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Avian responses to an extreme 
ice storm are determined by a 
combination of functional traits, 
behavioural adaptations and 
habitat modifications
Qiang Zhang1,2,*, Yongmi Hong1,2,*, Fasheng Zou1,2,†, Min Zhang1,2, Tien Ming Lee3, 
Xiangjin Song4 & Jiteng Rao4

The extent to which species’ traits, behavior and habitat synergistically determine their response 
to extreme weather events (EWE) remains poorly understood. By quantifying bird and vegetation 
assemblages before and after the 2008 ice storm in China, combined with interspecific interactions 
and foraging behaviours, we disentangled whether storm influences avian reassembly directly via 
functional traits (i.e. behavioral adaptations), or indirectly via habitat variations. We found that overall 
species richness decreased, with 20 species detected exclusively before the storm, and eight species 
detected exclusively after. These shifts in bird relative abundance were linked to habitat preferences, 
dietary guild and flocking behaviours. For instance, forest specialists at higher trophic levels (e.g. 
understory-insectivores, woodpeckers and kingfishers) were especially vulnerable, whereas open-
habitat generalists (e.g. bulbuls) were set to benefit from potential habitat homogenization. Alongside 
population fluctuations, we found that community reassembly can be rapidly adjusted via foraging 
plasticity (i.e. increased flocking propensity and reduced perching height). And changes in preferred 
habitat corresponded to a variation in bird assemblages and traits, as represented by intact canopy 
cover and high density of large trees. Accurate predictions of community responses to EWE are crucial 
to understanding ecosystem disturbances, thus linking species-oriented traits to a coherent analytical 
framework.

Climate variations drive ecological and evolutionary responses in most taxonomic or functional groups, however 
predicting climate-induced changes in community assembly, behavioral adaptation and ecosystem function-
ing are core challenges for ecology1–4. Extreme weather events (EWE) including ice storms, wildfires, flooding, 
hurricanes, and drought represent extreme disturbances to ecosystems because they alter habitat structure and 
resource availability5. Beyond direct effects on populations, EWE may affect community dynamics through (i) 
the specific characteristics/functional traits of individual species6,7, (ii) interactions among species8,9, and (iii) 
synergies with habitat modifications10,11. Most studies have concentrated on the effects of EWE on the populations 
of individual species. Yet the potential effects of EWE on community assemblages as well as changes in the biotic 
interactions and behavioral adaptations of species, though important, are seldom considered. Compounded with 
logistical difficulties, the unpredictability of EWE and the lack of pre-event data or replications make studying the 
community effects of EWE challenging.
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Ice storms are highly destructive disturbances that have the potential to influence floral and faunal communi-
ties. In early 2008, an extreme ice storm event occurred across a large geographical band in southeastern China, 
causing massive mechanical damage to native broad-leaved forests. China’s State Forestry Administration (SFA) 
estimated that the storm damaged 20.86 million hectares‒one-tenth of China’s forests and plantations. SFA pegs 
the losses at $8 billion12. Freezing rain resulted in heavy ice accumulation on the branches and trunks of forest 
trees13. In the worst affected forests, most trees were uprooted or had their trunks snapped, while the few standing 
trees were stripped of most if not all of their branches14–16. The heavy storm also resulted in mortality among birds 
and animals, many of them frugivorous17. Rapid biodiversity surveys reported that the population densities of 
butterflies (e.g. Pieridae and Papilionidae species)18,19, birds (e.g. Silver Pheasants Lophura nycthemera, Golden 
Pheasant Chrysolophus pictus)20–22, and arthropods (e.g. Hymenoptera, Symphyla species)23 significantly declined 
in severely damaged areas. Given that the forests affected by the 2008 storm were subject to fixed monthly mon-
itoring programs (pre-/post- EWE), this event presented us with a unique opportunity to study the ecological 
effects of EWE-induced damages on community assembly, ecosystem functioning and behavioral adaptations of 
bird species.

Determining the effects of EWE, both direct and indirect, on local community assemblages represents a signif-
icant challenge. Specifically, (i) Biodiversity responses to EWE include both direct effects on biological parameters 
of a species (e.g. mortality, reproductive rates, and life history traits), and indirect modifications of relationships 
between species and their habitats1,24,25. (ii) Functional groups or guilds differ systematically in their sensitivity to 
climate variations6,26,27, and a sudden EWE shock may considerably modify the functional traits of the commu-
nity28,29, likely resulting in the biotic homogenization of ecological communities30–32. Explicitly testing the local 
dynamics of habitat specialists versus generalists in response to EWE is therefore essential. (iii) EWE may influ-
ence species assemblages with both positive and negative effects as different species will respond to disturbance in 
different ways33–36. In addition, species exhibit “mixed” responses to EWE, that is, individual species may exhibit 
some combination of positive, neutral, and negative responses when tallied across studies29. (iv) Regional climatic 
variation creates selective pressure on the evolution of locally adapted physiologies, and behavioral adaptations 
over the long-term (e.g. foraging strategies and breeding systems)9,37, while the short-term effects of EWE might 
be difficult to discern when individuals and populations within communities display some degree of adaptive 
abilities and/or phenotypic plasticity38. Unfortunately, these inconsistencies across studies are difficult to recon-
cile (e.g. a lack of pre-EWE data and little treatment of replication/controls).

Assessing the relationship between EWE and the spatial and temporal distributions of both bird and vege-
tation assemblages with EWE could provide critical information on community responses. Such a study would 
provide a stronger base of inferring cause-and-effect between an EWE and community changes. We adopted a 
before–after/control–impact (BACI)39 approach in which both bird and vegetation characteristics were simul-
taneously measured at the same set of points at independent sites both before (from Jan to Dec 2007) and after 
(from March 2008 to March 2009) the 2008 storm event in Southern China. This made it possible to compare 
changes in avian/vegetation structure, species interaction and foraging behavior before and after the 2008 storm 
in the same area. Specifically, we addressed the following hypotheses: (i) Species-specific characteristics (e.g. 
taxon, trophic level, functional guild) may influence the ecological responses to storm-induced disturbances, 
which may tend to result in homogenization of ecological communities; (ii) After the storm, community reas-
sembly is accompanied by a rapid readjustment of bird biotic interactions and behavioral adaptations (i.e. inter-
specific flocking behaviour, preferred perching height); (iii) Drastic changes in vegetation structure following the 
storm could explain the trend in forest bird assemblages, thus the functional traits of the bird community could 
be used as indicators to monitor and evaluate habitat restoration.

Results
Vegetation structure.  After the storm, canopy trees, including Box-leaved Syzygium (Syzygium buxifo-
lium), Sweet Gum (Liquidambar formosana), Red Oatchestnut (Castanopsis hystrix), Fabers Chestnut (C. fabric), 
Chinese Red Pine (Pinus massoniana), Itea (Itea chinensis) and Chinese Spicebush (Lindera communis) were 
severely damaged thus altering the composition and structure of the plant community. The vegetation destruction 
varied among quadrats depending on species, diameter at breast height (DBH), tree height, and vegetation layers. 
Comparison of pre- and post-storm vegetation metrics revealed a significant decrease in both species richness 
and abundance of large arbors above 12 m in height (Wilcoxon Signed Ranks Test for richness, Z =  − 2.388, 
df =  7, P =  0.017; for abundance, Z =  − 2.207, df =  7, P =  0.027), and tree height (Z =  − 3.646, df =  7, P <  0.001). 
Meanwhile, variables associated with understory shrub-grass layers (e.g. species richness, relative abundance, 
height and cover) tended to increase after the storm event, although these differences were not significant 
(Table 1). In sum, the arborous species that were dominant and made up the dominant layer of the forest canopy 
were the most affected.

Patterns of change in bird species and relative abundance of functional-guild.  Sampling satura-
tion was achieved for both pre- and post-storm, as indicated by their rapid approach to asymptote (Fig.1a), mean-
ing we are confident that the vast majority of species present were recorded, and more species were expected and 
observed pre-storm (Fig. 1b). At ice-affected stands, a total of 70 species were detected prior to the storm and 58 
afterward, of which 50 species were present in both periods. And of these, 20 species (mainly forest woodpecker 
and insectivorous) were exclusively detected before the storm, while eight species (mainly edge and open-habitat 
species) were observed after the storm only (Table S1). Relative abundance decreased significantly in response 
to the storm (Paired T-Test; T =  2.238, df =  77, P =  0.033). Regression plots obtained from Generalized Linear 
Model (GLM) Fit demonstrated that the population of rare species declined more than common species (GLM of 
Log pre/post-storm population decline: F =  8.741, df =  75,  P =  0.0003; R2 =  16.7%) (Fig. 1c). Moreover, three of 
these species [Blyth’s Kingfisher (Alcedo hercules), Crested Kingfisher (Megaceryle lugubris), and Orange-flanked 
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Bush Robin (Luscinia cyanura)] decreased, whereas two species [Light-vented Bulbul (Pycnonotus sinensis), and 
Red-whiskered Bulbul (P. jocosus)] increased significantly (Fig. 1d, see Table S1 for statistics).

Sixty-six species that were detected frequently enough to include in a statistical analysis showed differences 
in guild or trait composition from pre- to post-storm. Habitat preference, dietary guild and flocking behaviour 
underlay bird relative abundance dynamics in response to the storm, whilst migration status and human toler-
ance were less important (Fig. 1e–i). For habitat preference, only forest specialists declined more than expected 
by chance alone (T =  1.437, df =  22, P =  0.165), which probably allow for the increase of edge-tolerant and 
open-habitat species sharing the same ecological niche (Fig. 1e). Diet was strongly associated with extirpated and 
declining species, with the sharpest declines seen in “bark-gleaning insectivores” (T =  8.000, df =  4, P =  0.001) 
and “miscellaneous insectivore-piscivores” (T =  4.151, df =  6, P =  0.006) (Fig. 1f). Among the flocking guilds, 
it should be noted that the propensity of species to flock in mixed-species groups increased significantly after 
the storm (T =  2.736, df =  43, P =  0.036) (Fig. 1g). In summary, forest-dwelling specialists and species at higher 
trophic levels were more likely to be lost from bird communities than generalist species or those at lower trophic 
levels.

Shifts in bird perching height.  The mean perching height was 8.29 ±  0.59 m (400 records from 70 spe-
cies) in pre-storm, and 4.71 ±  0.37 m (269 records from 58 species) afterwards, respectively. Although population 
declines (log pre/post storm) were not related to foraging height (Pearson’s Correlation; r =  0.225, P =  0.117, 
n =  50), there was a significant decrease in perching height (T =  4.557, df =  667, P <  0.001) for species present 
during pre- and post-storm (Table S2). Particularly, five species [Red-headed Trogon (Harpactes erythrocepha-
lus), Scarlet Minivet (Pericrocotus flammeus), Black Bulbul (Hypsipetes leucocephalus), Huet’s Fulvetta (Alcippe 
hueti), and Daurian Redstart (Phoenicurus auroreus)] had significantly shifted to lower heights following the 
storm (Fig. 2a, see Table S2 for statistics).

A clear trend in bird perching substrate existed among height classes, with canopy and sub-canopy species 
significantly experiencing severe declines. Birds perching below 3 m height showed no change in species richness 
pre- and post-storm (T =  1.147, df =  4, P =  0.436), but lower richness was recorded after the storm for birds 
perching in the other two height classes (for 3− 12 m, T =  4.123, df =  4, P =  0.015; for > 12 m, T =  3.253, df =  4, 
P =  0.031; Fig. 2b). For relative abundances (Fig. 2c), there was no difference for birds perching less than or equal 
to 12 m height (for < 3 m, T =  1.806, df =  4, P =  0.325; for 3–12 m, T =  1.544, df =  4, P =  0.371), but lower abun-
dance in post-storm for birds perching higher than 12 m (T =  3.011, df =  4, P =  0.039).

The spatial congruence of bird-habitat associations.  Canonical correspondence analysis (CCA) was 
used to relate the 50 bird species with a set of vegetation variables (Fig. 3). The first axis (axis I) explained 24.8% of 
the site/species matrix variance, which is consequently associated with large trees, height of arborous species and 
canopy cover; while the second axis (axis II) associated with both arborous and shrub species explained 15.5% 
of the site/species matrix variance. Ordination indicated that two bird communities were well separated with 
no overlap of hull areas, and the distribution of birds associated with seven pairs of vegetation variables (Monte 
Carlo test, P <  0.05). For vegetation variables, pre-storm group was strongly dominated by larger trees (Sp.A > 12, 

Vegetation variables Code Pre-storm Post-storm Z P

No. arborous species Sp. A 9.0 ±  1.0 6.6 ±  0.9 − 1.829 0.067

No. arborous species< 3 m Sp. A < 3 2.4 ±  0.5 1.4 ±  0.6 − 1.510 0.131

No. arborous species =  3–12 m Sp. A (3–12) 8.4 ±  1.5 6.2 ±  0.9 − 0.420 0.674

No. arborous species > 12 m Sp. A > 12 4.7 ±  0.9 1.3 ±  0.5 − 2.388 0.017*

No. arborous individuals Ind. A 19.9 ±  2.7 13.3 ±  1.4 − 1.863 0.063

No. arborous individuals< 3 m Ind. A < 3 3.5 ±  1.1 1.6 ±  0.8 − 1.511 0.131

No. arborous individuals 3–12 m Ind. A (3–12) 10.8 ±  2.2 9.5 ±  1.9 − 1.053 0.292

No. arborous individuals > 12 m Ind. A > 12 5.6 ±  1.8 2.1 ±  0.4 − 2.207 0.027*

DBH of arborous (cm) DBH. A 24.6 ±  1.6 27.0 ±  2.0 − 0.028 0.978

Height of arborous (m) Hei. A 10.5 ±  0.6 8.5 ±  0.9 − 3.646 0.001**

Canopy cover of arborous Can Cov 0.8 ±  0.1 0.7 ±  0.1 − 0.957 0.339

No. shrub species Sp. S 6.3 ±  0.9 8.4 ±  1.1 − 1.612 0.107

No. shrub individuals Ind. S 19.5 ±  4.3 27.8 ±  7.6 − 1.332 0.183

Height of shrub (m) Hei. S 0.8 ±  0.1 0.9 ±  0.1 − 0.028 0.977

Shrub cover Shr Cov 0.4 ±  0.1 0.5 ±  0.1 − 0.021 0.656

No. grass species Sp. G 3.9 ±  1.5 5.4 ±  0.5 − 1.903 0.057

Grass cover Gra Cov. 50.3 ±  12.6 62.4 ±  12.5 − 1.122 0.262

No. dead trees DEAD 1.25 ±  0.05 2.43 ±  0.07 − 1.036 0.304

Leaf litter depth LLD 3.30 ±  0.31 5.52 ±  0.63 − 0.530 0.586

Table 1.   Mean values (±SE) for vegetation variables, and result of pre- and post-storm comparisons at 
Chebaling, Southern China. The Z values are derived from Wilcoxon Signed Ranks Test. Level of significance: 
*P <  0.05; **P <  0.01.



www.nature.com/scientificreports/

4Scientific Reports | 6:22344 | DOI: 10.1038/srep22344

r =  0.91, P =  0.001), as indicated by the length of the vector, whereas post-storm group was dominated by shrub 
and sub-canopy trees (Ind.S, r =  0.82, P =  0.001).

Based on the species-level biplots and intraset correlations with vegetation vector, bird species depending on 
forest were largely confined to in quadrant III (lower left), and species that were frequently associated with open 
habitat and forest edge confined to quadrant I (upper right) during the pre-storm. For example, the former are 
represented by Crested Kingfisher, Black-throated Tit (Aegithalos concinnus), Greater Necklaced Laughingthrush 
(Garrulax pectoralis), and Orange-bellied Leafbird (Chloropsis hardwickei), while the latter contains Common 
Kingfisher (Alcedo atthis), Long-tailed Shrike (Lanius schach), Hill Prinia (Prinia atrogularis) and Tristram’s 
Bunting (Emberiza tristrami). However, vegetation changes following the storm resulted in some species that were 
located in quadrant II (upper left) in pre-storm [e.g. Chestnut Bulbul (Hemixos castanonotus)], and some species 
that used to be in quadrant IV (lower right) [e.g. Huet’s Fulvetta and Fork-tailed Sunbird (Aethopyga christinae)], 
were found in quadrant I afterwards. Similarly, some species that used to be in quadrant II [e.g. White-crowned 
Forktail (Enicurus leschenaulti) and White-rumped Munia (Lonchura striata)] were in quadrant III after the 
storm. Especially for species with significant population variation after the storm (refer to Fig. 1d), Light-vented 
Bulbul and Red-whiskered Bulbul shifted from quadrant II to IV, likely moving from lower to higher habitat 

Figure 1.  (a,b) Rarefaction curves and estimates of bird species richness during sampling periods pre- and 
post- storm, at Chebaling, Guandong province, China; (c) Regression plot fitted by Generalized Linear  
Model with Maximum Likelihood showing the population fluctuation (Log pre-/post-storm) of species;  
(d) Comparison of five bird species that exhibited significant population change after extreme ice storm;  
(e–i) Changes in the proportion of relative abundance of bird species grouped by (e) habitat preference,  
(f) dietary guild, (g) flocking guild, (h) migratory status and (i) human tolerance. The abbreviation refers to: 
Habitat preference: “edge species (ES)”, “edge-tolerant forest species (ETF)”, “forest specialist (FS)”, “generalist 
(G)”, “open-habitat species (OS)”; Dietary guilds: “arborous foliage glean insectivore (AFGI)”, “arborous foliage 
glean insectivore-frugivore (AFGIF)”, “arboreal frugivore–predator (AFP)”, “bark-gleaning insectivore (BGI)”, 
“miscellaneous insectivore-piscivore (MIP)”, “nectarivores-insectivore-frugivore (NIF)”, “sallying insectivore 
(SI)”, “terrestrial frugivore (TF)”, “terrestrial insectivore (TI)”, “terrestrial insectivore-frugivore (TIF)”; Flocking 
guilds: “mixed-species flock participants (FLOCK)”, “Non-flocking species (NON)” and “monospecific flock 
participants (MONO)”; Migratory status: “passage migrant (P)”, “permanent resident (R)”, “summer visitor 
(S)” and “winter visitor (W)”; Human tolerance: “moderate susceptibility (MODER)”, “vulnerable to human 
disturbance (VUL)” and “resistant to human disturbance (RES)”. Level of significance: *P <  0.05; **P <  0.01.
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quality. Conversely, the population decline of Crested Kingfisher (from quadrant III to IV), Blyth’s Kingfisher (IV 
to III) and Orange-flanked Bush Robin (IV to III) were closely associated with the disturbance and degradation 
of native forest structure. Meanwhile, similar patterns also existed in species with significant height changes (refer 
to Fig. 2a), such as Black Bulbul (II to IV), Huet’s Fulvetta(IV to I), Daurian Redstart(IV to II) and Red-headed 
Trogon(IV to II). Overall, the results of CCA illustrated the impacts of changes in forest structure on the bird 
assemblages.

Discussion
The presence of forest destructions created by a widespread ice storm in 2008 affected the response of bird assem-
blages in three ways: (i) EWE-induced disturbances can affect bird assemblages depending on species-oriented 
characteristics/responses, and result in potential homogenization by filtering out functionally unique species. 
For instance, the depletion of forest-interior specialists, and enrichment of open-habitat generalists were noted; 
(ii) Beside the short-term population responses, community reassembly can be rapidly compensated by species 
displaying highly adaptive abilities, such as more mixed-species flocking social behavior, and lowering perching 
height; (iii) A series of changes in vegetation canopy structure and physiognomic factors following the storm 
have affected the composition and distribution of bird communities, which can be used as indicators to monitor 
and evaluate forest restoration and successional dynamics after the storm. Hence, it is essential to understand the 
implications of such an ecosystem disturbance on how birds response to the continuing threat of extreme weather.

Figure 2.  (a) Comparison of five bird species that exhibited significant decline in perching height after the 
storm; (b,c) Changes in the bird species richness and abundance with different height canopy vegetation (i.e. 
< 3.0 m, 3.0–12.0 m, and > 12.0 m) during pre- and post- storm sampling periods. Mean values (± SE) are 
displayed. Level of significance: *P <  0.05; **P <  0.01.

Figure 3.  Ordination biplot of a canonical correspondence analysis (CCA) conducted on bird species as a 
function of vegetation variables that were highly correlated with the axes (i.e. seven pairs of variables with 
correlation coefficients >0.30; Table 1). Refer to Table S1 and Table 1 for abbreviation of bird species and 
vegetation variable codes. Red color and blue color arrows represent pre- and post- storm values, respectively.
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Species-specific and guild-dependent responses to the 2008 storm.  Both theory and empirical 
studies suggest that species at higher trophic levels are more sensitive to climate change than those species at 
lower trophic levels9,27,40,41. Our study showed that forest specialists of several groups were adversely affected by 
forest modification following the storm, specifically insectivores (arboreal foliage gleaners and terrestrial insec-
tivores), bark probers (woodpeckers), and biome-restricted species (i.e. kingfishers, dippers and barbets). This 
suggests that forest heterogeneity when altered substantially can filter out habitat specialists and functionally 
unique species following EWE. First, insectivores are considered especially vulnerable to forest modification 
and avoid the forest edge, possibly due to food scarcity and fragmentation-related nest predation42–45. Given 
adult Lepidoptera and their larvae are the most important food resources for insectivores, it may be used as an 
indication for changes in insectivores bird population46. In Nanling Mountains, Chen et al.18 and Wang et al.19 
reported that population density of butterflies decreased, and many species were absent following the storm 
indicating a potential causal factor underlying declines in insectivorous birds. Moreover, decreased breeding 
success has been documented for several insectivorous specialists following forest destructions47–50. Second, bark 
probers (woodpeckers), frugivore–predator (barbets) and piscivores (kingfishers) also declined or became extir-
pated disproportionately. Since woodpeckers depend on larger trees and the proportion of damaged trees during 
the 2008 storm increased with DBH (those with DBH over 9.0 cm being the mostly damaged14,16), it is easy to 
understand why woodpeckers disappeared post storm. Blais et al. also found that abundances of all tree forager 
species [Downy Woodpecker (P. pubescens), Hairy Woodpecker (P. villosus)] decreased significantly following a 
storm33. The storm also impacted the local biogeochemical and hydrological processes51, for example, it covered 
much of the area’s shallow waterways with ice therefore prohibiting predation and also likely reduced fish and 
frog populations which affected the kingfishers and dippers. Indeed, one expects specialist and rare species to be 
doubly impacted when subjected to EWE. They are more negatively affected than generalists by habitat modi-
fications32,52,53, and they tend to provide more unique yet vulnerable functions4,54,55. Environmental changes are 
filtering out specialist species and narrowing the available range of species-specific responses through the loss of 
unique species functions.

Besides the depletion of forest specialists, the 2008 storm seems to be responsible for both the increase of 
open-habitat/edge species, and more broadly functional homogenization. Changes in community composition 
toward enrichment in species with a specific ecological strategy (specialist vs. generalist) or functional traits have 
generally been treated as a response to specific habitat changes, however, only a few studies have explored the spe-
cific impact of climate change on the potential directional homogenization of assemblages32,56,57. In south China, 
the Light-vented Bulbul and Red-whiskered Bulbul are abundant species occurring in a diverse array of habitats 
(e.g. forest edge, plantations, farmland and other human dominated areas), and foraging in trees/bushes and feed-
ing on a wide variety of fruits, seeds, plant matter and insects44. Studies have shown that the abundance of the eco-
logically similar European Starling (Sturnus vulgaris) and Dark-eyed Junco (Junco hyemalis) increased at affected 
sites in the year following an ice storm event in North America 26,33. A wide range of diet and habitat flexibility of 
these species may play a key role in their increase in abundance following a disturbance event. For instance, the 
Light-vented Bulbul was historically distributed to south of the Yangtze River, but has recently exhibited a strong 
northward expansion58. Extreme disturbance likely favor invasive species, ecological opportunists and species 
adapted to disturbed environments, particularly those adapted to human dominated environments4,9,59,60. These 
changes correspond to a nonrandom reconfiguration and homogenization in species compositions: habitat gen-
eralists and species with fewer specialized adaptations are those whose populations seem to benefit the most from 
the impacts of severe storms.

Plasticity of bird social behavior and perch height in response to EWE.  Biotic interactions are 
among the most important forces structuring ecological communities and are commonly climate-dependent61,62. 
EWEs are likely to trigger ecosystem-level disturbances, and may affect interspecific organization and functional 
attributes of entire ecosystems9,28,37,63. Mixed-species flocks are a common social animal organization that is sus-
ceptible to habitat degradation and human disturbance in south China64. Although bird diversity was severely 
affected by the storm event, one of the most puzzling findings of the present study was that the propensity of 
flocking participants showed a marginal increase following the storm. In Chebaling, mixed flocks typically form 
around a gregarious “nuclear” species (i.e. Huet’s Fulvetta) that is attended to by several solitary or conspecific 
facultative species. While flocking propensity of understory insectivores were resistant to the storm event, specific 
foraging guilds, such as canopy and mid-story facultative species (e.g. minivet, yuhina and flowerpecker) were 
more inclined to participate in flocks led by Huet’s Fulvetta (Fig. 1f, Table S1). The adaptation of social flocking 
strategies following the 2008 storm may provide support for the two hypothesized benefits for flock participa-
tions, including anti-predator vigilance and increasing foraging efficiency65–67.

Perching height also shows a clear trend, with canopy and sub-canopy species significantly shifting down-
wards to lower layers. Range shifts imply that species might be forced to interact with those from which they 
were formerly not overlapped. Climate-induced species’ range shifts have been reported along altitudinal68–71 
and latitudinal gradients72–76. Other studies demonstrated a similar response in avian perch height following a 
weather-related disturbance. Cerulean Warblers (Dendroica cerulea) for example were shown to adjust nest height 
according to vegetation alteration after an storm77. In this study, the observed shift to lower post-disturbance for-
aging substrates may be interpreted as a result of nest predation by raptors and vegetation destruction. However, 
too little rigorous study of nest predation rates exists for EWE, mostly due to the difficulty of successfully finding 
and monitoring a sufficient number of nests. Much of what we do know comes from fragmented forests, in which 
opening and gaps makes birds more likely to be depredated43,48,78,79. Therefore, although indirect impacts may 
affect the community negatively in some species, others may show adaptive resilience to EWE and rapidly com-
pensated by displaying highly plastic behavioral strategies.
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The potential impacts of the 2008 storm on local assemblages indirectly caused by vegetation 
modifications.  Species behavior and distribution are not isolated processes; they are connected through 
interactions with other species and through the indirect effects of habitat modifications. Pre- and post- vege-
tation measurements in this study revealed that the prevalence of larger trees decreased significantly following 
the storm. At the most severely damaged Nanling areas, forest structure, measured in terms of vegetation com-
position and canopy cover, also significantly changed as a result of the storm15; trees with a DBH below 9.0 cm 
were mostly “broken off ” while those over 9.0 cm were mostly “beheaded (tree crowns were removed)” during 
the storm14. Therefore, the decreased canopy bird diversity and perching height were closely associated with 
storm-induced changes in vegetation heterogeneity.

CCA provided a quantitative assessment of the changes in bird assemblages with reference to specific eco-
logical strategies and/or functional traits, which have generally been treated as a response to specific habitat 
changes. Few species recorded between pre- and post-storm occurred within the same quadrant (i.e., no change), 
which may be due to drastic shifts in vegetation structure that probably directly affected bird assemblage patterns. 
Specialists within higher trophic levels are more sensitive to extirpation or decline due to the combined impact of 
habitat modifications and severe disturbance. Previous studies have indicated that forest-dependent insectivores 
(i.e. arboreal foliage gleaners, understory foragers and bark probers) were closely associated with a high propor-
tion of native canopy cover44. Brandt et al. also found that high canopy cover and large trees were keystone struc-
tures whose presence added resource heterogeneity, thereby facilitating greater species richness80. At a landscape 
scale, the 2008 storm may have substantially increased the amount of edge habitat and forest gaps, and as a result 
inhibited the survival and colonization of those insectivores.

By contrast, species associated with open-habitat and forest edge were prone to benefit from EWE disturbance. 
All these species that are positively associated with dense shrub-cover, often are found nesting among stumps, 
up-turned root-balls, and downed limbs or logs, and hence are less affected by loss of canopy cover. These spe-
cies may be taking advantage of a unique combination of resources that occurs after an extreme storm event, 
including food and the presence of live foliage to conceal nests34. In fact, the effects of EWE and habitat change 
can be jointly assessed within a given biogeographical region. Studies have reported impacts of fires at the com-
munity level are comparable to accumulated climate changes by shifting communities towards early succession 
species11. Similarly, hurricane-induced changes in forest habitat and the use of refuges by birds displaced from 
hurricane-damaged forests have comparable impacts81. Hence, a series of changes in canopy structure and vege-
tation heterogeneity variables following the storm directly affected the composition and distribution of bird com-
munities. Findings from the present study also indicated that bird assemblages with specific ecological strategies 
and functional traits, could serve as indicators to characterize the ecosystems they inhabit, thus being particularly 
suitable for monitoring forest regeneration and successional dynamics following extreme weather events.

Conclusions
In the context of the ongoing biodiversity crisis and EWE frequency/intensity, identifying species that are par-
ticularly vulnerable to disturbance, and traits that predispose them to vulnerability, is crucial to strategically 
plan conservation initiatives. The BACI approach employed before and after the 2008 storm in China, combined 
with our attention to mixed-species flocking behaviour and perching height, revealed assembly patterns that 
were consistent for both vegetation and bird communities. Our analysis shows that species functional traits (e.g. 
habitat preference, feeding group and flocking plasticity), and forest heterogeneities (e.g. intact canopy cover and 
high density of large trees) interact synergistically to influence a species’ response to the storm at the local scale. 
Beyond the traits used in our study, other factors such as the fine-scale division of resources and space (e.g. mor-
phological measurements), and life-history traits (e.g. adult mass, foraging and nesting strategies, and dispersal 
ability) could also contribute to reassemble community structure. Furthermore, since species interactions can 
dramatically alter species responses to EWE, a more complex network approach might become necessary that 
will require scaling from modules to entire food webs. Overall, we suggest that generating accurate predictions 
of responses to EWE will be crucial for conserving natural and human-influenced ecosystems, particularly if a 
combined long-term monitoring framework that highlights species-oriented characteristics and behavioral adap-
tations, across spatial-temporal scales and habitat variations is employed.

Methods
Study site.  The study was conducted at Chebaling National Natural Reserve located in Guangdong prov-
ince, southern China (24°40′ -24°46′ N, 114°09′  -114°16′  E). The Reserve protects 7545 ha of subtropical evergreen 
broadleaf forests and rare flora and fauna. As a boundary area between tropical and subtropical flora, Chebaling is 
an important focal point of the Nanling mountain hotspot ecoregions82. The region has served as a refuge for bio-
diversity since the Quaternary, including several biotic ecoregions with many endemic species, and it has played a 
major role in the evolution of the terrestrial biota of south China83–85. The climate is typical subtropical monsoon 
climate, with an annual average temperature of 19.6 °C and long-term average annual rainfall of 1468 mm. In the 
reserve, a total of 1928 plant species and 1558 animal species have been identified and documented86.

A destructive ice storm event occurred in southern China mostly from 25 January until 6 February 2008. 
After that, unusually low temperatures continued for two weeks, and the mean temperature of February 2008 was 
lower than before and after the year (Fig. S1). Among the hardest hit areas was the forest ecosystem of Chebaling 
at Nanling Mountain which was severely damaged by a freezing rain and ice accumulation. Forest destruction 
between 500 and 1300 meters in elevation at Nanling, north Guangdong was quantified. There were four observed 
types of damage to the trees, which including being “broken off ”, “bending”, “lodging” and “beheaded”. Most 
damaged trees were “broken off ”, accounting for 88% of the total in the Slash Pine Pinus elliottii stand, and 64% 
in the broadleaved stand14. Su et al. reported that tree damage differed with species and DBH size classes, with the 
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most severely damaged tree members of Fagaceae in Chebaling16. The trees with a DBH below 9.0 cm were mostly 
“broken off ” while those with DBH over 9.0 cm were mostly “beheaded”14.

Bird and vegetation surveys.  Based our fixed monthly monitoring activities from 2007 to 2009 at 
Chebaling, the 2008 ice storm presented an unique opportunity to study the effects of EWE-induced damages on 
bird reassembly. A before–after/control–impact (BACI) method39 in which both bird community and vegetation 
characteristics were simultaneously measured at independent sites was used to assess the forest community and 
structure. Bird assemblages were monthly censused repeatedly both before (from Jan to Dec 2007) and after (from 
March 2008 to March 2009) the storm event. Using fixed point counts and line transects, points were established 
along three preexisting trails, with each trail consisting of 10 sampling points at least 250 m from each other87. The 
censuses were initiated at sunrise and terminated before 10:30 a.m. on windless and rainless days. Within a 25 m 
radius plot, two observers simultaneously detected all birds by either visual or auditory detections lasting 10 min. 
We also recorded foraging height (when seen) and activity (i.e. calling, flying, perching, foraging, nesting, and 
flocking) of all individuals44,64,67, which permitted us to directly evaluate whether vegetation structural changes 
caused by the storm affected bird behavior, such as foraging strategy.

Vegetation structures were first sampled within quadrats (10 ×  10 m) around each bird count points at April 
and October during 2007, and replications were made at the same month during 2008. In each quadrat, the fol-
lowing variables were measured by a botanist, and recorded by another simultaneously: (i) DBH and height of all 
arborous tree species (woody plants with DBH > 1 cm, defined as 1.3 m); (ii) percentage of tree canopy cover (Can 
Cov), using a spherical densitometer, following Zhang et al.44; (iii) percentage of shrub cover (Shr Cov, woody 
plants with DBH < 1 cm) and percent herb cover (Her Cov, non-woody plants with height< 1 m); (iv) abundance 
of dead trees (NTD); (v) leaf litter depth (LLD, average of 10 readings from 10 random locations using a ruler). 
For statistical purposes, the vertical distribution of tree species was assigned to one of three classes: < 3.0 m, 
3.0–12.0 m, and > 12.0 m. The quadrat surveys were conducted at least 10 m away from the birding transects and 
points. Although vegetation sampling plots were of 10 m ×  10 m quadrat, we assumed that they correctly reflect 
vegetation structure within the bird count points of 25 m radius.

Species characterizations by different functional traits.  To facilitate comparing avifaunal changes 
before and after the storm, species assignments to ecological categories/functional guild were based on the data-
sets of Zhao88 and Zhang et al.44,55, and with updates based on prior field experience. Each species was assigned 
to one mutually exclusive category with respect to five ecological characteristics: habitat preference, dietary guild, 
social flocking, migratory status and human tolerance. According to their primary use of habitat type and struc-
ture for nesting and movement, species were first categorized into one of five habitat preferences: “edge species 
(ES)”; “edge-tolerant forest species (ETF)”; forest specialist (FS)”; “generalist (G)”; “open-habitat species (OS)”. 
Species were then allocated one of ten dietary guilds: “arborous foliage glean insectivore (AFGI)”; “arborous 
foliage glean insectivore-frugivore (AFGIF)”; “arboreal frugivore–predator (AFP)”; “bark-gleaning insectivore 
(BGI)”; “miscellaneous insectivore-piscivore (MIP)”; “nectarivores-insectivore-frugivore (NIF)”; “sallying insec-
tivore (SI)”; “terrestrial frugivore (TF)”; “terrestrial insectivore (TI)”; “terrestrial insectivore-frugivore (TIF)”. 
Species were also assigned to one of four categories of migration status: “permanent resident (R)”, “winter visitor 
(W)”, “summer visitor (S)”, and “passage migrant (P)”. Flocking guilds consisted of three categories: “Non-flocking 
species (NON)”; “monospecific flock participants (MONO)” and “mixed-species flock participants (FLOCK)”. 
Human tolerance consisted of three categories: “vulnerable to human disturbance (VUL)”; “resistant to human 
disturbance (RES)” and “moderate susceptibility (MODER)”. For a complete list of species with functional traits 
and data, see Supplementary Information (Table S1).

Data analysis.  All data sets of variables were examined for normality using the Kolmogorov–Smirnov 
Test. Then non-parametric Wilcoxon Signed Ranks Test were used for Two-Related-Sample concerning veg-
etation characteristics data; while Paired T-Test was used to analyze differences in relative abundance of bird 
functional-guild with STATISTICA 7.1 (StatSoft. inc, Tulsa, USA). To compare bird assemblages between pre- 
and post-storm, we first assessed whether our sampling effort was sufficient to represent the species richness of 
each period. Rarefaction analysis was used to compare rates of species accumulation for point count data based 
on a Monte Carlo simulation procedure (1000 runs) implemented with EcoSim 7.2 (Acquired Intelligence & 
Kesey-Bear Inc, Vermont, USA). Secondly, an estimate of the “true” species richness was calculated by EstimateS 
Win 8.2.0 (University of Connecticut, Storrs, USA), using the mean of the nine commonly employed nonpara-
metric estimators: ACE, ICE, Chao1, Chao2, Jack1, Jack2, Bootstrap, MMruns and MMmeans.

At the transect level, regression plots obtained from Generalized Linear Model Fit were used to identify the 
storm severity that affected bird population fluctuation (e.g. rare species vs. common species, variables were 
log-transformed [log (x +  1)] and down weighted for rare species and dominant species), while simultaneously 
controlling for potential spatial non-independence of transects with sampling point nested in pre vs. post storm 
as a random effect. For every species, we calculated the mean number of individuals counted at each sampling 
point, and compared population changes in response to the storm. We also constructed a guild matrix by count-
ing the number of species in each guild (species that were recorded only once were excluded), especially for 
habitat preference, dietary guild, flocking behaviour, migration status and human tolerance, which was used to 
test whether bird population declines were affected by specific ecological or functional traits. Similarly, perching 
height and substrate were also compared to examine niche shift/behavioral adaptations of bird species, and the 
indirect effect of the storm on canopy vegetation structure. Flocking propensity of a species was defined as the 
percentage of individuals in flocks divided by the total number of foraging birds sighted in all point counts64. All 
statistical analyses were carried out using STATISTICA 7.1, and all figures were plotted using OriginPro8.SR3.
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To determine the response of forest birds with specific ecological strategy or functional traits to the wide-
spread changes in vegetation structure following the storm, we used multivariate analyses to relate the data on 
bird abundances at the points to vegetation variables in CANOCO 4.5 (Biometris–Plant Research International, 
Wageningen, Netherlands). A preliminary detrended correspondence analysis (DCA) showed a maximum gra-
dient length of 6.931 for pre-storm and 7.596 for post-storm, which suggested a unimodal distribution, and 
required a canonical correspondence analysis (CCA). CCA can be represented by joint biplots of the species and 
site ordination scores in which quantitative environmental variables are depicted as arrows (i.e. distance and 
angle of species scores from the center point on the plot indicate strength of environmental preferences) and 
binary environmental variables are shown as centroids. The significance of the CCA ordination of species–hab-
itat relationships was investigated by performing a randomization test on the predicted relationships (Monte 
Carlo Random Permutations, n =  499). To optimize the representation of species, axis scores were rescaled using 
inter-species distances and biplot-scaling.
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