeogenesis by
metformin: Does redox trump energy charge? Cell Metab
20: 197–199.

Ben Sahra I, Regazzetti C, Robert G, Laurent K, Le March-
and-Brustel Y, Auberger P, Tanti JF, Giorgetti-Peraldi S,
Bost F. 2011. Metformin, independent of AMPK, induces
mTOR inhibition and cell-cycle arrest through REDD1.
Cancer Res 71: 4366–4372.

Berstein LM. 2012. Metformin in obesity, cancer and aging:
Addressing controversies. Aging 4: 320–329.

Blagosklonny MV. 2013. Big mice die young but large ani-
mals live longer. Aging 5: 227–233.

Blagosklonny MV, Campisi J. 2008. Cancer and aging: More
puzzles, more promises? Cell Cycle 7: 2615–2618.

Bulterijs S. 2011. Metformin as a geroprotector. Rejuvena-
tion Res 14: 469–482.

Cabreiro F, Gems D. 2013. Worms need microbes too: Mi-
crobiota, health and aging in Caenorhabditis elegans.
EMBO Mol Med 5: 1300–1310.

Cabreiro F, Au C, Leung KY, Vergara-Irigaray N, Cocheme
HM, Noori T, Weinkove D, Schuster E, Greene ND, Gems
D. 2013. Metformin retards aging in C. elegans by altering
microbial folate and methionine metabolism. Cell 153:
228–239.

Cao J, Meng S, Chang E, Beckwith-Fickas K, Xiong L, Cole
RN, Radovick S, Wondisford FE, He L. 2014. Low con-
centrations of metformin suppress glucose production
in hepatocytes through AMP-activated protein kinase
(AMPK). J Biol Chem 289: 20435–20446.

Cazzaniga M, DeCensi A, Pruneri G, Puntoni M, Bottiglieri
L, Varricchio C, Guerrieri-Gonzaga A, Gentilini OD, Pa-
gani G, Dell’Orto P, et al. 2013. The effect of metformin
on apoptosis in a breast cancer presurgical trial. Br J
Cancer 109: 2792–2797.

Chen S, Zhou J, Xi M, Jia Y, Wong Y, Zhao J, Ding L, Zhang J,
Wen A. 2013. Pharmacogenetic variation and metformin
response. Curr Drug Metab 14: 1070–1082.

Cho YM, Kieffer TJ. 2011. New aspects of an old drug:
Metformin as a glucagon-like peptide 1 (GLP-1) enhanc-
er and sensitizer. Diabetologia 54: 219–222.

Choi CI, Lee YD, Gwag BJ, Cho SI, Kim SS, Suh-Kim H.
2008. Effects of estrogen on lifespan and motor functions
in female hSOD1 G93A transgenic mice. J Neurol Sci 268:
40–47.

Collier CA, Bruce CR, Smith AC, Lopaschuk G, Dyck DJ.
2006. Metformin counters the insulin-induced suppres-
sion of fatty acid oxidation and stimulation of triacylgly-

cerol storage in rodent skeletal muscle. Am J Physiol En-
docrinol Metab 291: E182–E189.

Contreras C, Novelle MG, Leis R, Dieguez C, Skrede S, Lopez
M. 2013. Effects of neonatal programming on hypotha-
lamic mechanisms controlling energy balance. Horm
Metab Res 45: 935–944.

de Cabo R, Carmona-Gutierrez D, Bernier M, Hall MN,
Madeo F. 2014. The search for antiaging interventions:
From elixirs to fasting regimens. Cell 157: 1515–1526.

De Haes W, Frooninckx L, Van Assche R, Smolders A, De-
puydt G, Billen J, Braeckman BP, Schoofs L, Temmerman
L. 2014. Metformin promotes lifespan through mito-
hormesis via the peroxiredoxin PRDX-2. Proc Natl
Acad Sci 111: E2501–E2509.

Dhahbi JM, Mote PL, Fahy GM, Spindler SR. 2005. Identi-
fication of potential caloric restriction mimetics by mi-
croarray profiling. Physiol Genomics 23: 343–350.

Diamanti-Kandarakis E, Christakou CD, Kandaraki E,
Economou FN. 2010. Metformin: An old medication of
new fashion: Evolving new molecular mechanisms and
clinical implications in polycystic ovary syndrome. Eur J
Endocrinol 162: 193–212.

Dowling RJ, Zakikhani M, Fantus IG, Pollak M, Sonenberg
N. 2007. Metformin inhibits mammalian target of rapa-
mycin-dependent translation initiation in breast cancer
cells. Cancer Res 67: 10804–10812.

El-Mir MY, Nogueira V, Fontaine E, Averet N, Rigoulet M,
Leverve X. 2000. Dimethylbiguanide inhibits cell respira-
tion via an indirect effect targeted on the respiratory
chain complex I. J Biol Chem 275: 223–228.

Eurich DT, Weir DL, Majumdar SR, Tsuyuki RT, Johnson JA,
Tjosvold L, Vanderloo SE, McAlister FA. 2013. Compar-
ative safety and effectiveness of metformin in patients
with diabetes mellitus and heart failure: Systematic re-
view of observational studies involving 34,000 patients.
Circ Heart Fail 6: 395–402.

Fontaine E. 2014. Metformin and respiratory chain com-
plex. I: The last piece of the puzzle? Biochem J 463: e3–e5.

Foretz M, Hebrard S, Leclerc J, Zarrinpashneh E, Soty M,
Mithieux G, Sakamoto K, Andreelli F, Viollet B. 2010.
Metformin inhibits hepatic gluconeogenesis in mice in-
dependently of the LKB1/AMPK pathway via a decrease
in hepatic energy state. J Clin Invest 120: 2355–2369.

Foretz M, Guigas B, Bertrand L, Pollak M, Viollet B. 2014.
Metformin: From mechanisms of action to therapies. Cell
Metab 20: 953–966.

Fullerton MD, Galic S, Marcinko K, Sikkema S, Pulinilkun-
nil T, Chen ZP, O’Neill HM, Ford RJ, Palanivel R, O’Brien
M, et al. 2013. Single phosphorylation sites in Acc1 and
Acc2 regulate lipid homeostasis and the insulin-sensitiz-
ing effects of metformin. Nat Med 19: 1649–1654.

Glueck CJ, Fontaine RN, Wang P, Subbiah MT, Weber K, Illig
E, Streicher P, Sieve-Smith L, Tracy TM, Lang JE, et al.
2001. Metformin reduces weight, centripetal obesity, in-
sulin, leptin, and low-density lipoprotein cholesterol in
nondiabetic, morbidly obese subjects with body mass
index greater than 30. Metabolism 50: 856–861.

Gong L, Goswami S, Giacomini KM, Altman RB, Klein TE.
2012. Metformin pathways: Pharmacokinetics and phar-
macodynamics. Pharmacogenet Genomics 22: 820–827.

Metformin

Cite this article as Cold Spring Harb Perspect Med 2016;6:a025932 9

w
w

w
.p

er
sp

ec
ti

ve
si

n
m

ed
ic

in
e.

o
rg



Greenhill C. 2015. Gastric cancer: Metformin improves sur-
vival and recurrence rate in patients with diabetes and
gastric cancer. Nat Rev Gastroenterol Hepatol 12: 124.

Guarente L. 2008. Mitochondria—A nexus for aging, calorie
restriction, and sirtuins? Cell 132: 171–176.

Gunton JE, Delhanty PJ, Takahashi S, Baxter RC. 2003.
Metformin rapidly increases insulin receptor activation
in human liver and signals preferentially through insulin-
receptor substrate-2. J Clin Endocrinol Metab 88: 1323–
1332.

Hardie DG, Ross FA, Hawley SA. 2012. AMPK: A nutrient
and energy sensor that maintains energy homeostasis.
Nat Rev Mol Cell Biol 13: 251–262.

Hawley SA, Gadalla AE, Olsen GS, Hardie DG. 2002. The
antidiabetic drug metformin activates the AMP-activated
protein kinase cascade via an adenine nucleotide-inde-
pendent mechanism. Diabetes 51: 2420–2425.

Hirsch HA, Iliopoulos D, Struhl K. 2013. Metformin inhib-
its the inflammatory response associated with cellular
transformation and cancer stem cell growth. Proc Natl
Acad Sci 110: 972–977.

Hong J, Zhang Y, Lai S, Lv A, Su Q, Dong Y, Zhou Z, Tang W,
Zhao J, Cui L, et al. 2013. Effects of metformin versus
glipizide on cardiovascular outcomes in patients with
type 2 diabetes and coronary artery disease. Diabetes
Care 36: 1304–1311.

Isoda K, Young JL, Zirlik A, MacFarlane LA, Tsuboi N,
Gerdes N, Schonbeck U, Libby P. 2006. Metformin inhib-
its proinflammatory responses and nuclear factor-kB in
human vascular wall cells. Arterioscler Thromb Vasc Biol
26: 611–617.

Jafari M, Khodayari B, Felgner J, Bussel II, Rose MR, Mueller
LD. 2007. Pioglitazone: An anti-diabetic compound with
anti-aging properties. Biogerontology 8: 639–651.

Johnson SC, Rabinovitch PS, Kaeberlein M. 2013. mTOR is
a key modulator of ageing and age-related disease. Nature
493: 338–345.

Kalender A, Selvaraj A, Kim SY, Gulati P, Brule S, Viollet B,
Kemp BE, Bardeesy N, Dennis P, Schlager JJ, et al. 2010.
Metformin, independent of AMPK, inhibits mTORC1 in
a rag GTPase-dependent manner. Cell Metab 11: 390–
401.

Kaneb HM, Sharp PS, Rahmani-Kondori N, Wells DJ. 2011.
Metformin treatment has no beneficial effect in a dose-
response survival study in the SOD1G93A mouse model of
ALS and is harmful in female mice. PLoS ONE 6: e24189.

Kim YD, Park KG, Lee YS, Park YY, Kim DK, Nedumaran B,
Jang WG, Cho WJ, Ha J, Lee IK, et al. 2008. Metformin
inhibits hepatic gluconeogenesis through AMP-activated
protein kinase-dependent regulation of the orphan nu-
clear receptor SHP. Diabetes 57: 306–314.

Kim MH, Jee JH, Park S, Lee MS, Kim KW, Lee MK. 2014.
Metformin enhances glucagon-like peptide 1 via cooper-
ation between insulin and Wnt signaling. J Endocrinol
220: 117–128.

Kita Y, Takamura T, Misu H, Ota T, Kurita S, Takeshita Y,
Uno M, Matsuzawa-Nagata N, Kato K, Ando H, et al.
2012. Metformin prevents and reverses inflammation in
a non-diabetic mouse model of nonalcoholic steatohe-
patitis. PLoS ONE 7: e43056.

Ko EM, Sturmer T, Hong JL, Castillo WC, Bae-Jump V, Funk
MJ. 2015. Metformin and the risk of endometrial cancer:
A population-based cohort study. Gynecol Oncol 136:
341–347.

Koo SH, Flechner L, Qi L, Zhang X, Screaton RA, Jeffries S,
Hedrick S, Xu W, Boussouar F, Brindle P, et al. 2005. The
CREB coactivator TORC2 is a key regulator of fasting
glucose metabolism. Nature 437: 1109–1111.

Lapierre LR, Hansen M. 2012. Lessons from C. elegans: Sig-
naling pathways for longevity. Trends Endocrinol Metab
23: 637–644.

LaRue BL, Padilla PA. 2011. Environmental and genetic pre-
conditioning for long-term anoxia responses requires
AMPK in Caenorhabditis elegans. PLoS ONE 6: e16790.

Laskov I, Drudi L, Beauchamp MC, Yasmeen A, Ferenczy A,
Pollak M, Gotlieb WH. 2014. Anti-diabetic doses of met-
formin decrease proliferation markers in tumors of pa-
tients with endometrial cancer. Gynecol Oncol 134: 607–
614.

Lenaerts I, Walker GA, Van Hoorebeke L, Gems D, Vanfle-
teren JR. 2008. Dietary restriction of Caenorhabditis ele-
gans by axenic culture reflects nutritional requirement for
constituents provided by metabolically active microbes. J
Gerontol A Biol Sci Med Sci 63: 242–252.

Li Y, Xu S, Mihaylova MM, Zheng B, Hou X, Jiang B, Park O,
Luo Z, Lefai E, Shyy JY, et al. 2011. AMPK phosphorylates
and inhibits SREBP activity to attenuate hepatic steatosis
and atherosclerosis in diet-induced insulin-resistant
mice. Cell Metab 13: 376–388.

Li W, Yuan Y, Huang L, Qiao M, Zhang Y. 2012. Metformin
alters the expression profiles of microRNAs in human
pancreatic cancer cells. Diabetes Res Clin Pract 96: 187–
195.

Lin JJ, Gallagher EJ, Sigel K, Mhango G, Galsky MD, Smith
CB, LeRoith D, Wisnivesky JP. 2015. Survival of patients
with stage IV lung cancer with diabetes treated with met-
formin. Am J Respir Crit Care Med 191: 448–454.

Logie L, Harthill J, Patel K, Bacon S, Hamilton DL, Macrae
K, McDougall G, Wang HH, Xue L, Jiang H, et al. 2012.
Cellular responses to the metal-binding properties of
metformin. Diabetes 61: 1423–1433.

Ma TC, Buescher JL, Oatis B, Funk JA, Nash AJ, Carrier RL,
Hoyt KR. 2007. Metformin therapy in a transgenic mouse
model of Huntington’s disease. Neurosci Lett 411: 98–
103.

Madiraju AK, Erion DM, Rahimi Y, Zhang XM, Braddock
DT, Albright RA, Prigaro BJ, Wood JL, Bhanot S, Mac-
Donald MJ, et al. 2014. Metformin suppresses gluconeo-
genesis by inhibiting mitochondrial glycerophosphate
dehydrogenase. Nature 510: 542–546.

Mahmood K, Naeem M, Rahimnajjad NA. 2013. Metfor-
min: The hidden chronicles of a magic drug. Eur J Intern
Med 24: 20–26.

Maida A, Lamont BJ, Cao X, Drucker DJ. 2011. Metformin
regulates the incretin receptor axis via a pathway depen-
dent on peroxisome proliferator-activated receptor-a in
mice. Diabetologia 54: 339–349.

Martin-Castillo B, Vazquez-Martin A, Oliveras-Ferraros C,
Menendez JA. 2010. Metformin and cancer: Doses,
mechanisms and the dandelion and hormetic phenom-
ena. Cell Cycle 9: 1057–1064.

M.G. Novelle et al.

10 Cite this article as Cold Spring Harb Perspect Med 2016;6:a025932

w
w

w
.p

er
sp

ec
ti

ve
si

n
m

ed
ic

in
e.

o
rg



Martin-Montalvo A, Mercken EM, Mitchell SJ, Palacios HH,
Mote PL, Scheibye-Knudsen M, Gomes AP, Ward TM,
Minor RK, Blouin MJ, et al. 2013. Metformin improves
healthspan and lifespan in mice. Nat Commun 4: 2192.

Menendez JA, Cufi S, Oliveras-Ferraros C, Vellon L, Joven J,
Vazquez-Martin A. 2011. Gerosuppressant metformin:
Less is more. Aging 3: 348–362.

Meng S, Cao J, He Q, Xiong L, Chang E, Radovick S, Won-
disford FE, He L. 2014. Metformin activates AMP-acti-
vated protein kinase by promoting formation of the abg
heterotrimeric complex. J Biol Chem 290: 3793–3802.

Mercken EM, Carboneau BA, Krzysik-Walker SM, de Cabo
R. 2012. Of mice and men: The benefits of caloric restric-
tion, exercise, and mimetics. Ageing Res Rev 11: 390–398.

Miles JM, Rule AD, Borlaug BA. 2014. Use of metformin in
diseases of aging. Curr Diab Rep 14: 490.

Miller RA, Chu Q, Xie J, Foretz M, Viollet B, Birnbaum MJ.
2013. Biguanides suppress hepatic glucagon signalling by
decreasing production of cyclic AMP. Nature 494: 256–
260.

Na HJ, Park JS, Pyo JH, Lee SH, Jeon HJ, Kim YS, Yoo MA.
2013. Mechanism of metformin: Inhibition of DNA
damage and proliferative activity in Drosophila midgut
stem cell. Mech Ageing Dev 134: 381–390.

Ng TP, Feng L, Yap KB, Lee TS, Tan CH, Winblad B. 2014.
Long-term metformin usage and cognitive function
among older adults with diabetes. J Alzheimers Dis 41:
61–68.

Olsen A, Vantipalli MC, Lithgow GJ. 2006. Using Caeno-
rhabditis elegans as a model for aging and age-related
diseases. Ann NY Acad Sci 1067: 120–128.

Onken B, Driscoll M. 2010. Metformin induces a dietary
restriction-like state and the oxidative stress response to
extend C. elegans healthspan via AMPK, LKB1, and SKN-
1. PLoS ONE 5: e8758.

Owen MR, Doran E, Halestrap AP. 2000. Evidence that met-
formin exerts its anti-diabetic effects through inhibition
of complex 1 of the mitochondrial respiratory chain.
Biochem J 348: 607–614.

Patrone C, Eriksson O, Lindholm D. 2014. Diabetes drugs
and neurological disorders: New views and therapeutic
possibilities. Lancet Diabetes Endocrinol 2: 256–262.

Pawlyk AC, Giacomini KM, McKeon C, Shuldiner AR,
Florez JC. 2014. Metformin pharmacogenomics: Current
status and future directions. Diabetes 63: 2590–2599.

Pearson KJ, Baur JA, Lewis KN, Peshkin L, Price NL, Labin-
skyy N, Swindell WR, Kamara D, Minor RK, Perez E, et al.
2008. Resveratrol delays age-related deterioration and
mimics transcriptional aspects of dietary restriction
without extending life span. Cell Metab 8: 157–168.

Pernicova I, Korbonits M. 2014. Metformin—Mode of ac-
tion and clinical implications for diabetes and cancer. Nat
Rev Endocrinol 10: 143–156.

Pulito C, Donzelli S, Muti P, Puzzo L, Strano S, Blandino G.
2014. microRNAs and cancer metabolism reprogram-
ming: The paradigm of metformin. Ann Transl Med 2: 58.

Rego DF, Pavan LM, Elias ST, De Luca Canto G, Guerra EN.
2015. Effects of metformin on head and neck cancer: A
systematic review. Oral Oncol 51: 416–422.

Rice S, Pellatt L, Ramanathan K, Whitehead SA, Mason HD.
2009. Metformin inhibits aromatase via an extracellular

signal-regulated kinase-mediated pathway. Endocrinology
150: 4794–4801.

Scarpello JH. 2003. Improving survival with metformin:
The evidence base today. Diabetes Metab 29: 6S36–6S43.

Schulz TJ, Zarse K, Voigt A, Urban N, Birringer M, Ristow
M. 2007. Glucose restriction extends Caenorhabditis ele-
gans life span by inducing mitochondrial respiration and
increasing oxidative stress. Cell Metab 6: 280–293.

Selman C, Tullet JM, Wieser D, Irvine E, Lingard SJ, Choud-
hury AI, Claret M, Al-Qassab H, Carmignac D, Rama-
dani F, et al. 2009. Ribosomal protein S6 kinase 1 signal-
ing regulates mammalian life span. Science 326: 140–144.

Shaw RJ, Lamia KA, Vasquez D, Koo SH, Bardeesy N, De-
pinho RA, Montminy M, Cantley LC. 2005. The kinase
LKB1 mediates glucose homeostasis in liver and thera-
peutic effects of metformin. Science 310: 1642–1646.

Shoshani T, Faerman A, Mett I, Zelin E, Tenne T, Gorodin S,
Moshel Y, Elbaz S, Budanov A, Chajut A, et al. 2002.
Identification of a novel hypoxia-inducible factor 1-re-
sponsive gene, RTP801, involved in apoptosis. Mol Cell
Biol 22: 2283–2293.

Slack C, Foley A, Partridge L. 2012. Activation of AMPK by
the putative dietary restriction mimetic metformin is
insufficient to extend lifespan in Drosophila. PLoS ONE
7: e47699.

Smith DL Jr, Elam CF Jr, Mattison JA, Lane MA, Roth GS,
Ingram DK, Allison DB. 2010. Metformin supplementa-
tion and life span in Fischer-344 rats. J Gerontol A Biol Sci
Med Sci 65: 468–474.

Spindler SR. 2006. Use of microarray biomarkers to identify
longevity therapeutics. Aging Cell 5: 39–50.

Stenesen D, Suh JM, Seo J, Yu K, Lee KS, Kim JS, Min KJ,
Graff JM. 2013. Adenosine nucleotide biosynthesis and
AMPK regulate adult life span and mediate the longevity
benefit of caloric restriction in flies. Cell Metab 17: 101–
112.

Stephenne X, Foretz M, Taleux N, van der Zon GC, Sokal E,
Hue L, Viollet B, Guigas B. 2011. Metformin activates
AMP-activated protein kinase in primary human hepa-
tocytes by decreasing cellular energy status. Diabetologia
54: 3101–3110.

Stevanovic D, Janjetovic K, Misirkic M, Vucicevic L, Su-
marac-Dumanovic M, Micic D, Starcevic V, Trajkovic V.
2012. Intracerebroventricular administration of metfor-
min inhibits ghrelin-induced hypothalamic AMP-kinase
signalling and food intake. Neuroendocrinology 96: 24–
31.

Tohyama D, Yamaguchi A. 2010. A critical role of SNF1A/
dAMPKa (Drosophila AMP-activated protein kinase a) in
muscle on longevity and stress resistance in Drosophila
melanogaster. Biochem Biophys Res Commun 394: 112–
118.

Wang CP, Lorenzo C, Espinoza SE. 2014. Frailty attenuates
the impact of metformin on reducing mortality in older
adults with type 2 diabetes. J Endocrinol Diabetes Obes 2:
1030.

Woo SL, Xu H, Li H, Zhao Y, Hu X, Zhao J, Guo X, Guo T,
Botchlett R, Qi T, et al. 2014. Metformin ameliorates
hepatic steatosis and inflammation without altering ad-
ipose phenotype in diet-induced obesity. PLoS ONE 9:
e91111.

Metformin

Cite this article as Cold Spring Harb Perspect Med 2016;6:a025932 11

w
w

w
.p

er
sp

ec
ti

ve
si

n
m

ed
ic

in
e.

o
rg



Yin M, Zhou J, Gorak EJ, Quddus F. 2013. Metformin is
associated with survival benefit in cancer patients with
concurrent type 2 diabetes: A systematic review and
meta-analysis. Oncologist 18: 1248–1255.

Yuan L, Ziegler R, Hamann A. 2003. Metformin modulates
insulin post-receptor signaling transduction in chroni-
cally insulin-treated Hep G2 cells. Acta Pharmacol Sin
24: 55–60.

Zarse K, Schmeisser S, Groth M, Priebe S, Beuster G,
Kuhlow D, Guthke R, Platzer M, Kahn CR, Ristow M.
2012. Impaired insulin/IGF1 signaling extends life
span by promoting mitochondrial L-proline catabolism
to induce a transient ROS signal. Cell Metab 15: 451–
465.

Zhang G, Li J, Purkayastha S, Tang Y, Zhang H, Yin Y, Li B,
Liu G, Cai D. 2013. Hypothalamic programming of sys-
temic ageing involving IKK-b, NF-kB and GnRH. Nature
497: 211–216.

Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu
M, Ventre J, Doebber T, Fujii N, et al. 2001. Role of AMP-
activated protein kinase in mechanism of metformin ac-
tion. J Clin Invest 108: 1167–1174.

Zou MH, Kirkpatrick SS, Davis BJ, Nelson JS, Wiles WGt,
Schlattner U, Neumann D, Brownlee M, Freeman MB,
Goldman MH. 2004. Activation of the AMP-activated
protein kinase by the anti-diabetic drug metformin in
vivo. Role of mitochondrial reactive nitrogen species. J
Biol Chem 279: 43940–43951.

M.G. Novelle et al.

12 Cite this article as Cold Spring Harb Perspect Med 2016;6:a025932

w
w

w
.p

er
sp

ec
ti

ve
si

n
m

ed
ic

in
e.

o
rg



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


