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an orchestrated dance leading to
mitochondrial degradation
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Abstract

The quality of mitochondria, essential organelles that produce ATP
and regulate numerous metabolic pathways, must be strictly
monitored to maintain cell homeostasis. The loss of mitochondrial
quality control systems is acknowledged as a determinant for
many types of neurodegenerative diseases including Parkinson’s
disease (PD). The two gene products mutated in the autosomal
recessive forms of familial early-onset PD, Parkin and PINK1, have
been identified as essential proteins in the clearance of damaged
mitochondria via an autophagic pathway termed mitophagy.
Recently, significant progress has been made in understanding
how the mitochondrial serine/threonine kinase PINK1 and the E3
ligase Parkin work together through a novel stepwise cascade to
identify and eliminate damaged mitochondria, a process that relies
on the orchestrated crosstalk between ubiquitin/phosphorylation
signaling and autophagy. In this review, we highlight our current
understanding of the detailed molecular mechanisms governing
Parkin-/PINK1-mediated mitophagy and the evidences connecting
Parkin/PINK1 function and mitochondrial clearance in neurons.
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Mitochondria and Parkinson’s disease

After symbiosis of a-proteobacteria in pre-eukaryotic cells, mito-

chondria became essential organelles in eukaryotic cells. They not

only generate ATP through an electron transport chain system, but

also function as scaffolds for many cellular metabolic pathways

such as iron-sulfur cluster biogenesis, amino acid synthesis and

lipid metabolism, and regulation of apoptosis. However, in compen-

sation for the cellular energy production and the control of cell

homeostasis, mitochondria are presented with a number of

obstacles that must be overcome. One of the obstacles is the

generation of ROS as a byproduct of the oxidative phosphorylation

process, which damages proteins, lipids, and mitochondrial DNAs.

Although minor amounts of damage to the mitochondria can be

nullified by the redistribution of recycled contents via fusion/fission

cycles [1] and/or by intraorganellar quality control such as proteo

lysis [2], excessive damage will disrupt the membrane potential

across the inner membrane, eventually leading to cell death. For

these reasons, dysfunctional mitochondria (which sporadically

appear with some frequency) with significantly impaired membrane

potential must be properly eliminated; otherwise, the condition can

lead to a deterioration in cell homeostasis and potentially to the

development of neurodegenerative disorders. Of note, post-mitotic

neuronal cells in particular require robust surveillance systems for

assessing mitochondrial quality due to their high energy demand.

PD is a highly prevalent neurodegenerative disorder (affects ~2%

of those 65 years of age and older) that is clinically characterized by

movement-related symptoms including rigidity, tremor, postural

instability, and gait disturbance. The PD motor symptoms result

from the massive degeneration of dopaminergic neurons in the

substantia nigra, causing a 70–80% depletion in dopamine levels

[3]. In the remaining neuronal cells, cytosolic protein aggregates

called Lewy bodies, the primary structural component of which is

a-synuclein, can be observed [4]. Since the majority of PD is

sporadic, it is quite difficult to ascertain a clear pathogenic mecha-

nism. Despite occurring with much less frequency, however, autoso-

mal dominant and recessive genetic forms of PD have been identified

among early-onset parkinsonism patients. Over the past 15 years,

genetic researchers have identified a diversity of genes that either

contribute to monogenic forms of PD or contribute as risk factors to

the development of the disorder [5]. For example, the genes SNCA

(a-synuclein) and LRRK2 function in autosomal dominant PD, while

the genes PARKIN, PINK1, and DJ-1 are causal for recessive PD. To

date, nearly 30 distinct chromosomal regions implicated in the

complex etiology mechanism have been identified even in the famil-

ial cases of PD; however, recent molecular studies have unequivo-

cally shown the critical roles played by Parkin and PINK1 [6].

Parkin was first identified in 1998 as a gene product mutated in

recessive forms of familial parkinsonism in Japanese patients [7].
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PARKIN encodes a 465-aa protein that belongs to the E3 ubiquitin

ligase enzyme family [8–10]. To date, more than 100 loss-of-

function mutations have been identified in the PARKIN gene with

many mutations prevalent among familial cases in which onset of

the disorder occurs in those younger than 30 years old.

The second most common gene product associated with

autosomal recessive juvenile parkinsonism is PINK1, which was

initially identified in 2001 from an Italian family [11] and then later

described in several European families [12]. PINK1 is a 581-aa

protein expressed ubiquitously [13]. According to the amino acid

sequence, PINK1 harbors a mitochondrial targeting sequence

followed by a hydrophobic segment at the N-terminus and a large

kinase domain at the C-terminus.

Potential linkage between mitochondrial dysfunction and PD

emerged from multiple lines of evidence [14]. For example, uptake of

MPTP (a byproduct of “synthetic heroin”) [15], paraquat [16], and

rotenone [17] (chemical herbicide and pesticide), all of which cause a

deficiency in mitochondrial respiratory chain function, led to parkin-

sonian symptoms in humans and animal models. Recently, another

causative gene of the autosomal dominant form of familial PD,

CHCHD2, was identified from a genome-wide linkage analysis [18].

The gene encodes a 151-aa protein with twin CX9C motifs that local-

ize the protein in the mitochondrial intermembrane space. Interest-

ingly, the mitochondrial intermembrane space assembly (MIA)

pathway involved in import of the precursor and subsequent matura-

tion of Mix17 (the yeast homologue of CHCHD2) is related to electron

transfer to the respiratory chain complex [19,20]. Although further

functional studies are required, CHCHD2 is the first mitochondrial

causal gene product, mutation of which can affect mitochondrial

integrity through functional depression of the respiratory complexes.

In addition, Drosophila studies have shown that the loss of either

parkin or pink1 function results in phenotypes similar to mitochon-

drial impairments such as muscle degeneration and male sterility

[21–24]. Overexpressed Parkin can partially compensate for some

pink1 loss-of-function (i.e. mitochondrial abnormality). This

suppression is not derived from the simple protection of apoptotic

cell death. Mutant flies that have lost both parkin and pink1 do not

exhibit stronger phenotypes than those seen with either mutant

alone. These in vivo studies strongly suggest that Parkin and PINK1

function in a common pathway that maintains mitochondrial integrity.

Cytosolic E3 ligase Parkin is recruited to damaged
mitochondria for autophagic degradation

Ubiquitin plays pivotal roles in many different cellular functions

including protein degradation, signaling, endocytosis, and the

immune system. While E1s (ubiquitin-activating enzymes) and E2s

(ubiquitin-conjugating enzymes) activate ubiquitin via thioester

intermediates, E3 ubiquitin ligases, the final enzymes in the ubiqui-

tination cascade, transfer the ubiquitin moiety from the E2 to a

lysine residue on protein substrates [25–27]. While at least 1 E1 and

about 40 E2s are encoded in the human genome, the abundance and

diversity of E3 ligases (roughly 500–1,000, but we cannot determine

the exact number because of subset diversity) is striking with an

even greater number of proteins thought to undergo ubiquitination.

This abundance indicates that E3 ligases are the key factors in

providing the substrate specificity essential to the ubiquitin

network. Because ubiquitin itself can also serve as a ubiquitination

site to form polymeric ubiquitin chains, different chain linkages can

be formed. MS-based proteomic and biochemical approaches

showed that all lysine residues (K6, K11, K27, K29, K33, K48, and

K63) [28] and an N-terminal methionine residue [29] can serve as

Glossary

AAA ATPases associated with various cellular activities
APC/C anaphase-promoting complex/cyclosome
ATG autophagy related
ATP adenosine triphosphate
CCCP carbonyl cyanide m-chlorophenyl hydrazine
CHCHD2 coiled-coil-helix-coiled-coil-helix domain-containing 2
CRISPR clustered regularly interspaced short palindromic

repeat
DFCP1 double FYVE domain-containing protein 1
DUB deubiquitinating enzyme
ER endoplasmic reticulum
FACS fluorescence-activated cell sorting
GABARAP GABA(A) receptor-associated protein
GAP GTPase-activating protein
GTP guanosine triphosphate
HECT homologous to the E6AP carboxyl terminus
IBR in-between-RING
ITC isothermal titration calorimetry
KO knockout
LIR LC3-interacting region
LRRK2 leucine-rich repeat kinase 2
MDV mitochondrial-derived vesicle
Mfn1/2 mitofusin-1/2
MIA mitochondrial intermembrane space assembly
Miro1 mitochondrial Rho 1
MiT/TFE microphthalmia/transcription factor E
MPP mitochondrial processing peptidase
MPTP 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
MS mass spectrometry
mTOR mammalian target of rapamycin
NBR1 neighbor of BRCA1 gene 1
NDP52 nuclear dot protein 52
NDUFA10 NADH:ubiquinone oxidoreductase subunit A10
NMR nuclear magnetic resonance
PAGE polyacrylamide gel electrophoresis
PARL Presenillin-associated rhomboid-like
PD Parkinson’s disease
PE phosphatidylethanolamine
PI3K phosphatidylinositol 3-kinase
PI3P phosphatidylinositol 3-phosphate
PINK1 PTEN-induced putative kinase 1
RBR RING-in-between-RING
REP repressor element of Parkin
RING really interesting new gene
ROS reactive oxygen species
shRNA small hairpin RNA
TAX1BP1 Tax1 (human T-cell leukemia virus type I) binding

protein 1
TBK1 TANK1-binding kinase1
TFEB transcription factor EB
TIM translocase of the inner mitochondrial membrane
TOM (TOMM) translocase of outer mitochondrial membrane
UBD ubiquitin binding
Ubl ubiquitin-like
UBR ubiquitin protein ligase E3 component n-recognin
ULK1 unc-51 like autophagy activating kinase 1
UPRmt mitochondrial unfolded protein response
USP ubiquitin-specific protease
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ubiquitination sites. In fact, the K48-linked chain, the most common

and abundant ubiquitin chain, has been identified as a signal for

proteasome-mediated degradation, while the K63-linked chain

induces clearance of the substrate protein via the autophagy-lyso-

some pathway [30–32] and activates the DNA damage response

[33]. The E3 ligases are classified into at least four types: HECT

(homologous to the E6AP carboxyl terminus), RING (really interest-

ing new gene), U-box, and RBR (RING-in-between-RING). Although

RBR-type ligases contain two RING domains (RING1 and RING2),

they receive ubiquitin on a cysteine in the RING2 domain via a

thioester intermediate like HECT, functioning as HECT/RING

hybrids [34]. Another feature of RBR ligases is that their ligase

activities are normally autoinhibited.

Parkin is an RBR-type E3 ligase that normally localizes in the

cytosol as an autoinhibited form. Parkin was first proposed to

ubiquitinate misfolded proteins for proteasome-dependent degrada-

tion. While this hypothesis may have explained the accumulation of

protein aggregates in neuronal cells of PD patients, it could not

explain the relationship between Parkin and mitochondrial integrity

observed in the Drosophila studies.

In 2008, Richard Youle’s group reported that cytosolic Parkin is

recruited to damaged mitochondria for its degradation through an

autophagy pathway, which undoubtedly opened a new research

field termed Parkin-mediated mitophagy [35]. When mitochondria

lose their membrane potential following the addition of a chemical

compound like CCCP (see Box 1), cytosolic Parkin is recruited to

Box 1

We would like to highlight the various tools that have been utilized so far in elucidating the mechanism of Parkin-/PINK1-mediated mitophagy.

1 Chemical compounds triggering Parkin translocation:
a. CCCP

Carbonyl cyanide m-chlorophenyl hydrazine (CCCP) is an ionophore that disrupts the mitochondrial proton gradient by allowing protons to cross
lipid bilayers. CCCP is the chemical compound most frequently used to trigger PINK1 accumulation following Parkin translocation. However, CCCP
affects lysosomal and Golgi pH and LC3 lipidation in a Parkin-independent manner [158–161]. Therefore, interpretation of data on autophagy func-
tion during CCCP-induced mitophagy should be carefully considered.

b. Valinomycin
Valinomycin is a potassium-selective ionophore that accelerates the transport of potassium ion across the membrane. In the presence of valino-
mycin, mitochondria take up potassium at the expense of the proton gradient, resulting in dissipation of the membrane potential. Similar to CCCP,
valinomycin induces extensive PINK1 accumulation and Parkin translocation.

c. Antimycin A
Antimycin A binds to the Qi site of cytochrome c reductase in complex III and inhibits electron transfer from cytochrome b to cytochrome c, which
leads to a collapse in the membrane potential [162]. Antimycin A alone or in combination with oligomycin (an inhibitor of the FoF1 ATP synthase)
also induces Parkin translocation.

d. Paraquat
Paraquat is a chemical herbicide that generates ROS. Exposure to paraquat increases the risk for Parkinson’s disease. Cultured cell studies showed
that 2 mM paraquat treatment for 24 h [35] or 10 mM paraquat treatment for 6 h [163] induces Parkin translocation.

e. Rotenone
Rotenone is a complex I-specific inhibitor that shuts off the supply of electrons to complex II. Rotenone competes with MPP+ (the oxidized product
of MPTP that causes parkinsonism) for complex I activity [164]. Rotenone induces PINK1 accumulation on the mitochondria [62].

2 Mito-KillerRed
A genetically encoded photo-sensitizer named KillerRed is a dimeric red fluorescent protein developed from the hydrozoan chromoprotein anm2CP
[165]. Photo-activation of KillerRed with light at 540–580 nm can generate ROS. Therefore, mitochondria-targeted KillerRed (mito-KillerRed) can induce
ROS-mediated damage in the matrix in a spatiotemporally controlled manner that more closely mimics physiological conditions than CCCP treatment.
Photo-activating mito-KillerRed in a specific area was reported to induce local Parkin recruitment [156,166–168].

3 DOTC
DOTC is an ornithine transcarbamylase mutant lacking 85 aa (residues 30–114) from the N-terminus and is a model substrate for activating the mito-
chondrial unfolded protein response (UPRmt) in mammalian cells [169] and in flies [170]. It can be targeted to the mitochondria as well as wild-type
OTC, but forms insoluble aggregates in the matrix. When expressing DOTC in cultured cells, PINK1 accumulation and subsequent Parkin translocation
were observed without the loss of membrane potential, probably due to clogging of the TIM23 translocation channel [171].

4 Mito-Keima
Keima is a novel fluorescent protein probe used to detect autolysosome formation. While Keima has an emission peak at 620 nm, the excitation spec-
trum varies under different pH conditions (Ex 440 nm in a neutral state and Ex 586 nm in an acidic state). Therefore, Keima fused with a mitochondrial
matrix targeting signal (mito-Keima) in conjunction with fluorescent microscopy can function as a reporter for delivery of damaged mitochondria to the
lysosome [172]. Furthermore, when combined with FACS, a small amount of mitophagy can be monitored quantitatively in an unbiased way [131,147].

5 Phos-tag PAGE
Phos-tag is a molecule that selectively binds to phosphorylated ions [173]. SDS–PAGE containing an acrylamide-pendant Phos-tag ligand (Phos-tag
PAGE) can separate phosphorylated and non-phosphorylated forms of proteins such as PINK1, Parkin, and ubiquitin [62,68].

6 Recombinant Ser65-phosphorylated ubiquitin
Using the amber suppression technique, it is possible to incorporate phosphoserine (as well as its non-hydrolyzable analog) at a desired position in the
target protein in bacterial cells, for example, Ser65-phosphorylated ubiquitin [174–176]. Thus, milligram quantities of the recombinant protein free from
contamination of the non-phosphorylated form can be prepared, as previously used to demonstrate Parkin activation [79].

7 Phosphorylated ubiquitin antibody
Novel antibodies recognizing Ser65-phosphorylated ubiquitin, but not non-phosphorylated ubiquitin, confirm that the phosphorylated ubiquitin signal
increases with mitochondrial stress in a PINK1-dependent manner under endogenous conditions. Importantly, the signal is detected in human post-
mortem brain sections of the substantia nigra and increases with age and disease. Therefore, this can be used as a potential biomarker for PD [177].
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the damaged mitochondria. Once Parkin reaches the mitochondrial

outer membrane, its E3 activity is fully activated [36] and various

mitochondrial outer membrane proteins are ubiquitinated [37]

(the detailed mechanism is discussed later). Because of the robust

ubiquitination, p97 and proteasomes are also recruited to mito-

chondria and a portion of the outer membrane proteins, such as

Mfn1/Mfn2, is thought to be degraded via the proteasome [38].

Mfn1/Mfn2 are integrated in the outer membrane exposing the

large GTPase domain to the cytosol for involvement in the

mitochondrial fusion [39]. While the necessity of proteasomal

degradation for downstream autophagy activity and clearance of

damaged mitochondria remains a matter of debate [40,41], rapid

poly-ubiquitination of Mfn1/Mfn2, which occurs within 1 h of

CCCP treatment, is important to segregate damaged mitochondria

from the healthy mitochondrial network [42]. Hexameric AAA+

ATPase p97 (also known as VCP) is a multifunctional protein

primarily involved in ubiquitin-dependent proteolysis [43]. While

different cofactors that bind to p97 specify the distinct localization

and function [44], the Npl4/Ufd1 heterodimer contributes to some

degree to the degradation of outer membrane proteins during

mitophagy [45,46]. In yeast, another cofactor termed Vms1 was

reported to recruit Cdc48 (yeast homologue of p97) to mitochon-

dria following mitochondrial oxidative stress [47]. Vms1 is highly

conserved from yeast to humans, but mammalian Vms1 function

especially in Parkin-mediated mitophagy remains unclear. In addi-

tion to Mfn1/Mfn2, Miro1 (involved in mitochondrial transport

along microtubules), MitoNEET/CISD1 (a 2Fe-2S containing

protein), and TOMM70 (an import receptor of mitochondrial

precursor proteins), all of which are integral mitochondrial

proteins, were identified in quantitative proteomic approaches as

proteins that are significantly reduced in response to Parkin

recruitment [41,48]. Miro1 contains GTPase and EF-hand domains

that are crucial for connecting mitochondria to the microtubule

network through associations with its binding partners, Milton

and kinesin heavy chain. Studies using primary neurons revealed

that rapid Miro1 degradation arrests microtubule-dependent mito-

chondrial trafficking, thereby preventing damaged mitochondria

from moving, especially to the axon terminal [49]. Although

Mfn1/Mfn2 and Miro1 were reported to be poly-ubiquitinated by

endogenous Parkin [38,49–52], the physiological importance

underlying degradation of the other Parkin substrates is unknown.

Because a broad group of outer membrane proteins are ubiquiti-

nated by both endogenous and exogenous Parkin following CCCP

treatment [37], it is clear that Parkin does not possess rigorous

substrate specificity. This characteristic is compatible with a posi-

tive feedback ubiquitination amplification model (discussed later).

Prolonged CCCP treatment (for 24–48 h) selectively degrades the

mitochondria in an autophagy-dependent manner. Since the first

report by Richard Youle’s group, many other groups have con-

firmed Parkin recruitment to damaged mitochondria and have

elucidated the molecular mechanism leading to Parkin recruitment

and the subsequent clearance of mitochondria.

PINK1 as a mitochondrial stress sensor

PINK1 functions upstream of Parkin recruitment [36,53–56].

Following disruption of the mitochondrial membrane potential, the

serine/threonine kinase PINK1 switches the import pathway from

the inner membrane to the outer membrane where associations

with the TOM complex stabilize PINK1 on the outer membrane

[57] (Fig 1). The TOM complex is a major protein translocator

complex consisting of multi-subunits [58,59]. Knockout (KO) stud-

ies revealed that one of the subunits of the TOM complex, TOMM7,

is essential for inserting PINK1 into the outer membrane via the

TOM complex (Fig 1). TOMM7-KO cells though retain normal

protein import efficiencies into the matrix or inner membrane from

the cytosol [60]. When PINK1 is stabilized on the outer membrane,

it forms a large complex (~700 kDa on blue-native PAGE) compris-

ing the TOM machinery and at least two PINK1 molecules [57,61].

PINK1 dimers contribute to the intermolecular autophosphoryla-

tion of residues S228 and S402 that will be conformationally close

to one another [62,63] (Fig 1). Inhibiting autophosphorylation

prevents Parkin translocation despite accumulation on the outer

membrane, suggesting that PINK1 is not only quantitatively but

also qualitatively regulated. Unexpectedly, residues 34–90, rather

than the PINK1 transmembrane segment, are required for outer

membrane localization in damaged mitochondria. This unique

signal presumably interacts with the TOM complex when the

primary targeting signal is blocked [64]. The “association” of

PINK1 with the TOM complex though is dispensable for Parkin

recruitment to the mitochondria since ectopically targeted PINK1

can recruit cytosolic Parkin to other organelle membranes, such as

the peroxisome or lysosome, that lack the TOM machinery [57].

Furthermore, this also suggests that mitochondrial proteins (if they

are specifically on mitochondria) are dispensable; the exceptions

are PINK1 and the import machinery that is essential for PINK1

outer membrane localization for Parkin translocation.

Molecular mechanism of Parkin recruitment

What molecular mechanism drives Parkin recruitment to the

damaged mitochondria? The answer of this key question has been

solved incrementally. The first clue was that PINK1 kinase activity

is essential for Parkin recruitment. Kinase-inactivated PINK1

cannot recruit Parkin even when it accumulates on the mitochon-

dria. Therefore, Parkin stable recruitment is mediated by the enzy-

matic (phosphorylation) activity of PINK1. The second clue came

from the fact that Parkin E3 ligase activity itself is also essential

for Parkin stable recruitment. As Parkin is a member of the RBR-

type E3 ligases, a ubiquitin molecule is transferred from the E2 to

the conserved and catalytic Cys431 of Parkin via thioester

formation before loading ubiquitin onto the substrate. A Parkin

C431A mutation inhibits stable translocation to the damaged

mitochondria [65–67]. Furthermore, monitoring ubiquitination of

N-terminally fused GFP as a pseudosubstrate revealed that patho-

genic mutations such as K161N, K211N, and T240R that impede

Parkin translocation to mitochondria also disable the E3 ligase

activity [36,67].

In 2012, the Hattori and Muqit groups independently reported

that PINK1 phosphorylates Ser65 in the Ubl (ubiquitin-like) domain

of Parkin. Shiba-Fukushima et al [68] monitored the phosphoryla-

tion status of Parkin by phos-tag PAGE (see Box 1) following disrup-

tion of the membrane potential and found that the Parkin Ser65

residue was phosphorylated in a PINK1-dependent manner.

ª 2016 The Authors EMBO reports Vol 17 | No 3 | 2016

Koji Yamano et al The ubiquitin signal and autophagy EMBO reports

303



Kondapalli et al tested whether catalytically active PINK1 [69]

directly phosphorylates various PD-associated proteins in vitro and

identified Parkin Ser65 as a PINK1 phosphorylation site. Muqit and

our groups also observed that phosphorylated Parkin enhances E3

ligase activity, consistent with the idea that Parkin ligase activation

and recruitment are coupled [70,71]. However, observations that

Parkin translocation was not completely inhibited by a phosphoryla-

tion-deficient S65A mutation raised the possibility that another

PINK1 substrate was needed for Parkin translocation.

Early in 2014, three groups independently reported that

PINK1-mediated phosphorylation of ubiquitin at Ser65 plays an

important role in Parkin activation [72–74]. Similar findings were

reported later [67,75]. Phosphorylation and ubiquitination are

two major post-translational modifications, and this finding

represented the first example in which ubiquitin, a post-transla-

tional modifier itself, also underwent phosphorylation [76]. Kane

et al first found that when overexpressed, all Ser/Thr residues

conserved in human and Drosophila Parkin and even the whole

Ubl domain where the Ser65 residue resides are not essential for

the recruitment, and then identified a PINK1-dependent phospho-

rylated ubiquitin peptide by MS. Kazlauskaite et al and Koyano

et al also utilized MS approaches. The latter group built on

structural and sequence similarities between ubiquitin and the

Parkin Ubl domain to facilitate MS-based confirmation of

ubiquitin Ser65 phosphorylation. These groups reached the

following conclusions: Endogenous PINK1 phosphorylates

ubiquitin at Ser65 and phosphorylated ubiquitin activates

Parkin E3 ligase activity [67,75,77]. Both overexpression of a

phosphorylation-deficient S65A ubiquitin mutant [74] and

replacement of endogenous ubiquitin with a S65A mutant

[78,79] inhibited Parkin translocation, indicating that ubiquitin

phosphorylation by PINK1 is essential for Parkin stable recruit-

ment. Furthermore, since PINK1 phosphorylates poly-ubiquitin

chains [67,75,80] and phosphorylated Parkin tightly binds phos-

phorylated poly-ubiquitin chains [67,78,79], a positive feedback

ubiquitination cycle that accelerates both Parkin translocation

and poly-ubiquitin chain formation on the surface of the

damaged mitochondria was proposed [67,79] (Fig 2). A few

hours of depletion of the mitochondrial membrane potential can

recruit most of the cytosolic Parkin onto the mitochondria even

when overexpressed. Only a positive feedback amplification

process can explain this robust translocation mechanism.

Several deubiquitinating enzymes (DUBs) that counteract Parkin

E3 ubiquitin ligases by catalyzing the removal of ubiquitin from

substrates have been reported to regulate mitophagy. USP30 is a

mitochondria-anchored DUB that specifically cleaves Parkin-

generated K6- and K11- and K63-linked ubiquitin chains on mito-

chondria [67,81] and in vitro [75]. USP30 overexpression inhibits

mitophagy, whereas USP30 shRNA or overexpression of enzymati-

cally inactive USP30 enhances mitophagy, indicating that USP30

directly opposes Parkin function. Moreover, knockdown of Droso-

phila USP30 largely rescued mitochondrial morphology defects in

the flight muscles caused by parkin or pink1 mutants and reversed

defects in dopamine levels against paraquat treatment in vivo [82].

USP8, which normally regulates endosomal trafficking [83], has also

been proposed as a regulator of Parkin recruitment to mitochondria
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Figure 1. PINK1 accumulation in the outer membrane of the damaged mitochondria.
The newly synthesized PINK1 precursor is targeted to the damaged mitochondria. Because of the loss of membrane potential, the PINK1 precursor is not allowed to enter the
inner membrane via the TIM23 complex. Instead, the PINK1 precursor is inserted into the outer membrane through the TOM complex in a TOMM7-dependent manner.
PINK1 stabilized on the outer membrane then forms a large complex with the TOM complex and undergoes intermolecular autophosphorylation at residues S228 and
S402. 5, 6, 7, 20, 22, 40, and 70 denote TOMM5, TOMM6, TOMM7, TOMM20, TOMM22, TOMM40, and TOMM70, respectively.
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[84]. siRNA knockdown of USP8 impaired the recruitment of Parkin

to damaged mitochondria and up-regulated Parkin levels [84].

While USP8 deubiquitinates the K6-linked ubiquitin chain on

Parkin, it does not hydrolyze ubiquitinated chains on mitochondrial

substrates. Overexpression of USP15 was reported to reduce

K48- and K63-linked ubiquitin chains on damaged mitochondria in

response to mitophagy [85]. The antagonistic relationship between

Parkin and USP15 was further investigated in a fly model in vivo.

The physiological roles of DUB, in particular how Parkin and DUBs

coordinately regulate mitochondrial fidelity, however, remain to be

fully investigated.

Structural insights into Parkin E3 activity

Parkin structurally consists of Ubl, RING0 (also referred to as

unique Parkin domain/UPD), RING1, IBR (in-between-RING), and

RING2 domains. Crystal structures including full-length rat Parkin
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Figure 2. Positive feedback ubiquitination cycles induced by Parkin and ubiquitin chain formation on damaged mitochondria.
Although most of the ubiquitin diffuses in the cytosol, a fraction should reside on the outer membrane of healthy mitochondria since the ubiquitin system also
contributes to the turnover of mitochondrial proteins under normal conditions [178] (Step 1). Following dissipation of the membrane potential, PINK1 is stabilized on
the damaged mitochondria (Step 2). PINK1 can then phosphorylate the ubiquitin that is conjugated to the mitochondrial proteins, or PINK1 may also phosphory-
late Ser65 of cytosolic Parkin (Step 3). Of note, phosphorylated ubiquitin stably stays on the mitochondria because hydrolysis of phosphorylated ubiquitin chain by DUBs
is impaired [75]. Through higher affinity with phosphorylated ubiquitin, cytosolic Parkin is recruited to and retained on the mitochondria (Step 4). PINK1 further
phosphorylates Parkin on the mitochondria. PINK1 may also phosphorylate Ser65 of cytosolic ubiquitin (Step 5). The fully activated, phosphorylated Parkin can then
elongate ubiquitin chains or generate a new ubiquitinated substrate from cytosolic-free ubiquitin. In other words, cytosolic ubiquitin is recruited to the mitochon-
dria through a ubiquitination reaction by activated Parkin (Step 6). The ubiquitin on the mitochondrial substrate is phosphorylated by PINK1 (Step 7 is the next
round of the Step 3). Positive feedback amplification cycles (Steps 3–7) result in both Parkin and ubiquitin recruitment to and poly-ubiquitin chain formation on the
damaged mitochondria (Step 8).
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[86] and Ubl-deleted human Parkin [87,88] revealed an autoinhib-

ited state. The Ubl domain has a similar structural fold to ubiquitin

and the Ser65 residue phosphorylated by PINK1 is also conserved.

RING0, the zinc finger fold unique to Parkin, is connected to the Ubl

domain through a structurally disordered linker, the length and

sequence of which diverge across multiple species. Three additional

zinc finger fold domains RING1, IBR, and RING2 form a minimal

functional unit for RBR-type ligases. A conserved two-turn helix

linker termed REP (repressor element of Parkin) is found between

the IBR and RING2 domains. Based on the crystal structure, the E2

binding site in the RING1 domain is occluded by REP and the cata-

lytic Cys431 in the RING2 domain where ubiquitin is transferred

from E2 enzyme is buried in the RING0 domain. Parkin E3 ubiquitin

ligase activity was likewise reported to be normally autoinhibited by

the N-terminal Ubl domain [89]. This finding was consistent with

the improved human Parkin structure following deletion of the

linker between Ubl and RING0 [90,91]. The Ubl domain mainly

interacts with the a-helix (261–274 aa) of the RING1 domain, which

spatially blocks E2 enzyme accessibility.

Because complete activation of the Parkin E3 ligase necessi-

tates binding of phosphorylated ubiquitin, it is likely that this

binding triggers a conformational change in Parkin. However, the

interaction between Parkin and phosphorylated ubiquitin does not

utilize the catalytic Cys431 of Parkin or the C-terminal glycine

residue in ubiquitin, indicating that phosphorylated ubiquitin is

not loaded onto Parkin Cys431 for activation [67,72,75,79]. How

does phosphorylated ubiquitin bind to Parkin? Recently, five inde-

pendent groups concurrently identified Parkin amino acid residues

that are crucial for phosphorylated ubiquitin binding [90–94]. A

crystal structure of the Pediculus humanus (a species of louse

that infects humans) Parkin complexed with phosphorylated ubiq-

uitin via disulfide covalent linkages showed that A152, H304,

A307, and Y314 residues of P. humanus Parkin (corresponding to

K151, H302, R305, and Y312 residues in human Parkin, respec-

tively) form a pocket that interacts with the phosphorylated

serine in ubiquitin [93]. Site-specific photo-crosslinking methods

combined with MS and computational modeling also identified

the same binding surface between phosphorylated ubiquitin and

full-length rat Parkin [94]. When the phosphate-binding pocket is

mutated, the affinity for phosphorylated ubiquitin and Parkin

translocation onto the damaged mitochondria were impeded.

Moreover, the L283P, G284R, and C352G pathogenic Parkin muta-

tions in the IBR and RING1 domains inhibited interactions with

phosphorylated ubiquitin [94]. One of the dynamic conforma-

tional changes is that a kinked helix at Gly319 in inactivated

Parkin rearranges to form a straight long a-helix when binding to

phosphorylated ubiquitin. This affects the position of the IBR

domain, which will in turn stretch the IBR-REP linker and unlock

the inhibitory interactions between the E2 binding region and

the REP, and the interactions between Cys431 and RING0 [93].

Furthermore, the Parkin conformational change upon phosphory-

lated ubiquitin binding also enhances Parkin Ser65 phosphoryla-

tion by PINK1 [91–93]. Mutational analyses, NMR, and ITC-based

experiments showed that binding phosphorylated ubiquitin

promotes dissociation of the Ubl domain from the a-helix (amino

acids 261–274, the opposite side of the phosphorylated ubiquitin

binding region) in the RING1 domain. This further contributes to

enhanced affinity for the E2 enzyme [79,90–93]. In cells,

phosphorylation-dependent dissociation of the Ubl domain may

have additional roles in mitophagy (e.g. association of the protea-

some through Rpn13) [95].

In summary, despite structural and sequence similarities between

ubiquitin and the Ubl domain of Parkin, they function antagonisti-

cally. Binding phosphorylated ubiquitin to Parkin and dissociation

of phosphorylated Ubl from the Parkin core allosterically induce a

Parkin conformational change from the intramolecular inhibited

state to the maximal E3 active state, which was established and

quantitatively measured by proteomics [79].

In sharp contrast to Parkin, there is limited information on

the PINK1 structure. PINK1 possesses several motifs conserved

among protein kinases. Homology modeling has been used to

aid PINK1 structural prediction [96,97], but no NMR or crystal

structures of PINK1 from any species have been solved. Because

PINK1 efficiently phosphorylates ubiquitin and the Parkin Ubl

domain, it should recognize the ubiquitin-fold as a substrate.

Furthermore, Ubl or ubiquitin I44A mutations, or replacement of

amino acid residues around the I44 patch of ubiquitin with an

unnatural amino acid harboring a bulky side chain, inhibited

Ser65 phosphorylation, suggesting that this region is functionally

important [93,94].

Ubiquitin system for PINK1 degradation

As mentioned above, PINK1 is the key factor in activating the

ubiquitin system by phosphorylating both Parkin and ubiquitin in

mitophagy. In addition to this, the ubiquitin system is also essen-

tial for rapid degradation of PINK1 in healthy mitochondria.

PINK1 has a classical N-terminal mitochondrial targeting sequence

followed by a hydrophobic transmembrane segment. Once PINK1

is synthesized on cytosolic ribosomes, it is targeted to the mito-

chondria. The TOM complex recognizes the N-terminal mitochon-

drial targeting sequence and allows the substrate to cross the

outer membrane. N-terminal presequence-containing substrates

are then transferred to the TIM23 complex (protein translocator in

the inner membrane) for crossing or entering the inner membrane

[98]. In the case of the PINK1 precursor, the N-terminal prese-

quence is cleaved by MPP in the matrix, and the following

hydrophobic segment is captured by the TIM23 complex, inserted

into the inner membrane, and subjected to the second cleavage

by PARL between A103 and F104 [99–103]. Interestingly, PARL

cleavage releases the cleaved PINK1 back to the cytosol where the

newly exposed N-terminal phenylalanine residue is recognized by

UBR E3 ligases [104] and rapidly degraded by the proteasome via

the N-end rule pathway [105] (Fig 3A). Protein translocation via

the TOM/TIM23 pathway is believed to occur at the contact site

where the distance from the outer membrane to the matrix is

~50–60 amino acid residues long [106,107]. Consequently, the

large C-terminal kinase domain remains outside the mitochondria

if the transmembrane segment is arrested for an extended period

of time in the TIM23 complex. Rhomboid proteases including

PARL preferentially recognize a helix-breaking glycine-/proline-

rich segment, which is found in human PINK1 [108]. On the other

hand, a proline residue in the transmembrane segment disfavors

the lateral release from the TIM23 complex [109]. These features

may determine the unique PINK1 retrotranslocation pathway.

EMBO reports Vol 17 | No 3 | 2016 ª 2016 The Authors

EMBO reports The ubiquitin signal and autophagy Koji Yamano et al

306



Alternatively, other proteases in the mitochondria such as ClpXP

and m-AAA may also function in rapid PINK1 turnover [103]

(Fig 3A).

While most of the PINK1 is degraded by the proteasome, the

possibility that a small fraction of the PINK1 stays in the healthy

mitochondria cannot be excluded. Indeed, phosphorylation of

Ser250 in the complex I subunit, NDUFA10, is reduced in the

liver and brains of Pink1-KO mice [110]. Although whether

PINK1 directly phosphorylates NDUFA10 remains unclear,

deficiencies in complex I have been found in PD patients

[111,112]. Furthermore, the LON protease in the mitochondrial

matrix is reported to degrade PINK1 in Drosophila [113]. The

transmembrane segment and PARL cleavage site of PINK1 are

well conserved from zebrafish to humans, but less so in fly,

suggesting that the PINK1 degradation pathway varies depending

on the species (Fig 3B).

In summary, a continuous process of mitochondrial import

and degradation maintain PINK1 at extremely low levels on

healthy mitochondria. In other words, this system functions as a

sensitive sensor for the rapid detection of mitochondrial damage.
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M. musculus 91 GGAGPCGRAVFLAF-GLGLGLIEEKQA 116
R. norvegicus 91 GGAGPCGRAVFLAF-GLGLGLIEEKQA 116
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Figure 3. Ephemeral life of PINK1 in the healthy mitochondria.
(A) The newly synthesized PINK1 precursor on the cytosolic ribosomes is targeted to the mitochondria. After crossing the outer membrane through the TOM
complex, the N-terminal mitochondrial targeting sequence is cleaved by MPP in the matrix. The following transmembrane segment is recognized by the TIM23
complex and received second cleavage by PARL between A103 and F104. Most of the cleaved PINK1 is released to the cytosol where the newly N-terminal
phenylalanine residue of the cleaved PINK1 is recognized by the N-end rule UBR ligases (UBR1, UBR2, and UBR4 that preferentially recognize type-2 N-degrons) for
proteasomal degradation. A matrix ATPase associated with diverse cellular activities (m-AAA) protease is composed of AFG3L2 and paraplegin and has the active
site oriented toward the matrix. ClpXP is a matrix ATP-dependent protease composed of hetero-oligomeric ATP-binding subunits and proteolytic subunits. m-AAA and
ClpXP also participate in PINK1 degradation. Another ATP-dependent LON protease also contributes, particularly in Drosophila, to PINK1 degradation in the
matrix. As phosphorylation of NDUFA10 in the respiratory chain complex I is reduced in Pink1-KO mice, a small amount of PINK1 retained in the inner membrane
might be involved in the maintenance of complex I through phosphorylation. (B) Amino acid sequence alignment of the transmembrane region of PINK1. Amino
acid sequences of the predicted transmembrane segments (pink-colored box) from the indicated species are shown [99]. The transmembrane regions are well
conserved from zebrafish (Danio rerio) and humans (Homo sapiens), while the transmembrane segment in fly (Drosophila melanogaster) is less conserved with fewer
glycine/proline residues. The PARL cleavage site of human PINK1 between A103 and F104 is also shown.
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Autophagy

Autophagy is essential for Parkin-mediated mitochondrial degra

dation because ATG5-KO cells impede the elimination of the

damaged mitochondria even when Parkin is recruited to them [35].

Autophagy is a major intracellular degradation system that some-

times functions in consort with the ubiquitin-proteasome system

[114,115]. Both autophagy and proteasomes are well conserved in

eukaryotes, but autophagy can encapsulate cytoplasmic materials

including bigger protein aggregates and/or unwanted organelles for

bulk degradation through the fusion with the lysosome, while

proteasomes degrade ubiquitinated protein substrates singly.

Although autophagy was traditionally regarded as a non-selective

process to keep up with the demand for energy under starvation

conditions, evidence is accumulating that indicates many different

types of selective autophagy for eliminating specific unwanted

organelles, such as peroxisomes (pexophagy) and damaged

mitochondria (mitophagy), and infecting pathogens (xenophagy)

[116–118]. An astonishing number of in vivo studies indicate that

autophagy deficiency is associated with many diseases such as

neurodegenerative disorders, cancer, microbial infection, and aging

[119].

So far, numerous proteins that are essential for autophagy have

been identified, many of which are evolutionarily conserved from

yeast to humans [120,121]. These Atg proteins form several func-

tional units. The most upstream autophagy regulator is the ULK1

complex, which consists of ULK1, Atg13, FIP200, and Atg101 in

mammals. In starvation-induced autophagy, mTOR negatively regu-

lates the ULK1 complex through phosphorylation of ULK1 and

Atg13. Following Parkin translocation, the ULK1 complex transiently

forms foci on the mitochondria (or contact site between mitochon-

dria and ER) [122] (Fig 4). mTOR1 inhibition was reported to induce

mitophagy in consort with the loss of membrane potential [123].

Another autophagy regulator, the PI3K complex, is also transiently

recruited to mitochondria in an early stage of mitophagy. The PI3K

complex, which generates PI3P, consists of Beclin1, Atg14L, Vps15,

and Vps34 in mammals, although Beclin1-Vps15-Vps34 also forms

other stable complexes with UVRAG and/or Rubicon for endosomal

trafficking [124,125]. DFCP1 diffusely localizes on the ER and Golgi

membranes under normal conditions, but upon mitophagy stimula-

tion, it extensively accumulates at a spot where the ER and mito-

chondria are contacted (Fig 4). Since the FYVE domain in DFCP1

binds to PI3P, DFCP1 may serve as an appropriate reporter of PI3P-

enriched isolation membranes at downstream of the ULK1 and PI3K

complexes [126,127]. Atg9A is the only known multi-spanning

membrane protein among the essential Atg core proteins and

behaves uniquely. Atg9A resides on a small vesicular structure that

shuttles between the cytosol, trans-Golgi network, and endosomes

under normal conditions. The two ubiquitin-like conjugation

systems, Atg5-12 and PE (phosphatidylethanolamine)-LC3, are

important for elongation and/or complete encapsulation of the

isolation membrane. The C-terminal glycine in Atg12 is activated by

Atg7 (E1-like) and Atg10 (E2-like) and is finally covalently conju-

gated to Atg5. In contrast, the C-terminal arginine in LC3 (Atg8

homologue) is first cleaved by Atg4 to expose a glycine residue, and

then, LC3 is conjugated to PE through Atg7 (E1-like) and Atg3 (E2-

like) activation to become lipidated LC3. Mammals encode at least

six Atg8 homologues (LC3A, LC3B, LC3C, GABARAP, GABARAPL1,

and GABARAPL2) and both the LC3 subfamily and GABARAP

subfamily undergo PE conjugation. Although distinct roles in

starvation-induced autophagy have been proposed [128], their roles

in mitophagy remain unknown.

Later steps of mitophagy link to autophagy

How are autophagy regulators recruited to the damaged mitochon-

dria? The simple model proposed in 2010 was that p62, which

has an ability to bind both LC3 and ubiquitin, serves as the adap-

tor in recruiting Atg proteins (at least lipidated LC3) to the

poly-ubiquitinated surface of the mitochondrial outer membrane

[53]. However, p62-KO cells can still degrade the damaged mito-

chondria through the autophagy machinery, raising the possibility

that binding between p62 and LC3 is not sufficient for mitophagy

[129,130]. In addition to p62, mammals also express at least four

additional autophagy adaptors, NDP52, NBR1, optineurin, and

TAX1BP1. All possess an LC3-interacting region (LIR), an ubiquitin-

associated domain (UBD), and a dimerization (or oligomerization)

domain. Therefore, these autophagy adaptors are believed to bridge

the LC3-labeled isolation membrane and ubiquitinated cargo. To

investigate the individual role of autophagy adaptors in mitophagy,

two groups recently used CRISPR/Cas9 genome editing to knockout

individually and different combinations of the five autophagy adap-

tors. Using a detailed mitophagy assay, these two studies found that

NDP52 and optineurin primarily (and TAX1BP1 to some extent)

function as autophagy adaptors during Parkin-/PINK1-mediated

mitophagy, while p62 and NBR1 are not essential [131,132]. Ectopic

targeting of the PINK1 kinase domain to the outer mitochondrial

membrane in the absence of Parkin and mitochondrial stress

recruits optineurin and NDP52, but not p62 [131]. This recruitment

may suggest that phosphorylated ubiquitin chains generated locally

on the mitochondria by PINK1 serve as a receptor for the selective

autophagy machinery. However, Heo et al showed that a K63-linked

phosphorylated ubiquitin chain binds poorly to recombinant opti-

neurin. This discrepancy can be explained if Parkin-dependent opti-

neurin phosphorylation changes the binding affinity of optineurin to

ubiquitin chains [132]. TBK1 participates in this step by phosphory-

lating optineurin (S177) [133] and p62 (S403) [134], which

enhances the interactions with LC3 and ubiquitin, respectively

[131,132]. Moreover, TBK1 also phosphorylates other sites of

optineurin at S473 and S513 to enhance binding ability to poly-

ubiquitinated chains [132,135] (Fig 4). TBK1 itself is activated by

Ser172 phosphorylation (PINK1-dependent but not autocatalytic)

triggered by binding of optineurin to the ubiquitin chain on

damaged mitochondria [132]. Interestingly, these studies imply

many functional similarities between mitophagy and xenophagy

such as the involvement of NDP52/optineurin and TBK1 phosphory-

lation. Since the mitochondrion is evolutionary derived from

a-proteobacteria, the autophagy machinery may recognize damaged

mitochondria as ROS-producing invaders of the cell [136]. Parkin

was also reported to be recruited to Mycobacterium tuberculosis-

containing phagosomes [137]. The key factors involved in recruiting

cytosolic Parkin and unlocking autoinhibited Parkin E3 activity in

this process remain to be identified.

Rab GTPase cycles are also important for mitochondrial encapsu-

lation by the LC3-labeled isolation membrane. Two Rab-GAPs,
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TBC1D15 and TBC1D17, which associate with the mitochondrial

outer membrane via interactions with Fis1, govern autophagosome

morphology by modulating Rab7 activity during Parkin-mediated

mitophagy, but not starvation-induced autophagy [138]. Because

TBC1D15 (and TBC1D17) can also directly interact with LC3 via the

LIR motif, they control proper autophagic encapsulation of damaged

mitochondria at the interface between mitochondria and the isola-

tion membrane (Fig 4). Rab7 also localizes to isolation membranes

in the early stage of xenophagy [139], suggesting another similarity

between mitophagy and xenophagy as both involve a Rab7 activity

of isolation membrane expansion.

Hierarchical analysis using several ATG-KO cell lines during

Parkin-mediated mitophagy revealed that the recruitment of these

autophagy proteins is not a linear cascade, but is rather a multi-

independent process [122]. For example, lipidated LC3, the ULK1

complex, and Atg9A vesicles are independently recruited to

damaged mitochondria, whose recruitment mechanisms, with the

exception of lipidated LC3, are as of yet uncharacterized (Fig 4).

After Parkin translocation, damaged mitochondria are almost

completely eliminated within 24–48 h. Therefore, the Parkin/PINK1

activation signal must quantitatively affect not only the ubiquitin

system but also autophagy-lysosome function. Under aberrant lyso-

somal storage or nutrient deprivation conditions, proteins involved

in lysosomal and autophagic function are upregulated at the tran-

scriptional levels by TFEB [140–142]. In humans, TFEB together

with MITF, TFE3, and TFEC comprises the MiT/TFE subfamily of

basic helix-loop-helix leucine zipper transcription factors and has an

ability to bind a specific 10-bp palindromic motif found in the

promoter sequence of genes encoding lysosomal and autophagic

proteins to modulate their expression. Under normal conditions,
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Figure 4. Activation and recruitment of autophagy machineries during Parkin-/PINK1-mediated mitophagy.
Following the generation of poly-ubiquitin chains on damaged mitochondria, the indicated autophagy proteins including adaptors and regulators are recruited to the
mitochondria in a multi-independent process. (i) While autophagosomes form at ER–mitochondria contact sites under starvation-induced autophagy [179], how the ULK1
and PI3K complexes and the omegasome marked by DFCP1 recognize mitochondrial damage remains unknown. (ii) Poly-ubiquitin chains on the mitochondria are directly
recognized by the autophagy adaptors, in particular NDP52 and optineurin (OPTN), which are phosphorylated by TBK1, and promote the recruitment of the LC3-labeled
isolation membrane. (iii) Atg9A vesicles are independently recruited to the mitochondria through an unknown mechanism. (iv) Mitochondria-localized Rab-GAPs, TBC1D15
and TBC1D17, via interaction of Fis1 regulate proper autophagosomal formation by modulating Rab7 activity. (v) Upon mitophagy stimulation, a regulator of autophagy-
lysosome biogenesis, TFEB (as well as MITF and TFE3), is activated in an Atg5- and Atg9A-dependent manner.
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TFEB transiently associates with the outer surface of the lysosome

where it binds the heterodimeric Rag GTPase [143] and is

phosphorylated on several residues by active mTORC1 [144–146].

Phosphorylation of Ser211, in particular, serves as a signal for the

chaperone 14-3-3 proteins, which bind and sequester TFEB so that

the inactivated form of TFEB stays in the cytosol. Upon starvation,

TFEB dissociates from 14-3-3 allowing translocation to the nucleus

where it induces the transcription of target genes. Recently, Nezich

et al showed that Parkin-/PINK1-mediated mitophagy stimulation

also induces TFEB (as well as MITF and TFE3) translocation to the

nucleus and upregulates cathepsin B and p62 mRNAs, known TFEB

target genes. Although Atg5 is dispensable for starvation-induced

TFEB translocation to the nucleus, Parkin-mediated TFEB transloca-

tion requires Atg5 and Atg9A [147] (Fig 4). This strongly suggests

that the molecular mechanism for TFEB translocation to the nucleus

during mitophagy is different from that during starvation. Further-

more, KO of three MiT/TFE family members (TFEB, MITF, and

TFE3) in HeLa cells causes moderate defects in Parkin-mediated

clearance of damaged mitochondria as well as p62 expression and

lysosome morphology. It will be interesting, in the future, to test

the physiological role of mitophagy-dependent TFEB activation

in vivo.

Mitophagy-independent Parkin/PINK1 functions

Many autophagy-independent Parkin functions have been reported.

Parkin regulates the level of PARIS (ZNF746), a major transcrip-

tional repressor of PGC-1a expression, through the ubiquitin-protea-

some system [148]. Conditional KO of Parkin in adult mice was

shown to cause the progressive loss of dopamine neurons in a

PARIS-dependent manner via a decline of mitochondrial mass and

respiration [149]. Parkin also has been proposed to regulate mitosis

and chromosome segregation [150]. Recently, it was reported that

Parkin complexes with Cdc20 and Cdh1, known APC/C co-activa-

tors, to mediate the degradation of several mitosis regulators inde-

pendent of APC/C. This pathway is PINK1 independent; however,

Parkin E3 ligase activity is triggered following Plk1 phosphorylation

of S378 [151]. Autophagy-independent Parkin/PINK1 regulation of

mitochondrial integrity maintenance has also been reported. Local

oxidative damage of mitochondria induces small vesicular struc-

tures called mitochondrial-derived vesicles (MDVs) that are trans-

ported to the late endosome and/or lysosomes. Both Parkin and

PINK1 are required for the generation of MDVs, suggesting that

Parkin-/PINK1-dependent MDVs are a faster response to mitochon-

drial damage than autophagic elimination [152,153]. Disruption of

the mitochondrial membrane potential has also been reported to

alter Rab8 and Rab11 functions following phosphorylation at a

conserved Ser111 residue in a PINK1-dependent manner [154].

Although PINK1 does not directly phosphorylate these Rabs, this

finding may suggest as of yet-uncharacterized cascades of mitochon-

drial quality control.

Conclusion

Parkin-mediated mitophagy research now spans multiple fields of

active research including mitochondria, autophagy, the ubiquitin-

proteasome, neurology, and PD. This overlap in research interests

and disciplines has in such a short time propelled the many

advances in our understanding of Parkin-mediated mitophagy.

Based on studies using cultured cells (immortalized and non-

neuronal in most cases), we now know the detailed molecular

mechanisms underlying Parkin recruitment to damaged mitochon-

dria and how this impacts the subsequent steps leading to their

selective engulfment by the autophagosome.

Sidebar A: In need of answers

Although many research papers have elucidated detailed molecular mechanisms of Parkin-/PINK1-dependent mitophagy, new discoveries always bring
new questions. Here, we would like to outline several open questions that need to be answered in the future to further advance our understanding of
mitophagy.

1 How does phosphorylated Parkin accelerate ubiquitin transthiolation from E2s to Cys431?
Kazlauskaite et al [92] demonstrated that purified recombinant Ser65-phosphorylated Parkin exhibited maximal E3 ligase activity that no longer
required Ser65-phosphorylated ubiquitin. This is consistent with the results in which phosphorylated Parkin, but not Parkin bound with phosphorylated
ubiquitin, had an “open” structure as evidenced by the accessibility of the catalytic Cys431 to ubiquitin-vinyl sulfone [67,87]. In contrast, K161N and
K211N mutations in a different phosphate-binding pocket of the RING0 domain, which are not involved in binding phosphorylated ubiquitin, inhibited
full activation of Ser65-phosphorylated Parkin [67]. This raises the possibility of another unknown step in the Parkin conformational change [93]. Struc-
tural determination of the Parkin-phosphorylated ubiquitin complex has revealed that the E2 binding region is too spatially removed from the catalytic
Cys431 to allow for direct transfer of the ubiquitin molecule. As E2 association with phosphorylated Parkin has been suggested to induce further Parkin
conformational changes, the ternary protein complex including phosphorylated Parkin, phosphorylated ubiquitin, and ubiquitin-conjugated E2 enzyme
needs to be solved either by biochemical or by structural approaches.

2 How are autophagy proteins recruited to the damaged mitochondria following Parkin-/PINK1-dependent ubiquitination?
Poly-ubiquitinated chains on the surface of the outer membrane of the damaged mitochondria can recruit autophagy adaptors, which further recruit
Atg8 homologues via LIR motifs. On the other hand, how essential upstream autophagy proteins such as the ULK1 complex and Atg9A vesicles are
recruited to the mitochondria remains unknown. Although ectopic PINK1 targeting to mitochondria suggests that association of the ULK1 complex with
the damaged mitochondria is optineurin/NDP52 dependent [131], precise cascades of the steps starting from the poly-ubiquitinated chains for transfer
of the signal to the autophagy machinery are largely unknown.

3 Do mitophagy defects directly affect the loss of dopaminergic neurons?
There is no doubt that elimination of the damaged mitochondria by mitophagy machinery is important for maintaining cellular homeostasis via healthy
mitochondria. However, there is currently no direct evidence demonstrating how defects in mitophagy affect PD pathologies or degradation of dopamin-
ergic neurons. To clarify these issues, an in vivo mitophagy assessment tool for dopaminergic neurons needs to be established.
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Although initially controversial, recent studies have confirmed

Parkin/PINK1 involvement in autophagic clearance in neurons. Cai

et al [155] showed that the mitochondria in the somatodendritic

regions of mature cortical neurons are captured by an LC3-labeled

structure in a Parkin-dependent manner. Similarly, Ashrafi et al

[156] utilized mito-KillerRed (see Box 1) to selectively damage a

subset of mitochondria in hippocampal axons and observed

autophagosome and axonal lysosome recruitment to the damaged

mitochondria that was both Parkin and PINK1 dependent. Further-

more, mitochondrial delivery to the lysosome was observed in

mouse primary neurons using mito-Keima (see Box 1). This endoge-

nous Parkin-dependent mitophagy requires a certain period of time,

but not any exposure of chemical depolarizing compounds [82].

Despite being independently generated by many research groups,

neither simple Parkin- nor simple Pink1-KO mice exhibit severe PD-

like symptoms such as the loss of dopaminergic neurons, thus

complicating Parkin/PINK1 mitophagy studies in vivo. However,

Pickrell et al [157] recently created a new PD model mouse by

crossing Parkin-KO mice and Mutator mice that express a defective

mitochondrial DNA polymerase. In the resulting Mutator Parkin-KO

mice, dopaminergic neurons degenerated and L-DOPA (a metabolic

precursor of dopamine widely used for PD patients) improved the

motor deficit of the mice. They also found the accumulation of phos-

phorylated ubiquitin in neurons, but not in livers of the Mutator

Parkin-KO mice, strongly suggesting that PINK1 activation was

caused by neuronal mitochondrial dysfunction.

In this review, we shed light on the biochemical and molecular

aspects of Parkin-/PINK1-mediated mitophagy. Many questions

remain to be answered before we can have a completely clear

understanding of Parkin/PINK1 functions; however, we will

continue to uncover the molecular basis linking the coordinated

actions of Parkin/PINK1 and the ubiquitin signal with autophagy for

clearing dysfunctional mitochondria.
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