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Mechanical forces shape biological tissues. They are the effectors of the developmental
programs that orchestrate morphogenesis. A lot of effort has been devoted to understanding
morphogenetic processes in mechanical terms. In this review, we focus on the interplay
between tissue mechanics and growth. We first describe how tissue mechanics affects
growth, by influencing the orientation of cell divisions and the signaling pathways that
control the rate of volume increase and proliferation. We then address how the mechanical
state of a tissue is affected by the patterns of growth. The forward and reverse interactions
between growth and mechanics must be investigated in an integrative way if we want to
understand how tissues grow and shape themselves. To illustrate this point, we describe
examples in which growth homeostasis is achieved by feedback mechanisms that use me-
chanical forces.

An essential feature of developing tissues is
their ability to pattern a field of cells into

distinct regions with different properties—be
it the expression of genes that commit cells to
a specific fate, the regulation of the cytoskeleton,
or the level of proliferation, to name a few ex-
amples. Tissue patterning is controlled by
biochemical pathways that specify cell identity
based on signals produced and exchanged by
cells in the tissue. Such signals may be working
at short or long range. A classic example of
long-range signaling is achieved by so-called
morphogens that form a concentration gradient
of activity. Morphogens are widespread in ani-
mals and control cell fate and tissue growth
(reviewed in Wartlick et al. 2011).

How cells read these instructions is still
debated. Cells may measure the local concen-
tration, spatial, or even temporal variations (re-

viewed in Day and Lawrence 2000; Wartlick and
González-Gaitán 2011; Restrepo et al. 2014). A
morphogen can be a transcription factor in a
fertilized egg, such as Drosophila bicoid (re-
viewed in Porcher and Dostatni 2010), but
more often it is a secreted factor, such as TGF-
b, Wingless, or Sonic hedgehog (reviewed in
McDowell and Gurdon 1999; Baena-Lopez et
al. 2012; Kicheva et al. 2012). Importantly, mor-
phogens not only pattern tissues, but also pro-
mote their growth (Wartlick and González-Gai-
tán 2011; Baena-Lopez et al. 2012). For many
years, the prevailing view regarding the control
of size and shape of tissues was a strict biochem-
ical control by morphogens. Genetic networks
define the localized expression of morphogens,
which spread from their source to instruct cell
growth and proliferation. Most of our efforts to
understand morphogenesis have thus concen-
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trated on the signaling pathways responsible
for pattern formation, and the “form-generat-
ing function” of morphogens is, thus, purely
biochemical. In this context, it is unclear how
the shape and size of a tissue arises in mechan-
ical terms. It is important also to consider that
cells must cope with the mechanical constraints
that are inherent to all tissues. These mechanical
constraints restrict what the cells can do in re-
sponse to morphogens. Mechanical forces make
cells move or change shape. They are the final
effectors of morphogenesis.

Our understanding of how forces interact
with patterning signals has considerably im-
proved over the last few years. Which cellular
processes fuel the emergence of forces and how
the forces that are generated then shape tissues
at the multicellular level has recently been in-
tensely investigated. These investigations, fos-
tered by improvement in live-imaging technol-
ogy (Mavrakis et al. 2010; Supatto et al. 2011;
Keller 2013), showed how the synergy between
cytoskeletal elements and adhesion complexes
give rise to morphogenetic processes, such as
Drosophila gastrulation and metamorphosis
(Bertet et al. 2004; Zallen and Wieschaus 2004;
Aigouy et al. 2010; Bosveld et al. 2012), zebrafish
gastrulation (Behrndt et al. 2012; Maı̂tre et al.
2012), or chick neural-tube closure (Nishimura
et al. 2012).

In this review, we address how tissue me-
chanics may impact morphogenesis in the con-
text of growing tissues and, conversely, how pat-
terns of growth can affect tissue mechanics. As
we discuss below, the developmental mechanics
of growing tissues is less well understood than
nongrowing ones. The first reason for this is
technical. It is difficult to observe growing tis-
sues. The second reason is more conceptual.
There is something specific about the mechan-
ics of growing bodies—new material is added
from within—that makes it difficult to appre-
hend. The theory of elasticity of growing media
is very recent (Rodriguez et al. 1994) compared
with that of nongrowing ones, which dates back
to the 19th century (reviewed by Todhunter
2014). First, we address how mechanical forces
can affect the way a tissue grows, altering both
volume increase and proliferation. Second, we

address the reverse interactions and discuss
how the patterns of growth and proliferation
of tissues are an integral part of their mechanics,
and thereby contribute to their morphogenesis.
In our concluding remarks, we stress how one
should integrate both these forward and reverse
interactions to understand how tissues shape
themselves.

THE IMPACT OF TISSUE MECHANICS
ON GROWTH

Within a tissue, each cell is embedded in a me-
chanical environment, and is constantly ex-
periencing forces from its neighbors and the
extracellular matrix (ECM). Each cell also par-
ticipates in the local force balance, either pas-
sively, by imposing a viscoelastic resistance to
external force, or actively, via the constitutive
tension of its cytoskeleton, associated with the
contractile activity of the motor protein myosin
II. In this section, we discuss how these different
aspects of tissue mechanics impact on growth.
By growth, we refer here to the collective effects
of volume increase and proliferation. Growth
is generally associated with cell divisions; it is,
thus, an oriented process and we will treat both
the cellular processes that orient cell divisions
and the pathways that underlie mass increase.

Growth Orientation

When the distribution of forces exerted on a cell
is anisotropic, the cell deviates from its isotropic
rest shape. This mechanical asymmetry can po-
larize the orientation of cell and tissue growth
via the orientation of cell divisions. Indeed, as
mechanical stress stretches cells, it can polarize
the axis along which they divide (Fig. 1A). There
is an important body of literature, dating back
to the work of Hertwig in the 19th century, that
relates the orientation of divisions to the main
geometrical axis of cells (for a historical per-
spective, see Minc and Piel 2012).

Micropatterning approaches allow cells to
be cultured with a controlled geometry. Inves-
tigations on cells cultured on patterns of ECM
showed that force distribution more than cell
geometry is an essential component of spindle
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alignment with the main axis of cells. Cells
round up during division, leading to an appar-
ent loss of the geometrical information born
in the initially polarized shape. However, in cells
cultured on geometric patterns of adhesion,
actomyosin-rich retraction fibers connect the
rounded cortex to adhesion sites (Fig. 1B). The
net force of these fibers on the rounded cortex
orients the spindle (Théry et al. 2007) in a way
that is sensitive to the geometry of adhesion
more than the actual shape of the cell (Théry
et al. 2005) and to external forces via a puta-
tive mechanosensitive reinforcement (Fig. 1B0)
(Fink et al. 2011). The link between retraction
fibers and the spindle seem to be provided by
subcortical actin structures that exert a pulling
force on astral microtubules (Fink et al. 2011).

In vivo observations have linked mechanical
stress to altered cell shape and spindle align-
ment in Drosophila wings (Aigouy et al. 2010;
LeGoff et al. 2013) and in zebrafish epiboly
(Campinho et al. 2013), supporting the find-
ings that cell shape and topology play an impor-
tant role for spindle orientation (Gibson et al.
2011). Minc et al. (2011) altered the geometry of
early sea urchin embryos and observed that cell
shape dictates the spindle orientation. It seems
to be the geometry of the cell, not the direct
mechanical stress via intercellular adhesion or
coupling to the ECM that orients the spindle
(Fig. 1C). A role for astral microtubule sensing
the geometry of the cell has been proposed.
These microtubules attach to the cell cortex at
the periphery and exert a pulling force on the
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Figure 1. Orienting cell divisions. (A) The existence of external forces in a tissue induces internal stresses that
deform cells. This deformation may then orient cells divisions. (B) In cells adhering to a substrate, experiments
on isolated cells cultured on patterned substrates have shown that the rounded cell body may keep the memory
of its adherent geometry through actin-rich retraction fibers, which pull on the cell cortex. (B0) Somehow,
the pulling forces are transmitted to the astral microtubules, which results in orienting the mitotic spindle. (C)
Observations of unperturbed embryos, as well as recent experiments in confined geometries, have highlighted
how cells sense their shape to orient the mitotic spindle. (C0) The shape of cells can be sensed by astral
microtubules, which extend to the cell cortex and generate a global torque and force to orient the centrosomes
and nucleus, or spindle, depending on whether the alignment occurs before or after nuclear envelope break-
down.
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centrosome, thus orienting the nucleus of the
cell about to divide. One way the cell can sense
its geometry is if the pulling force of a microtu-
bule increases with increasing length.

Whether cells orient their spindle by sensing
their shape or of cell/ECM tensions is still an
open question. In vivo approaches suffer from
the difficulty to measure strains and stresses in
a living organism (see below), whereas single-
cell culture approaches have yet to show that
retraction fibers are a universal feature of tissues
in vivo.

Rate of Growth

Mechanical forces can also affect the rate at
which cells grow. More than 30 years ago, Folk-
man and Moscona (1978) found a correlation
between the size and shape of cells and prolif-
eration. Attaching cells to substrates of varying
adhesiveness, they could control the shape of
cells. They found that the larger the cells, the
larger their rate of division. This result has been
confirmed by more specific tuning of cell size
and shape using microprinting techniques
(Singhvi et al. 1994; Chen et al. 1997). In these
studies, which pioneered microprinting tech-
nology in cell biology, cell shape/size was tuned
separately from interactions with the ECM. For
example, a cell could be forced to adopt a small
adherent size, while still maintaining a high
adhesiveness and cell–ECM interactions. They
showed that it is the size of cells, not necessar-
ily interactions with ECM, that promotes cell
growth.

Forcing individual cultured cells to specific
shapes may seem unphysiological. But the im-
pact of mechanics on growth was also shown in
more natural environments. In tissues, cells are
mechanically connected to the ECM via integ-
rin-mediated adhesion. A striking demonstra-
tion of mechanical control over proliferation
came from 3D cultures of mammary epithelial
cells (MEC) in which cells organize into 3D ep-
ithelial tubes or spheres known as acini. These
acini grow to a larger extent when grown on a
stiff ECM (Paszek et al. 2005). Cells not only
“sense” forces from the ECM, they also “sense”
forces coming from their neighbors via cad-

herin-mediated adhesion sites. When epithelial
cells are grown in vitro at sufficiently high den-
sity, they create a confluent monolayer of cells
that are mechanically interconnected at adhe-
rens junctions. In these connected cells, the ac-
tomyosin cortex underlying adherens junctions
is constitutively contractile, which leads to the
emergence of mechanical stress in the tissue.
Nelson et al. grew such epithelial monolayers
in different geometrical patterns. Cells at differ-
ent positions of the pattern—for example, a
corner of a square versus its center—experi-
ence a different distribution of forces from their
neighbors, leading to a spatial pattern of me-
chanical stress (Nelson et al. 2005). They found
a systematic correlation between proliferation
and mechanical stress—stretched regions pro-
liferated more than unstretched ones.

Mechanical Pathways

It, therefore, seems that cells are mechanosensi-
tive; they can probe their mechanical environ-
ment. What are the molecular pathways un-
derlying mechanosensation and its effect on
cell growth and proliferation? Several biochem-
ical pathways mediate the link between forces
and growth, and they share the following prop-
erty. The first relay of a mechanical signal is
cytoskeletal reorganization (Fig. 2A,B). Cells
can sense forces exerted by the ECM through
the mechanosensitive activation of focal adhe-
sion sites (for a review, see Roca-Cusachs et al.
2012), which leads to an increase of the local
actomyosin contractility. This provides a way
to sense the stiffness of the ECM. A basal con-
tractile activity of the actomyosin connected
to focal adhesions leads to a constant mechan-
ical tug of war with the ECM, providing cells
with a way to “feel” the compliance of their
environment. Whether probing a force exerted
by neighbors and transmitted by the ECM, or
just ECM stiffness itself, cytoskeletal remodel-
ing is a central relay of mechanical signaling.
At the molecular level, force sensing at focal
adhesions has been shown to rely on vinculin/
talin interactions (del Rio et al. 2009) and
p130Cas (Sawada et al. 2006). Sensing of forces
is also at play at adherens junctions. E-cadherin-
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based adhesion connects the tensile cortices of
adjacent cells (Maı̂tre et al. 2012). This is per-
formed through direct interactions between the
actomyosin cortex and E-cadherin complexes
(Cavey et al. 2008; le Duc et al. 2010; Smutny
et al. 2010; Borghi et al. 2012). One can expect
that forces control the cytoskeleton at adherens
junctions. The reason for this is that mechanical
forces play an active role in maturation of cad-
herin complexes (le Duc et al. 2010; Liu et al.
2010; Buckley et al. 2014), which are organizers
of actomyosin assembly (Verma et al. 2012), and
control Rho signaling, a regulator of the cyto-
skeleton (Wildenberg et al. 2006; Yamada and
Nelson 2007; Ratheesh et al. 2012). Putative mo-
lecular transducer of forces are a-catenin (Yo-
nemura et al. 2010) and vinculin (le Duc et al.
2010; Yonemura et al. 2010). Evidence for a mo-
lecular sensor of forces at adherens junction was
recently found in the Drosophila wing primor-
dium (Rauskolb et al. 2014). The Ajuba LIM
protein Jub seems to relay mechanical informa-
tion from a-catenin to downstream signaling
(see below).

Downstream from mechanical signaling are
transcription factors that drive expression of
genes controlling cell growth and proliferation
(Fig. 2C). One of the strongest candidates for
a link between mechanics and the regulation
of growth is the mammalian transcriptional
coactivator YAP/TAZ—ortholog of the gene
Yorkie (Yki) in Drosophila. The canonical path-
way upstream of YAP/TAZ-Yki is the Hippo
tumor-suppressor pathway, which promotes
phosphorylation of YAP/TAZ-Yki leading to
its retention in the cell cytosol and degradation.
In Drosophila, loss of Hippo signaling translo-
cates Yki to the nucleus, where its transcrip-
tional activity induces the expression of genes
controlling growth and proliferation, such as
the cell-cycle regulator cyclin E (Tapon et al.
2002), the cell-death inhibitor Diap1 (Wu
et al. 2003), the cell-growth promoter dMyc
(Neto-Silva et al. 2010; Ziosi et al. 2010), and
the bantam microRNA (Nolo et al. 2006;
Thompson and Cohen 2006).

Evidence for a role of Yap/TAZ in mechano-
transduction came from MEC and mouse
embryonic fibroblasts grown on stiff ECM, or

forced to adopt a stretched geometry. Both
treatments induced translocation of YAP/TAZ
to the nucleus (Dupont et al. 2011; Wada et al.
2011). Interestingly, this effect can, in some in-
stances, be independent of Hippo signaling but
requires cytoskeletal stiffening via RhoA activity
(Dupont et al. 2011). Complementary investi-
gation in Drosophila showed how increasing the
level of polymerized actin—a treatment remi-
niscent of the cytoskeletal reorganization in
stretched cells—induces Yki activation and an
overgrowth phenotype (Fernández et al. 2011;
Sansores-Garcia et al. 2011). A recent report
showed that modulation of cytoskeletal tension
by alterations of myosin II activity also resulted
in wing growth phenotype (Rauskolb et al.
2014). Increased tension also resulted in Yki
activation to promote growth. These findings
altogether suggested a link between YAP/TAZ-
Yki mechanics and proliferation. The pieces of
the puzzle were reassembled in the context of
contact inhibition of proliferation (CIP) of hu-
man MEC. Aragona et al. (2013) showed how
CIP, which corresponds to a slowing down of
proliferation as cell density increases in a cul-
ture, is dependent on both a reduced stretching
of cells by their environment, and an increased
severing of F-actin. Using tissue-engineering
approaches and drug treatments, they delineat-
ed the hierarchy of the YAP/TAZ mechanical
pathway. Cell stretching first controls tension
of the cytoskeleton by a reduction of F-actin
capping/severing activity. This then promotes
translocation of YAP/TAZ to the nucleus and
transcriptional activity to induce growth. In the
context of CIP, this explains how increased cell
density leads to growth arrest (Aragona et al.
2013). Interestingly, Aragona and colleagues
observed this hierarchy between mechanics,
the cytoskeleton and YAP/TAZ both when the
stress came from cell–ECM interactions (play-
ing with ECM stiffness and stretch) and when
it was intercellular forces at apical junctions
that activated YAP/TAZ. How is information
relayed from cytoskeletal tension to Yki activity?
In Drosophila wings, Rauskolb et al. (2014) have
recently shown that the Ajuba LIM protein Jub
negatively regulates Warts—a protein kinase
and core component of the Hippo pathway—
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in a tension-dependent manner. This results in
increased Yki activity and promotes growth
when cells are stretched. Yin et al. (2013) also
showed how actin remodeling modulates the
Hippo core components via the upstream reg-
ulator Merlin-NF2. These two studies contrast
with the work on MEC cells, in which YAP/TAZ
activation by tension is independent of LATS,
the ortholog of Warts (Dupont et al. 2011).
Mouse fibroblast and epithelial cells do trans-
duce mechanical signals through LATS (Wada
et al. 2011). Further studies will thus need to
address the exact mechanism by which forces
control Yki-YAP/TAZ activity in different sys-
tems. Note that a role for cadherin-based adhe-
sion directly regulating the Hippo pathway, not
via mechanics and the cytoskeleton, to control
YAP/TAZ-mediated proliferation has also been
reported (Kim et al. 2011).

Another mechanical pathway that may con-
trol growth is that which controls activity of
serum response factor (SRF). SRF is a transcrip-
tion factor implicated in the regulation of many
immediate early genes, providing control over
the cytoskeleton, adhesion, and proliferation.
SRF activity is regulated by two signaling path-
ways: one involves actin dynamics and is Rho-
dependent, and the other is Ras dependent (for
a review, see Posern and Treisman 2006). In the
Rho-dependent branch, the myocardin-related
transcription factor (MRTF)-A (also known as
MAL or MLK1), binds to G-actin. Formation
of F-actin, at the expense of the G-actin pool,

frees MRTF-A, which then translocates to the
nucleus and activates SRF transcriptional activ-
ity (Miralles et al. 2003). This provides a means
for mechanical stimulations to induce tran-
scriptional activity via the cytoskeleton (Fig.
2B,C). In human lung fibroblasts, increased
matrix stiffness leads to actin polymerization,
and subsequent translocation of MRTF/MAL/
MLK1 to the nucleus to promote SRF activa-
tion (Huang et al. 2012). Human epidermal
stem cells grown on micropatterned islands
differentiate at a higher frequency when forced
to adopt a rounded, constrained geometry. This
differentiation is the result of changes in the
actin cytoskeleton, which promote SRF activa-
tion via MRTF/MAL/MLK1 (Connelly et al.
2010). During Drosophila oogenesis, the inva-
sive movement of border cells requires MAL-D
to promote strengthening of the cytoskeleton
(Somogyi and Rørth 2004). There, MAL-D
seems to be activated by cell stretching on initi-
ation of movement. Although not addressed
in these investigations, SRF might mediate a
mechanical effect on growth and proliferation
because this pathway is known to modulate
proliferation (Miano 2003).

Not all putative mechanosensitive path-
ways rely on actin dynamics (Fig. 2D). Wozniak
et al. identified the Ras-dependent branch of
SRF, which does not rely on actin dynamics, as
another mechanosensitive pathway (Wozniak
et al. 2012). On conditions of high adhesion
with the ECM, JNK promotes transcription of

Figure 2. (Continued) (A) Force generation and force transmission occur at apical adherens junctions (left) and
basal focal adhesion sites (right). At apical junctions, the contractile actomyosin cortices of two neighboring
cells are mechanically coupled via the E-cadherin adhesion complex. The adaptor complex, which links E-
cadherin to the cortex, includes proteins, such as vinculin, which is mechanosensitive. At basal sites of
adhesion, force balance between the contractile actomyosin and the ECM is sensed at sites of focal adhesion,
which involves integrin dimers and associated proteins coupling to actin filaments. (B) Force sensation is then
converted into a structural reorganization of the actin cytoskeleton, increased external force promoting
polymerized actin. (C) The polymerized state of the actin cytoskeleton is then sensed by the transcription
activators YAP/TAZ-Yki, a downstream component from the Hippo pathway– or myocardin-related tran-
scription factor (MRTF)-A, a component of the serum response factor (SRF) pathway, which both shuttle to
the nucleus to promote growth. (D) Mechanical signaling can also affect growth in the absence of cytoskeletal
reorganization. Force sensation at focal adhesions leads to the phosphorylation of the focal adhesion kinase
(FAK), which induces expression of cyclin D. The SRF pathway has also been proposed to sense the level of
adhesion with the ECM in an actin-independent way, via Jun amino-terminal kinase (JNK) and p38. Also
involved in this regulation and shown on the figure are the SRF cofactors (Sap and Net) at the SRF-binding
consensus element (CArG).
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SRF target genes, leading to enhanced prolifer-
ation. On low adhesion, p38 activity leads to the
inhibition of SRF target genes, and subsequent
reduction of proliferation. Focal adhesion ki-
nase (FAK) transmits readout of matrix stiffness
at the level of integrin-mediated focal adhesion.
Although force sensing involves actomyosin as
described above, FAK signaling is directly con-
verted into changes in the level of cyclin D1 in
MEC and vascular smooth muscle cells, with-
out passing through the cytoskeletal remodel-
ing relay (Klein et al. 2009).

Target of Mechanical Signal: Growth
or Cell Cycle?

The cell-cycle machinery is not a clock that cy-
cles with a fixed period. The final readout that
dictates the phase of the cycle is Cdk activity
(Coudreuse and Nurse 2010), which is modu-
lated by cyclins. A lot of variability in the rate
of cell-cycle progression occurs during the G1

phase, which follows cytokinesis, precedes the
S phase of genome duplication, and is a time for
sensing of external factors (Massagué 2004). It
is during this phase that cells “compute” wheth-
er they commit to replicate the genome and di-
vide. To do so, cells first go through the R (for
“restriction”) checkpoint, which assesses levels
of growth factors (Pardee 1974), and is associat-
ed with levels of cyclin D. Cells that fail to pass
this checkpoint go into a quiescent G0 phase.
Cells also check for sufficient levels of nutrients
via the TOR pathway, which has been shown to
regulate S-phase entry of mammalian cells (Fin-
gar et al. 2004). Sensing of mechanical signals
seems also to occur during G1 as FAK mechano-
sensing acts on cyclin D (Klein et al. 2009), while
YAP/TAZ-Yki acts on cyclin E (Huang et al.
2005)—these cyclins are known to act on the
G1/S transition. It is unclear whether mechani-
cal signals promote proliferation only, or also
concurrently promote cell growth. In the case
of YAP/TAZ-Yki, it was shown in Drosophila
that Yki promotes the expression of cyclin E, in
addition to the oncogene dMyc, which drives
cell growth (Neto-Silva et al. 2010; Ziosi et al.
2010). Mechanical signals, when interpreted by
the YAZ/TAZ-Yki pathway, therefore potentially

promote a balanced growth in which cell divi-
sions and cell growth are in phase, leading to a
doubling of the volume of a cell from its birth to
the moment it divides. This balance between cell
growth and cell division is important for tissue
mechanics. As we discuss in the next section,
growth and cell divisions may have contrasting
mechanical effects.

In a more general context, the question of
balance between cell growth and the cell cycle
is of prime importance for tissue mechanics.
Although it is generally assumed that growth
and cycling are balanced, this situation is not
systematic. In Drosophila, for example, different
tissues behave differently. In the early embryo
and in the pupal thorax, cells divide without
growth (O’Farrell et al. 2004; Bosveld et al.
2012). Absence of growth during the first divi-
sions of early development (cleavage) is a gen-
eral feature shared by invertebrates and verte-
brates (Gilbert 2010). Primordia of the adult
Drosophila tissues (imaginal discs) show differ-
ent behaviors early in and throughout develop-
ment. At early stages, cell-cycle progression is
blocked but cells grow, leading to an increase
in cell volume (Madhavan and Schneiderman
1977). Later on, different tissues resume cell di-
vision at different times. In the precursors of the
abdomen, the histoblast nest cells first cycle fast-
er than they grow because they have accumulat-
ed cyclin E in prior larval stages (Ninov et al.
2007). But as the pool of cyclin E is depleted, cell
division and growth become balanced (Ninov
et al. 2007). In the precursor of the wing and
thorax—the wing imaginal disc—cells main-
tain a rough growth balance during the third
instar of larval development, but they stop
growing at pupal stage, although they continue
to divide. When growth and cell division are
balanced in the Drosophila wing, this is not be-
cause of the cell cycle controlling cell growth, as
it was shown that blocking cell cycle does not
affect cell growth (Neufeld et al. 1998). Recip-
rocally, growth reduction by dMyc loss-of-func-
tion mutations does slow down the cell cycle,
which supports the hypothesis of a hierarchy,
with growth controlling the cell cycle (Johnston
et al. 1999). In cultured mammalian cells, care-
ful quantifications have shown that cell size in-
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fluences the cell cycle in a direct way, although
the mechanism is still elusive (Tzur et al. 2009).
Delineating a growth/cycle hierarchy in tissues
will require similar careful measurements, yet to
be performed in vivo.

Measuring and Perturbing Growth and
Mechanics of Tissues in Vivo

One of the main challenges that mechanobiol-
ogy faces today is to understand tissue growth
and mechanics in vivo. So far, most studies
that have addressed the control of growth by
mechanical forces were performed in vitro, of-
ten on isolated cells. These cultures sometimes
mimic some properties of actual organs, such as
the shape-generating acini (Paszek et al. 2005).
Nevertheless, addressing these questions in vivo
is a necessity for future investigations. Imaging
technology has improved a lot recently, allowing
in vivo imaging of early development of Droso-
phila, zebrafish, chicken, and mouse (reviewed
in Supatto et al. 2011; Keller 2013). However,
mass increase proceeds after early embryonic
stages, once the organism has often become
motile and is, therefore, hard to observe under
a microscope. Because growing tissues are hard-
er systems to work on, fewer tools were devel-
oped to quantify forces and deformations on
them than on early embryos.

New methodologies are arising to circum-
vent these difficulties. The deformations associ-
ated with growth in Drosophila imaginal tissues
can be quantified using a chronic imaging ap-
proach (Heemskerk et al. 2014). Force inference
via image analysis of cell junctions allows one
to measure patterns of mechanical stress, even
when the tissue cannot be accessed mechanical-
ly (Chiou et al. 2012; Ishihara and Sugimura
2012; Ishihara et al. 2013). Force sensors based
on deformable liquid droplets could also be a
method of choice provided they can be deliv-
ered in vivo (Campàs et al. 2014). In this case,
the use of magnetic fluids could be a means
to also perturb the tissue mechanically in vivo
(Desprat et al. 2008), something that has tra-
ditionally been performed on explants (Wiebe
and Brodland 2005; Luu et al. 2011; Schluck
et al. 2013). At a molecular level, tension sensor

modules allow the imaging of forces imposed
on cells via adhesion complexes (Grashoff et
al. 2010; Borghi et al. 2012). With these new
methods in hand, we can expect to put our
knowledge of single-cell mechanobiology in
the context of organismal development in the
foreseeable future.

HOW TISSUE GROWTH IMPACTS
MECHANICS

So far, we have addressed how tissue mechanics
impacts growth. But reverse interactions also
exist. Patterns of growth and proliferation are
an integral part of tissue mechanics, leading to
the generation of stresses that are important for
morphogenesis

Stress Generation and Stress Dissipation
in a Proliferating Tissue

Cell growth is associated with an increase in cell
mass and, hence, cell volume. Tissue connect-
edness around the cell and its associated tissue
elasticity resists this volume increase. As a result,
the growing cell experiences an increase in pres-
sure, and the surrounding tissue experiences a
stretch (Fig. 3A, top). Several mechanisms are
able to relax these stresses. First, growth of other
cells can compensate for the locally created
stress by stretching the previously compressed
cells (Fig. 3A, left). Second, neighboring cells
may exchange neighbors in a way that dissipates
the pressure increase (by increasing the number
of direct neighbors of the growing cell (Fig. 3A,
center). Likewise, cell divisions may introduce
a reorganization of the tissue that reduces the
stress (Fig. 3A, right). This is the long-axis rule
discussed above.

This schematic view of a single growing
cell holds at the tissue scale. Growth inhomoge-
neity generates mechanical stress in a tissue,
whereas topological rearrangements, such as cell
exchange and division, tend to dissipate stress
(Fig. 3B,C). In support of this, overgrowing
clones in the Drosophila wing precursor have
been shown togenerate mechanical stress in their
vicinity (LeGoff et al. 2013; Mao et al. 2013).
During zebrafish epiboly, cell divisions partici-
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pate in a reduction of mechanical stress in the
enveloping cell layer that spreads over the yolk
cell (Campinho et al. 2013).

For patterns of growth to generate mechan-
ical stress, the orientation of growth may be as
important as the rate of growth (Fig. 3B). Pat-
terns of polarized growth are an integral part
of many morphogenetic processes. In verte-
brate limb formation, cell divisions are oriented
along the A/P axis in the lateral plate meso-
derm, and gradually shift to an orientation
perpendicular to it in the limb bud (Wyngaar-
den et al. 2010). In the Drosophila wing, the
Fat/Dachsous planar polarity pathway orients
cell divisions in a proximodistal orientation
(Baena-Lopez et al. 2005). Dachs, an atypical
myosin downstream from Fat/Dachsous, which
is polarized in the wing pouch (Mao et al. 2006;
Schwank et al. 2011; Ambegaonkar et al. 2012),
may be the driver of this polarity (Mao et al.
2011). There is still no formal demonstration

of a tissue in which growth orientation acts as
stress generator, but their contribution to tissue
mechanics should be considered further, as po-
larized growth is a recurring process to shape
tissues.

Why is it that the orientation of cell divi-
sions can lead to the dissipation of stress in the
context of the long-axis rule and not in the con-
text of polarized growth? During each cell divi-
sion, the tissue is locally reorganized because
division is intrinsically anisotropic (i.e., it is de-
fined by a principal axis). Consequently, an an-
isotropic mechanical stress is locally generated.
The cell division may or may not be associated
with growth, which accounts for an isotropic
stress (a pressure, see above). If a cell has been
stretched by an external stress (a stress external
to the tissue or just the balance of forces coming
from the cell neighbors), the long-axis rule will
orient the cell division such that the local stress
created by the division opposes and reduces

Homogeneous
growth

Neighbor
exchange

Oriented
divisions

Mechanical stress pattern

Pattern in
rate of growth

Pattern in
orientation of growth

Isotropic

Streched cells
Leading to

oriented divisions

Isotropic
stress disspated

C′′

C′

CBA

Figure 3. How cell growth impacts on tissue mechanics. (A) If a cell grows (red arrows) more than its neighbors, a
mechanical stress is generated that results in increased pressure in the growing cell and the stretching of its
neighbors (top). The stress disappears when the neighbors also grow until growth is spatially homogeneous
(left). Other mechanisms that can dissipate the mechanical stress are cell exchange (see the green cells in the
middle), and oriented divisions along the axis of stress (see the orange cells on the right). (B) Patterns of growth,
such as growth heterogeneities or polarized growth, induce mechanical stresses in a tissue. Regional differences
in tissue growth (left) may lead to mechanical stress in the tissue. Here, growth was symbolized by cell division,
but it is indeed the volume increase that matters, not cell divisions. If more growth proceeds in the center of the
tissue, and provided tissue is sufficiently elastic to prevent stress dissipation, this will result in a stretch of the
periphery of the tissue. Oriented cell division (right) can lead to similar patterns of mechanical stress, provided
they are accompanied by volume increase. (C) In a tissue with no preferred direction, cells are isotropic, and the
average fit to an ellipse yields a circle (right). (C0) An external uniaxial mechanical stress (which may originate
from neighboring regions) deforms cells along its axis (right: average fit to an ellipse is elongated). This stretch
promotes orientation of cell divisions (red dividing cells on the schematic). (C00) As a result of the polarized
growth, cells will at least partially lose their stretch (averaged fit to an ellipse is a circle). Thus, oriented cell
divisions contribute to the dissipation of the mechanical stress that was imposed on the tissue.
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the preexisting stress around the dividing cell. It
may locally cancel it, or even overcompensate
and, thus, create a new stress. But at the scale
of the tissue, the effect is gradual. The macro-
scopic external stress will slowly reduce as more
divisions along the cells-long axis accumulate.
The external stress will decay and divisions will
stop being oriented along its axis as cells be-
come isotropic (Fig. 3C). Note that this ac-
counts only for the effect of the orientation of
divisions. If these divisions are associated with
growth, the pressures generated may still lead to
macroscopic stresses (see above). In contrast, if
the axis of division is set by external polarity
cues, such as the planar polarity pathway irre-
spective of local stresses and cell shape, the local
stress created by the division will not cancel
the preexisting stress around the dividing cell.
As more divisions accumulate, their local stress
may add up and generate a macroscopic stress
at the level of the tissue. Both mechanisms of
cell division orientation (long axis and polarity
cues) may be at play within a given tissue (Le-
Goff et al. 2013; Mao et al. 2013).

Overall, it seems that growth and prolifera-
tion can have contrasting effects on tissue me-
chanics, leading either to the buildup or to the
dissipation of mechanical stress. The mechani-
cal state of a tissue will depend on the respective
rate of elastic stress accumulation (e.g., by cell
division) and its dissipation by cell rearrange-
ments associated with cell division. The exis-
tence of nonlinear effects caused by feedback
mechanisms makes it hard to predict specific
outcomes. Analytical and numerical models
are, therefore, necessary to make the connection
between cell behavior and tissue-scale mechan-
ics. There is an extensive literature from the the-
ory of complex fluids, which is relevant to this
subject. Looking at a tissue in a coarse-grained
fashion, one may describe it as a material with
elastic, viscous, or plastic behavior. However,
because cells consume ATP to generate mechan-
ical work, the tissue should be viewed as active
matter. In the past 10 years, the theoretical study
of active materials has been the subject of in-
tense activity (for a review, see Marchetti et al.
2013). Initially developed to model the me-
chanics of the cytoskeleton, active fluid models

have also been successfully applied to the me-
chanics of growing tissues in which each cell
division contributes to the generation of an
anisotropic active stress. Such approaches have
been used to address how cell divisions drive
stress dissipation in a tissue (Ranft et al. 2010)
and how polarized growth leads to the genera-
tion of viscous stress (Bittig et al. 2008; Blanch-
Mercader and Casademunt 2014).

Making Three-Dimensional (3D)
Shapes from Growth-Induced
Mechanical Instabilities

We have discussed how growth, and more spe-
cifically regional differences in growth, can in-
duce the accumulation of mechanical stress
within tissues. We illustrate with a few examples
how this can give rise to 3D shapes. Of partic-
ular interest is the buckling instability, when
a compressive stress above a certain threshold
suddenly folds a sheet- or rod-like structure
(Fig. 4A).

In principle, a growing cell monolayer, al-
though being two dimensional, can buckle
in the third dimension under the mechanical
compression generated by its growth and some
constraint of size limitation (Fig. 4B) (Drasdo
2000). The constraint may come, for example,
from surrounding tissues that do not grow as
fast. The physical principles of such shape-gen-
erating instabilities have been well investigated
theoretically (Drasdo 2000; Dervaux and Ben
Amar 2008; Hannezo et al. 2014). Further the-
oretical work (Hannezo et al. 2011; Ben Amar
and Jia 2013), as well as a combination of theory
and experiments (Shyer et al. 2013), have shown
how buckling could promote the formation of
villi in the mammalian gut. Growth of the lu-
minal endoderm, constrained by the surround-
ing muscles, leads to circumferential compres-
sion and subsequent bucking of the endoderm,
yielding previllous structures (Fig. 4D, left). The
differential growth of the gut tube and the at-
tached mesenteric sheet has also been shown
to drive the 3D looping of the gut in a variety
of species (Savin et al. 2011). The mechanical
model for gut looping explains the different gut
geometries across species from mere differences
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of tissue-geometric and elastic properties, as
well as rate of growth. Cortical layers of the hu-
man brain constitute another complex folded
structure. Richman et al. proposed, 40 years
ago, that buckling instabilities associated with
differential growth of the inner and outer cor-
tical layers could generate the folds (Fig. 4C)
(Richman et al. 1975). Although alternative
models exist, the buckling model seems sup-
ported, at least partially, by experiments (Bayly
et al. 2014).

The almost opposite mechanical situation
to buckling seems to happen in the facial skin
of the crocodile (Fig. 4E). In the course of em-
bryonic development, the skin that enwraps the
rapidly growing facial bones of crocodiles grows
more slowly than the skull. The skin is conse-
quently stretched and eventually cracks under
the mechanical stress, because crocodile skin
lacks flexibility. These cracks have been shown
to give rise to the facial scales on the adult skin
(Milinkovitch et al. 2013). Both the gut lumen

Fast growth

External force
promotes buckling

Growth
promotes buckling

FF

Slow growth

Fast growth
Slow growth

Hard
core

Hard
shell

Buckling

Gut lumen ridges Crocodile facial scales
Fracture-induced scales

Cracks

A

C

D

E F

B

Figure 4. Making 3D shapes. (A) If an elastic rod or sheet is subjected to compressive forces, the rod will buckle
above a certain threshold. (B) Buckling may also proceed in the absence of an external force when the structure
grows, provided it is constrained at its ends. (C) Folds of the mammalian cortex have been proposed to
stem from a buckling instability in which the fast growth of the external layer of the cortex is constrained by
the slower growth of another layer below it. (D–F) Apposition of tissues with different growth rates may give
rise to very different 3D structures depending on the boundary conditions. To illustrate this, we consider a
fast-growing layer surrounded by a slow-growing layer. If the surrounding layer is rigid and makes a hard shell
(left), buckling may proceed in the fast-growing inner layer. Such a mechanism has been proposed to initiate gut
lumen ridges (E). If it is the fast-growing layer that is the strongest and makes a hard core (right), then the
external layer will be deformed and may even crack. This has been proposed to drive the formation of facial scales
of crocodiles (F).
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ridges and the crocodile facial scales arise from
the mechanical interactions of a fast-growing
core and a slow-growing surface. The different
outputs (inner buckling or outer cracking) de-
pend on which layer (inner or outer) is mechan-
ically dominant (Fig. 4D–F). Simple mechanics
can lead to a great variety of morphological
outputs.

CONCLUSIONS: INTEGRATING FORWARD
AND REVERSE INTERACTION BETWEEN
GROWTH AND TISSUE MECHANICS

As explained above, cells do not passively follow
upstream biochemical signals because they are
embedded in a mechanical environment, which
influences how they divide (orientation and
frequency) and grow. Growth and proliferation
also strongly influence the mechanical proper-
ties of tissue. It then seems clear that growth and
tissue mechanics cannot be studied in isolation.
The reciprocal interactions between growth and
tissue mechanics are an important part of what
shapes growing tissues. A general rule of thumb
of how mechanics influence growth is that the
more cells are compressed, the slower they grow.
Conversely, when regional differences of growth
exist in a tissue, it is the fast-growing regions
that are compressed and the slow-growing ones
that are stretched. It then seems that the afore-
mentioned reciprocal interactions result in a
negative feedback on growth, such that regional
differences of growth tend to vanish. On the
basis of this, several models proposed that it is
a mechanical feedback that ensures homoge-
neous growth of the Drosophila wing primor-
dium despite the sharp, spatially restricted
distribution of morphogens (Shraiman 2005;
Aegerter-Wilmsen et al. 2007; Hufnagel et al.
2007). Recently, Eisenhoffer et al. (2012)
showed how mechanical constraints orchestrate
homeostasis of tissue growth in zebrafish and
cultures of MDCK cells. They observed a strong
increase in delamination of nonapoptotic cells
in regions of overcrowding, both in vitro and
in vivo. This delamination is triggered by me-
chanical signals relayed by the stretch-activated
channel piezo. Disruption of mechanosensa-
tion by morpholino knockdown of piezo leads

to the formation of an epithelial cell mass in
the tail fin of zebrafish, demonstrating how
this mechanism ensures tissue integrity by lo-
cally expelling cells from overcrowded regions.
A concurrent study found that overcrowding
also leads to nonapoptotic cell delamination
in the Drosophila pupal thorax (Mariani et al.
2012). These investigations addressed how me-
chanics can feed back on growth at the tissue
scale via cell delamination. Future work needs
to address whether mechanical feedback can
also act on cell growth and cell cycle in vivo, as
single-cell measurements suggest (see above).
Although the intricate relationship between
growth and mechanics has long been theorized
to drive tissue homeostasis in animal tissues, we
are now at a turning point where we can start to
address it experimentally. This endeavor will
require a tight interplay between modeling, im-
aging, and quantitative measurements on grow-
ing tissues, as well as genetic perturbation of the
signaling pathways that control growth.
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