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Abstract

Ambulatory cardiovascular (CV) measurements provide valuable insights into individuals' health 

conditions in “real-life,” everyday settings. Current methods of modeling ambulatory CV data do 

not consider the dynamic characteristics of the full data set and their relationships with covariates 

such as caffeine use and stress. We propose a stochastic differential equation (SDE) in the form of 

a dual nonlinear Ornstein-Uhlenbeck (OU) model with person-specific covariates to capture the 

morning surge and nighttime dipping dynamics of ambulatory CV data. To circumvent the data 

analytic constraint that empirical measurements are typically collected at irregular and much 

larger time intervals than those evaluated in simulation studies of SDEs, we adopt a Bayesian 

approach with a regularized Brownian Bridge sampler (RBBS) and an efficient multiresolution 

(MR) algorithm to fit the proposed SDE. The MR algorithm can produce more efficient MCMC 

samples that is crucial for valid parameter estimation and inference. Using this model and 

algorithm to data from the Duke Behavioral Investigation of Hypertension Study, results indicate 

that age, caffeine intake, gender and race have effects on distinct dynamic characteristics of the 

participants' CV trajectories.
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1. Introduction

Coronary heart disease (CHD) is the leading cause of morbidity and mortality in older 

adults, and instances of deaths due to CHD and stroke are estimated by the Centers for 

Disease Control and Prevention (CDC) as “nearly twice the number of lives claimed by 

cancer or collectively by World War II, and the Korean and Vietnam conflicts” (Centers for 

HHS Public Access
Author manuscript
Ann Appl Stat. Author manuscript; available in PMC 2016 March 01.

Published in final edited form as:
Ann Appl Stat. 2015 September ; 9(3): 1601–1620.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Disease Control and Prevention, 1999). There has been increasing evidence that 

cardiovascular (CV) measures such as ambulatory blood pressure (ABP) taken in everyday, 

non-laboratory settings provide better diagnostic and prognostic value than multiple clinic 

blood pressure (BP) readings (Clement et al., 2003; Dolan et al., 2009), and are indicative of 

the occurrence of multiple CV events (Beckham et al., 2009; Willich et al., 1992; Muller, 

Tofler and Stone, 1989).

ABP and related CV activities (CA) have well established circadian patterns, characterized 

by rises in early morning, culminating in a plateau around noon, and followed by nocturnal 

(nighttime) dipping. While nighttime BP has been found to be a stronger predictor of 

cardiovascular risk than clinic or daytime ABP (Hansen et al., 2011), increasing evidence 

has pointed to the importance of also considering morning surges in ABP in addition to 

nighttime BP (Kario et al., 2003; Verdecchia et al., 2012). The importance of studying the 

dynamics of ABP is further reflected in the inclusion of trend reports in popular ABP 

measurement tools such as the dabl system (O'Brien, 2011), which provide indices such as 

time-weighted measures of variability, measures of nocturnal dip, morning surge, peak as 

well as trough levels, and smoothness of BP curves, among many other indices of CV events 

(Dolan et al., 2006; Rothwell et al., 2010). Despite the richness of the dynamic information 

in ABP data, diagnosis/prognosis involving ABP is typically performed on levels of ABP 

obtained from isolated segments of the data. As an example, morning surge is typically 

defined as a rise in BP > 55mmHg from the lowest nighttime reading (for a review see 

O'Brien, 2011). In a similar vein, individuals are identified as exhibiting BP non-dipping—a 

commonly used prognostic indicator of CV morbidity and mortality for both hypertensive 

and non-hypertensive individuals—when they show < 10% fall in systolic BP (SBP) from 

day to night (Ingelsson et al., 2006; Fagard et al., 2008). Such conventional approaches of 

analyzing ABP rely solely on levels of BP during selected time windows, and utilize levels 

of BP at a single time point (e.g., the lowest nighttime reading), which are less than ideal 

given the noisy nature of BP and other CV measures. In addition, some of the more subtle 

individual differences in dynamic characteristics of CV measures, such as the surge and 

dipping rates of CV measures, are completely bypassed.

One possible way to extract more dynamic information from individuals' full time series of 

CV measures is to analyze such data in the context of a stochastic differential equation 

(SDE) model. The SDE of choice has to capture critical aspects of CV dynamics while 

providing a platform to relate these dynamic attributes to individual difference 

characteristics such as stress levels, age, and so on. To enable SDE modeling of multiple 

measures of population CV activities (e.g., systolic BP, diastolic BP and heart rate), we 

propose a latent SDE in the form of a dual nonlinear Orstein-Uhlenbeck (OU) model with 

person-specific dynamic effects. This modeling framework provides a direct way to (i) 

represent the unobserved dynamics of CV activities based on noisy multivariate 

measurements from multiple subjects; (ii) accommodate subject-specific, irregularly spaced 

discrete time points, particularly the sparse measurements at night to minimize disruptions to 

the participants' sleep schedules; and (iii) allow the evaluation of questions pertaining to the 

dynamics of ambulatory CV data, including individual differences in morning surge and 

nighttime dipping patterns.

Lu et al. Page 2

Ann Appl Stat. Author manuscript; available in PMC 2016 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Estimation and inference of SDE models using ambulatory CV data are challenging. Due to 

the intractability of the proposed SDE, we employ discretization approximation (Pedersen, 

1995). Unfortunately, real-life ambulatory CV data are characterized by much sparser and 

irregularly spaced time intervals than those investigated in most simulation studies involving 

nonlinear SDE models (Kou et al., 2012; Lindström, 2012). Achieving reasonable estimation 

properties necessitates the use of a large number of imputations between subsequent 

observed intervals, a procedure that quickly becomes inefficient for the kind of data 

considered. We develop an efficient regularized Brownian bridge sampler (RBBS) and 

multiresolution (MR) algorithm to fit the proposed SDE model.

2. Data Analytic and Methodological Issues

The empirical data in our study consist of CV measures from multiple subjects. Figure 1 

shows the data from six subjects from the study. The red dashed, blue solid, and black dot-

dashed curves are SBP, DBP, and heart rate, respectively. All three measures are 

characterized by relatively systematic circadian rhythms and yet, some subject-specific 

characteristics.

Over a 24-hour period, all three measures typically decrease to their lowest points during 

nighttime sleep and increase rapidly upon rising in the morning. However, the circadian 

patterns and magnitudes of change, which are related to cardiovascular risk, show 

considerable between-subject heterogeneities. Consider the baseline levels around which the 

trajectories fluctuate at daytime and nighttime as two equilibria. First, the differences 

between two equilibria may be different for different subjects. For instance, the subject in 

Figure 1a shows less difference in his/her daytime and nocturnal equilibria than the subject 

depicted in 1b, thus signaling less dipping (or poorer recovery). Second, even if the 

differences between two equilibria are similar, the magnitudes of the equilibria can be 

different (e.g., Figures 1c and 1d). Such cases demonstrate that using the differences 

between the equilibria alone to analyze BP data may obscure important dynamic features of 

the data. Third, the rates of change during dipping and surge may be different and also show 

various degrees of asymmetry across subjects. Both the morning surge rate and nocturnal 

dipping rate in Figure 1b are large; the nocturnal equilibrium, in particular, is attained very 

quickly and efficiently. In comparison, the subject in Figure 1e shows quick dipping and 

slower surge than the subject in Figure 1b, while Figure 1f shows the reverse change 

patterns. Lastly, SBP, DBP and HR often share common features/circadian trends within 

subjects, thus motivating us to use a latent process to characterize their common dynamics.

We formulate a Latent Stochastic Differential Equation Model (LSDEM) to capture subject-

specific (i.e., covariate-dependent): i) daytime and nighttime CV equilibria, ii) nighttime 

dipping rate and morning surge rate, and iii) dipping and surge patterns. The Ornstein-

Uhlenbeck (OU) process is widely used to model a stochastic process that fluctuates around 

an equilibrium (Uhlenbeck and Ornstein, 1930; Ricciardi and Sacerdote, 1979; Beaulieu et 

al., 2012). The CV patterns observed in Figures 1 motivated us to employ a modified dual-

OU process model expressed as:
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(2.1)

where xi(t) is the ith subject's latent CV activity at time t, Mi is subject i's daytime period, 

determined based on commonly used time windows and subject-specific data cues (which 

include e.g., the preawakening window during which participants have not started engaging 

in their everyday routines but may have started to show rises in CV activities), and ψ is the 

variance of the Wiener process, commonly referred to as the diffusion parameter. The 

 for j = 1, …, 6 are subject-specific dynamic parameters, where wi and βj are 

vectors of covariates and slope parameters, respectively. Moreover, , , , and  are 

assumed to be positive.

The conventional OU process is a special case of (2.1) with , , and 

. The drift function in (2.1) quantifies the absolute rates of change. The  and 

 are used to represent the daytime and nighttime equilibria, respectively, around which the 

CV trajectories fluctuate. It is assumed that the rate of change of CV activities is 

proportional to the difference between the current CV activities and the equilibrium, and the 

relative rates of change in daytime and nighttime are modeled by  and , respectively. 

The first row of plots in Figure 2 illustrates the effect of  during dipping. The left plots 

show the trajectories simulated from (2.1) with 3 levels of  and ψ = 0. The right plots 

show the corresponding values of the drift function, where a value of zero on the ordinate 

represents no change in the value of xi(t) for a specific value of dt. The larger  is, the 

faster CV activities go to the night equilibrium. The  and  affect the shape of the drift 

function. We interpret them as the change instability parameters. The second row of Figure 

2 illustrates the effect of  during dipping. Larger  leads to quicker dipping at the 

beginning. However, the rate of change decreases more quickly as CV activities approach 

the equilibrium. Hence, the rate of change is less stable. In comparison, the rate of change 

decreases more slowly for smaller  values. The interpretations of  and  are similar 

for morning surge.

We assume the diffusion parameter, ψ, to be constant in (2.1). Substantively, it is reasonable 

to assume that the main variations of CV activities among subjects stem from differences in 

mean levels of CV activities during daytime and nighttime, as well as the transitions in 

between, which are mainly characterized by the drift function in (2.1). Consequently, the 

diffusion function only characterizes the fluctuation around the equilibriums of CV 

activities, the scale of which is comparatively small and the differences across subjects are 

comparatively insignificant. Thus, we only consider a constant diffusion function in the 

current analysis.

Methodological challenges associated with fitting SDE models such as that shown in (2.1) 

can become formidable in the presence of sparse and wide-ranging time intervals. Among 

methods for estimating parameters in SDEs (for a review see Sørensen, 2004), likelihood-

based methods have received much attention, but they require solutions of transition density 

functions of SDEs that are analytically available for only a very limited class of SDEs. 

Methods to circumvent this difficulty include closed-form expansion of the transition 
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density (Ait-Sahalia, 2008), exact simulation method (Beskos et al., 2006; Sermaidis et al., 

2013), and discrete Euler-Maruyama approximation with data augmentation between 

observed time points (Pedersen, 1995; Durham and Gallant, 2002; Zhu, Taylor and Song, 

2011). The last approach is popular due to its general applicability, but the time intervals in 

studies involving ambulatory measures are usually too large to enable accurate estimation. 

Specifically, to achieve reasonable approximation accuracy, the time points between 

successive observations need to be augmented with missing data (Elerian, Chib and 

Shephard, 2001). Increasing the number of the augmented time points leads to better 

approximation, but also increases the dependency among modeling parameters and the 

diffusion paths (Elerian, Chib and Shephard, 2001), leading to slower convergence of the 

data augmentation algorithms for estimation and inference. In situations involving 

irregularly spaced time points, this problem is exacerbated because large time intervals 

require more imputed time points to insure approximation accuracy. Block updating 

algorithms have been proposed to alleviate the dependency among missing data at 

augmented time points, but the dependency between parameters in the diffusion function 

and the diffusion paths remains problematic in most SDEs (Roberts and Stramer, 2001). To 

handle these problems, we adopt a Bayesian approach for parameter estimation and 

inference, and utilize two efficient MCMC algorithms, namely, block updating with 

regularized Brownian bridge sampler (RBBS) and a multiresolution (MR) algorithm, 

derived and adapted respectively from Lindström (2012), and Kou et al. (2012), to fit the 

proposed SDE model.

Bayesian approaches have served as promising tools for the estimation and inference for 

SDEs (Elerian, Chib and Shephard, 2001; Roberts and Stramer, 2001; Durham and Gallant, 

2002; Golightly and Wilkinson, 2008). Recently, Stramer et al. (2011) proposed the use of 

two different simulation-based approximations to achieve better approximation of the 

likelihood with fewer imputations. Golightly and Wilkinson (2011) developed particle 

MCMC algorithms to update the processes globally and sequentially, avoiding the 

dependency problem as the processes and parameters are sampled jointly.

3. Latent Stochastic Differential Equation Models (LSDEMs)

While the SDE model shown in (2.1) is designed specifically to capture ambulatory CV 

dynamics, our estimation algorithms are applicable to a broader class of models that 

includes other linear and nonlinear latent stochastic models (LSDEMs) as special cases. The 

general model is a hierarchical model consisting of two parts: (i) a factor analysis model that 

relates a vector of latent variables to their noisy, observed counterparts, and (ii) a SDE 

model for describing the changes in the latent variables.

3.1. Factor Analysis Model

Let xi(t) be a q × 1 vector of latent processes of interest, where the indices i and t, 

respectively, denote individuals and time; yi(t) is a p × 1 vector of observed processes (e.g., 

SBP, DBP, and heart rate in our study). The latent variables in xi(t) are measured indirectly 

through yi(t) based on the measurement model:
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(3.1)

where μ is a p × 1 vector of intercepts, Λ is a p × q loading matrix, and εi(t) denotes a p × 1 

vector of measurement error processes that is independent of xi(t). In most human dynamics 

studies, however, we only measure yi(t) at irregularly spaced time points tij for j = 1, …, Ti 

and i = 0, …, n, where tij is the jth time point for the ith individual. The measurement model 

(3.1) at tij is given by yij = μ + Λxij + εij, 1 ≤ j ≤ Ti, 1 ≤ i ≤ n, where xij = xi(tij), εij = εi(tij) 

and yij = yi(tij). The εij is independent of xij and follows N(0, Σε), in which Σε is a diagonal 

matrix with diagonal elements ( ).

3.2. SDE Model for Latent Change Processes

We consider SDEs for delineating the dynamics of latent variables. Let d be the differential 

operator. The SDE model of interest is given by

(3.2)

where f(·) = (f1(·), …, fq(·)) is a q × 1 vector of drift functions, S is a q × q matrix of 

diffusion functions, and Bi(t) is a q × 1 vector of standard Wiener processes, whose 

increments, dBi(t), are Gaussian distributed with zero means and variances that increase 

with the length of time interval, dt. Moreover, θxi = g(wi, b), where g(·) is a known function 

with a vector of parameters b and covariates wi. One important question of our study is to 

identify predictors that can explain the heterogeneities in dynamics across subjects. The θxi 

is used to characterize subject-specific differences in change as related to known, person-

specific covariates. A heuristic interpretation of f and S is that f governs that local changes 

(i.e., drift rates) in xi(t) over dt, whereas S governs the variance of local changes, or in other 

words, the diffusion rates.

Since most SDEs in (3.2) do not have analytical solutions, it is common to employ a 

discretized approximation, such as Euler-Maruyama, at selected time points to form an 

approximate likelihood for model (3.2):

(3.3)

for 0 ≤ j < Ti and 1 ≤ i ≤ n, where Δxij = xi,j+1 − xij, Δtij = ti,j+1 − tij, and Zij follows a 

multivariate Gaussian distribution N(0, Iq), in which Iq is a q × q identity matrix. When j = 

0, the initial observations of the processes xi0 are assumed to be known for all i.

Empirical data are usually sampled at relatively sparse intervals, so the Euler-Maruyama 

approximation (3.3) performed only at empirically observed time points usually leads to 

poor likelihood approximation (Elerian, Chib and Shephard, 2001). To increase the accuracy 

of the approximation (3.3), we impute xi(t) at additional unobserved time points between tij's 

as missing data. In practice, the number of imputed missing data between two observed time 

points determines the resolution and accuracy of the approximation (3.3). Let 
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 and  be the processes at the observed time 

points for the ith individual. More time points are imputed between two adjacent time points 

with larger Δtij. The time intervals after imputation are close to the minimal time interval 

before imputation. Denote  be the ith subject's jth time point after imputation, 

, and  for  and 1 ≤ i ≤ n. Let this imputation be 

the 1st resolution. The accuracy of the Euler-Maruyama approximation can be refined by 

increasing the number of imputed time points, i.e., increasing the resolution. The kth 

resolution is constructed by imputing one time point between two adjacent time points at the 

(k − 1)th resolution. For notational simplicity, we assume that only 1 time point is imputed 

between each pair of adjacent observed time points to construct the 1st resolution. However, 

the algorithm is applicable to general situations with heterogeneous imputation at the 1st 

resolution. Let k* = 2k. At the kth resolution, let , and 

 for 2s ≤ j ≤ 2(s+1) and .

Consequently, . Let , , and 

. The approximated transition density is

(3.4)

where  and φq(μ, Σ) denotes the density of a q–

dimensional Gaussian random vector with mean vector μ and covariance matrix Σ.

4. Bayesian estimation and inference with MCMC algorithms

Let Yi = (yi1, …, yiTi), Y = (Y1, …, Yn), and θ = {b, μ, Λ, Σε}. We augment X(k) to the 

observed data Y, and then use MCMC algorithms (Hastings, 1970; Geman and Geman, 

1984) to sample Pk(θ, X(k)|Y) ∝ Pk(Y, X(k)|θ)P(θ). Generally, any distributions representing 

the prior information could be used. We assume that P(θ) = P(μ)P(Λ, Σε)P(b), and use the 

prior distributions leading to standard full conditional distributions:

(4.1)

where r = 1, …, p, μr is the rth row of μ, and  is the rth row of Λ. The μr0, , Λ0r, a1r, 

a2r and positive definite matrix ΣΛr are hyperparameters, the values of which are assumed to 

be given by prior information. The IG(·, ·) stands for the inverse gamma distribution. The μr 

estimate is more robust with different signal strengths, e.g., scale of . Hence, its prior 

distribution is assumed to be independent of . As b includes parameters that are involved 

in the functions f(···) and S(···), the corresponding prior distributions have to be tailored 

specifically to the dynamic model considered.
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For sparsely spaced data, efficient sampling X(k) is very challenging. Most approaches based 

on the Euler-Maruyama approximation only use one resolution k. Larger k results in better 

approximation, but it increases computational costs from two aspects. First, the dimension of 

X(k) increases with k. Second, the MCMC efficiency decreases dramatically because smaller 

 leads to high correlations among . Consequently, more iterations of 

Gibbs sampler are required to obtain ‘good’ MCMC samples that cover the entire parameter/

unobserved components space. Choosing k to strike an effective balance between 

approximation accuracy and sampling efficiency is challenging, especially for nonlinear 

processes, where a large k is usually required. We develop an efficient multiresolution 

MCMC algorithm (Kou et al., 2012) to address such challenging issue.

4.1. Multiresolution (MR) Algorithm

The MR algorithm (Kou et al., 2012) provides one way to circumvent the inadequacies of 

using one specific resolution scheme by consolidating samples obtained at multiple 

resolutions. They proposed the MR algorithm for stochastic processes observed at discrete 

time points for a single subject. We will extend the MR algorithm for latent processes for 

population data.

The MR approach is a mixture of a series of local samplers and a global sampler, and 

generates samples for every resolution sequentially. In each iteration, the local samplers and 

the global sampler are chosen with certain probabilities. The MR algorithm begins with the 

first resolution with the least imputation. At each resolution, any MCMC algorithms 

designed for a single resolution can be used as local samplers, which explore the local 

features of Pk(θ, X(k)|Y). Starting from the second resolution, a global sampler called “cross-

resolution sampler” is also used, which essentially performs independent Metropolis-

Hastings (MH) update of X(k) and θ jointly. Let  and 

X(k)\(k−1) be the processes at T(k) but not at T(k−1). The proposal distribution q(X(k), θ) = 

q(X(k)\(k−1)|X(k−1), θ)q(X(k−1), θ), where q(X(k−1), θ) = Pk−1(θ, X(k−1)|Y). Practically, (X(k−1), 

θ) are empirically sampled from the MCMC samples for Pk−1(θ, X(k−1)|Y). The proposal 

samples are weighted in order that the target distribution follows Pk(θ, X(k)|Y). The cross-

resolution sampler is independent of the current state of X(k) and θ and overcomes the 

degeneracy caused by increasing dependency among  as k increases. Moreover, the 

empirical samples from a coarser resolution Pk−1(θ, X(k−1)|Y) have lower autocorrelation. 

Hence, cross-resolution sampler could move across the space of X(k) and θ faster. It is worth 

noting that even though the cross-resolution sampler for (X(k), θ) is based on the MCMC 

samples of X(k−1), the MCMC samples of X(k) at T(k−1) are partially different from those of 

X(k−1) because local samplers are also used with nonzero probability. More details of the 

MR algorithm and cross-resolution sampler can be found in Supplement S1.2 and S1.3, and 

Kou et al. (2012).

4.1.1. Local Updating Algorithms—Let k̃ = k* − 1. We use two local samplers to 

generate posterior samples of X(k) including (i) a 1-step RBBS that samples  at each time 

point; and (ii) a block updating scheme for Xis = (xi,sk*, …, xi,(s+1)k*) based on a (k̃ + 2)-step 
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RBBS. Related samplers were proposed for univariate and multivariate nonlinear SDEs for a 

single subject with observed processes, respectively, in Kou et al. (2012) and Lindström 

(2012). We extend these samplers to handle latent SDEs for population data. The general 

idea of the RBBSs is to construct a multivariate normal proposal distribution for  and 

 sequentially, and use MH algorithm. Lindström (2012) is an extension of Durham and 

Gallant (2002)'s results on nonlinear processes, in which the drift functions dominate the 

diffusion functions. Users should adjust the tuning parameter α according to specific 

problems, for which Lindström (2012) provided intuitive suggestions. More information 

regarding these extensions is described in Supplement S1.4.

5. Case Study

We analyzed a set of 24-hour ambulatory CV data from the Duke Biobehavioral 

Investigation of Hypertension study (Sherwood et al., 2002). The dataset consists of 179 

men and women whose ages range from 25 to 45 years. Ambulatory BP and other CV 

measures were monitored using the noninvasive AccuTracker II ABP Monitor (Suntech 

AccuTracker II, Raleigh, NC) from around 9 AM until the same time in the following 

morning. The monitors were programmed to measure four times an hour at random intervals 

ranging from 12 to 28 minutes apart during waking hours. During sleeping hours, the 

monitors were programmed to record only two readings hourly, customized to fit the 

participants' sleep habits. The study maintained participants' normal schedules and 

documented a diary entry indicating posture, activity, location, positive affect and negative 

affect at each reading. Mood states were scored by circling a number on a 5-point Likert 

Scale, with 1 representing “not at all” and 5 representing “very much”.

Covariates of interest used in xi in model (2.1) are i) mean caffeine consumption during 

daytime and nighttime; ii) overall negative emotion score calculated as the mean of “Stress”, 

“Anger” and “Tense” ratings throughout the entire day; iii) overall positive emotion score 

calculated as the mean of “Happy” and “In control”ratings throughout the day; iv) gender; v) 

race; and vi) age. In addition, it is assumed that the effects of caffeine consumption during 

daytime (nighttime) only affect the CV activities in the daytime (nighttime) through , , 

and ( , , and ).

Time was rescaled such that 1 unit represents 12 hours. The resulting lengths of time 

intervals between two adjacent observed time points range from 0.01 to 0.48, corresponding 

to a range of .72 minutes to 5.76 hours in time. To form the 1st resolution, imputed time 

points are placed evenly between two observed time points. The time intervals between the 

imputed time points are around 0.07 (corresponding to 5 minutes). To obtain the daytime 

and nighttime windows in (2.1), we used manual coding to extract subject-specific time 

windows for each subject. Specifically, the daytime window for each subject was defined to 

end when systematic dipping of BP and heart rate were observed, while the nighttime 

window was defined to end when systematic rise in BP and heart rate were observed.

The measurement model for the latent process xij at j = sk* is given by
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(5.1)

where yis1, yis2, and yis3 are, respectively, SBP, DBP, and heart rate at the sth observed time 

for the ith subject. Each yisj, j = 1, 2, 3, was standardized by the mean and standard deviation 

calculated using all i and s. Moreover, , and the 1 

in the loading matrix is fixed for identification. The initial conditions of the latent SDEs 

were fixed to the estimated factor scores of the subjects using the values of SBP, DBP, and 

heart rate at the first observed time point. Without any prior information, vague prior 

distributions βj ∼ N(b0j, Σ0bj)I(Sj) and ψ ∼ IG(aψ1, aψ2) were assumed for the parameters in 

model (2.1), where b0j = 0, Σ0bj = 106I, for j = 1, …, 6; aψ1 = 0.01, and aψ2 = 0.01. 

 for j = 1, 3, 4, 6, and S2 = S5 = R7. We also set Λ0r = 0, ΣΛr = 

106, a1r = 3, and a2r = 1 in (4.1).

5.1. Results

Four resolutions were used in the MR algorithm described in Section 4.1. For each 

resolution in the MR algorithm, 2000 burnin samples were discarded and another 4000 

MCMC samples were acquired for estimation and inference. The MR algorithm improves 

the efficiency of the MCMC algorithm by dramatically reducing the autocorrelations of the 

MCMC samples of most parameters (see Supplement S2 for further details). In this study, 

the selection of tuning parameter α in RBBS does not affect the sampling algorithm much 

because the drift function does not dominate the diffusion function. Estimated posterior 

means (Est), standard errors (SE) and their quotient (Z) based on the finest resolution are 

shown in Table 1. The Z values that pass the false positive rate threshold (Benjamini and 

Hochberg, 1995) q=0.05 are highlighted in bold font, while those between q=0.05 and 

q=0.10 are highlighted in bold and italic font.

Some covariates were found to be significantly correlated with one or more aspects of the 

participants' CV trajectories. Based on the estimated coefficients, we numerically simulated 

the mean trajectories of subjects with different levels of certain covariates from (2.1), which 

are plotted in Figure 3. For continuous covariates, three levels of covariates were used, 

namely, the minimum, median, and maximum of the covariates. Table 2 shows the estimated 

equilibriums of SBP, DBP, and HR at daytime and nighttime for different levels of 

covariates.

We calculated the posterior predictive p-value (Gelman, Meng and Stern, 1996) of the χ2 

goodness of fit measure:

Let Xk, Λk, and Σεk be the kth MCMC sample of X, Λ, and Σε, respectively. Yk was 

generated based on (5.1) with Xk, Λk, and Σεk. The estimated posterior predictive p-value is 

the proportion of D(Yk, Xk, Λk, Σεk) that are greater than D(Y, Xk, Λk, Σεk) for all MCMC 
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samples (0.485), indicating a reasonable fit of the model to the data. We also checked the 

predictive performance of our model. The pointwise estimated median and 95% credible 

intervals formed by all Yk for three randomly selected subjects are displayed in Figure S3. 

The prediction is reasonably good even in the presence of sparsely spaced observations.

The acceptance rates of the cross-resolution move are 0.04, 0.14, and 0.27 at the 2nd, 3rd 

and 4th resolution, respectively. The increasing acceptance rates agree with Kou et al. 

(2012). As k increases, the empirical distribution for Pk−1(θ, X(k−1)|Y) becomes a better 

proposal distribution because the difference between Pk−1(θ, X(k−1)|Y) and Pk(θ, X(k)|Y) 

decreases.

The estimation is not very sensitive to the specification of the hyperparameters in (4.1). 

Specifically, we set the covariance matrices of the multivariate normal prior distributions to 

10I, which represents moderate prior covariances, and changed the prior mean to two times 

or half of the estimated parameters. The estimation results were similar to Table 1.

5.2. Substantive Findings

One interesting finding is that the estimated intercept of  is significantly greater than 1. 

From a modeling aspect, this contradicts the common assumption of the linear OU process 

and demonstrates the added value of the nonlinear model considered. Practically, compared 

to the dipping at night, the daytime surge is much faster at the beginning and slower at the 

end, resulting in a less stable change.

The covariates were found to play discrepant roles in affecting the subjects' daytime and 

nighttime CV dynamics. To further shed light on the substantive implications of such 

differences, we compared two aspects of the modeling results thought to be important from a 

CV standpoint: i) daytime and nighttime equilibrium levels of CV activities (modeled by 

and ); ii) relative rates and the instability of the surge and dipping of CV activities.

Caffeine and gender were related to the CV activities equilibrium at night, while gender, 

race and age are related to the daytime equilibrium. i) The effects of caffeine intake in the 

literature remain mixed. For instance, Eggertsen et al. (1993) reported that “habitual coffee 

drinking did not influence the 24-hour blood pressure profiles.” However, Green and Suls 

(1996) found that caffeine intake affected daytime SBP as well as DBP, and night time BP. 

Lane et al. (2002) showed increased levels of ABP persisting for a few hours following 

caffeine consumption. In this study, we found that caffeine significant increased the CV 

activities equilibrium at night (β51), which is shown in Figure 3a. In contrast, caffeine intake 

in the daytime did not affect the CV activities equilibrium in the morning (Figure 3b). ii) 

Carels, Blumenthal and Sherwood (2000) showed that effect of negative emotion increases 

the whole day CV activities. However, the daytime and nighttime CV activities were not 

studied separately. In our study, the daytime equilibrium was not related to negative 

emotion. iii) We found that male subjects have higher equilibrium in both day and night. 

Studies using 24-hour ABP have shown that BP is higher in men than in women at similar 

ages (Reckelhoff, 2001). iv) Elder subjects have higher daytime equilibrium. In the US 

population, SBP increases progressively with age, and DBP peaks at around age 55 years. 

Central arterial stiffening with age is considered to account for this phenomenon (Franklin et 
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al., 1997). v) Minority subjects exhibit higher daytime equilibrium. However, black and 

white subjects do not show much difference in the nighttime equilibrium. Hinderliter et al. 

(2004) reported that African Americans have a smaller nocturnal decline in BP than white 

subjects.

The disagreement between Hinderliter et al. (2004) and our result regarding race difference 

in nighttime equilibrium may be explained by the relative rate of change found to be smaller 

for black subjects in our model. In Hinderliter et al. (2004), the daytime and nighttime BP 

were defined to be the average BP when subjects are awake or asleep. As illustrated in 

Figure 2a, the average score is larger for subjects with smaller rate of change even when the 

daytime and nighttime equilibriums are identical. In this aspect, our result agrees with 

Hinderliter et al. (2004), which may shed light on the advantage of our data analysis by 

considering the change of CV activities in addition to equilibriums.

The rate of change of CV activities was seldom studied in the literature. i) We found that 

white subjects have faster nighttime relative dipping rate. The pattern of latent scores and 

drift functions are similar to those shown in Figures 2a and 2b. ii) The daytime surge rate 

and stabilization parameter are affected by daytime caffeine intake. Although the absolute 

rates of change of caffeine users are relative small due to the smaller difference between the 

two equilibriums, relative morning surge rates are larger and the surge rates are more stable. 

The patterns of latent scores and drift functions for subjects with different levels of caffeine 

consumption are shown in Figures 3b and 3e. iii) Male subjects have higher relative surge 

rate. The latent scores and drift functions for male and female are shown in Figures 3c and 

3f.

6. Conclusion

We have presented a latent SDE framework for population dynamic data with covariates 

measured at irregularly spaced time points. Using the Euler-Maruyama approximation to 

generate numerical solutions of the SDEs, several local and global samplers for sampling the 

latent processes have been developed based on modifications of existing samplers in the 

literature. The proposed model has been applied to the Duke Biobehavioral Investigation of 

Hypertension study. Significant covariate effects have been identified. Risk factors of 

Coronary heart disease (CHD) in different scenarios have been discussed. Several scientific 

findings in our analysis were not evident from previous studies. First, more information of 

the population dynamic data is revealed in our study. Instead of studying the difference 

between daytime and nighttime CV activities, we investigate several dynamic characteristics 

of CV activities, including the daytime and nighttime equilibriums, rates of change and 

change stability during the night dipping and morning surge, respectively. Second, we 

explain the variation among the population dynamic data with the effects of covariates. We 

identify covariates that are correlated with these dynamic characteristics. Third, the 

covariates effects for the characteristics in daytime and nighttime are found to be 

asymmetric.

There are still some limitations of the proposed model, and further developments are needed. 

First, the processes between different subjects are assumed to be independent in our model. 
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One possible alternative is to consider random effects variations of the proposed modeling 

framework to allow for information borrowing among subjects. Second, the time windows 

for capturing BP surges and dipping were constructed based on subjective information. It 

would be more appealing to develop data-driven methods to extract daytime and nighttime 

windows, or estimate the transition/change points empirically (e.g., Barry and Hartigan, 

1993). Finally, the initial conditions of the SDEs were fixed to the estimated latent scores for 

each subject at the first observed time point. Other methods for approximating the unknown 

initial conditions (e.g., as mixed effects to be estimated as other modeling parameters; Chow 

et al., 2015) can, in principle, be used with the proposed MR algorithm. The effects of using 

different approaches to estimate the initial conditions of latent SDE models warrant further 

investigation.

The MR algorithm can produce efficient MCMC chains as the resolution increases. 

However, careful design and implementation are still required for the MR algorithm to work 

properly and efficiently. The proposal distribution consists of two parts, i.e., the posterior 

distribution at the previous resolution and the proposal distribution of the processes at 

additional time points at the new resolution. The posterior distribution depends recursively 

on the local updating algorithm at the first resolution. Thus, the performance of the local 

updating algorithms should be reasonably satisfactory at the first resolution in order to 

provide good building blocks for the MR algorithm. Otherwise, the empirical distribution of 

the MCMC samples may not approximate the posterior distribution well, and may not serve 

as a good proposal distribution in the cross-resolution sampler, resulting in low acceptance 

rate of the cross resolution move and offsetting any potential advantages of the MR 

algorithm. We use the sampler in Lindström (2012) as the second part, which contains a 

tuning parameter accounting for the nonlinearity of the processes. We suggest using the 

same tuning parameter in the local sampler with high acceptance rate.

The efficiency of the MR algorithm may be reduced when the number of subjects is large. 

The MR algorithm is essentially a MH algorithm, which updates the processes for all 

subjects at observed and imputed time points and all parameters simultaneously. 

Maintaining the acceptance ratio of a large number of random variables is challenging for 

the MH algorithm. Algorithms to update the processes subject by subject may be helpful. In 

addition, other MCMC algorithms (e.g., Andrieu, Doucet and Holenstein, 2010; Golightly 

and Wilkinson, 2011; Stramer et al., 2011) that sample the stochastic processes globally and 

do not lead to convergence problem when the number of imputation increases are worthy of 

further research.

Another caveat is that even though the block updating scheme can overcome the dependence 

between the latent states, the dependence between the latent states and the parameters in the 

diffusion function remains, as discussed by Roberts and Stramer (2001)1. In our studies, the 

MCMC algorithms work satisfactorily at the first resolution, and the MR algorithm keeps 

improving the MCMC algorithms as the number of imputation increased. However, when 

the 1-step and block updating algorithm fail at the first resolution, other alternative MCMC 

1We thank a reviewer for pointing this out.
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algorithms should be considered as the building block for the MR resolution to work 

properly.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig 1. 
Trajectories of SBP, DBP and heart rate of six subjects in the case study, which are the red 

dashed, blue solid, and black dot-dashed curves, respectively.
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Fig 2. 
The latent scores and corresponding drift functions given different parameter values in (2.1). 

The first row of plots features the expected trajectories and the drift function with different 

relative change rates, while the second row is those with different change instabilities. The 

red cross, blue circle, and black solid curves are generated from large, medium, and small 

relative change rates or change instabilities, respectively.
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Fig 3. 
The first and second columns are the estimated mean trajectories and drift functions of CV 

trajectories, respectively. The first and second columns show the night dipping and morning 

surge given different levels of caffeine consumption, respectively. The third column displays 

the gender differences during morning surge.
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