Skip to main content
. Author manuscript; available in PMC: 2017 Mar 1.
Published in final edited form as: Circ Cardiovasc Imaging. 2016 Mar;9(3):e004038. doi: 10.1161/CIRCIMAGING.115.004038

Table 5.

Univariate and multiple regression models to assess relationships between parameters of LV remodelling and flow parameters. In univariate models only significant associations (p<0.05) are shown. LVMI-I = Left ventricular mass index, RWM = Relative wall mass, WSS = wall shear stress

Model Remodeling
parameter
Independent variable Estimate p-value
Univariate models:

linear regression LVM-I vortical flow formation 10.94 ± 4.54 0.0213
normalized flow displacement, S2 172.00 ± 81.04 0.0410
normalized flow displacement, S3 185.61 ± 62.94 0.0056
WSSpeak, S2 23.47 ± 10.15 0.0268

linear regression RWM vortical flow formation 0.18 ± 0.07 0.0115
eccentricity 0.29 ± 0.13 0.0270
normalized flow displacement, S2 3.65 ± 1.11 0.0023
normalized flow displacement, S3 2.65 ± 0.94 0.0076

logistic regression LV-remodeling vortical flow formation 0.92 ± 0.42 0.0285
normalized flow displacement, S2 16.53 ± 8.28 0.0459

Final multiple models, after stepwise selection:

linear regression LVM-I age* −0.48 ± 0.33 0.15
systolic blood pressure* −0.24 ± 0.26 0.36
aortic orifice area* −13.84 ± 7.11 0.0611
normalized flow displacement, S3 195.40 ± 65.82 0.0058

linear regression RWM age* −0.003 ± 0.005 0.50
systolic blood pressure* 0.002 ± 0.003 0.55
aortic orifice area* −0.28 ± 0.10 0.0058
normalized flow displacement, S3 2.01 ± 0.87 0.0283
WSSpeak, S2 −0.29 ± 0.15 0.0691

logistic regression LV-remodeling age* 0.05 ± 0.04 0.27
systolic blood pressure* 0.004 ± 0.03 0.87
aortic orifice area* −2.27 ± 0.97 0.0195
*

parameter forced into the model