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Abstract

High-throughput next-generation sequencing is now entering its second decade. However, it was 

not until 2008 that the first report of sequencing the brain transcriptome appeared (Mortazavi, 

Williams, Mccue, Schaeffer, & Wold, 2008). These authors compared short-read RNA-Seq data 

for mouse whole brain with microarray results for the same sample and noted both the advantages 

and disadvantages of the RNA-Seq approach. While RNA-Seq provided exon level resolution, the 

majority of the reads were provided by a small proportion of highly expressed genes and the data 

analysis was exceedingly complex. Over the past 6 years, there have been substantial 

improvements in both RNA-Seq technology and data analysis. This volume contains 11 chapters 

that detail various aspects of sequencing the brain transcriptome. Some of the chapters are very 

methods driven, while others focus on the use of RNA-Seq to study such diverse areas as 

development, schizophrenia, and drug abuse. This chapter briefly reviews the transition from 

microarrays to RNA-Seq as the preferred method for analyzing the brain transcriptome. Compared 

with microarrays, RNA-Seq has a greater dynamic range, detects both coding and noncoding 

RNAs, is superior for gene network construction, detects alternative spliced transcripts, and can be 

used to extract genotype information, e.g., nonsynonymous coding single nucleotide 

polymorphisms. RNA-Seq embraces the complexity of the brain transcriptome and provides a 

mechanism to understand the underlying regulatory code; the potential to inform the brain–

behavior–disease relationships is substantial.

1. INTRODUCTION

Next-generation sequencing (NGS) refers to a variety of related technologies, often termed 

massively parallel sequencing. The first NGS platform (Roche 454) was introduced in 2004. 
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Subsequently, other platforms were released by several manufacturers: Illumina (Solexa), 

Helicos, Pacific Biosciences, and Life Technologies (ABI). Although the instruments differ 

in the underlying chemistry and technical approach, the platforms are similar in their 

capability of producing very large numbers of simultaneous reads relative to traditional 

methods. Thus, it is now possible to sequence whole genomes, exomes, and transcriptomes 

for a reasonable cost and effort. The technology of transcriptome sequencing, also known as 

RNA-Seq, has matured to the point that it is reasonable to propose substituting RNA-Seq for 

microarray-based assessments of global gene expression. Of particular importance to our 

laboratories are the advantages RNA-Seq has over microarray platforms when analyzing 

complex rodent crosses, e.g., heterogeneous stocks (HSs). However, the same argument can 

be made when analyzing any outbred population, including humans. Of particular relevance 

to the brain transcriptome are the advantages RNA-Seq has over microarrays in analyzing 

alternative splicing. This chapter provides a starting point for understanding the emergence 

of RNA-Seq and emphasizes transcriptome/behavior relationships.

2. FROM MICROARRAYS TO RNA-Seq

Cirelli and Tononi (1999) were among the first to report genomewide brain gene expression 

profiling associated with a behavioral phenotype; both mRNA differential display and 

cDNA arrays were used to examine the effects of sleep deprivation on rat prefrontal cortex 

gene expression. Sandberg et al. (2000) used Affymetrix microarrays to detect differences in 

brain gene expression between two inbred mouse strains (C57BL/6J [B6] and 129SvEv 

[129; now 129S6/SvEvTac]). Importantly, these authors observed that some differentially 

expressed (DE) genes were found in chromosomal regions with known behavioral 

quantitative trait loci (QTLs). For example, Kcnj9 that encodes for GIRK3, an inwardly 

rectifying potassium channel, was DE (higher expression in the 129 strain) and is located on 

distal chromosome 1 in a region where QTLs had been identified for locomotor activity, 

alcohol and pentobarbital withdrawal, open-field emotionality, and certain aspects of fear-

conditioned behavior (see Sandberg et al., 2000). Subsequently, Buck and colleagues (Buck, 

Milner, Denmark, Grant, & Kozell, 2012; Kozell, Walter, Milner, Wickman, & Buck, 2009) 

have shown that Kcnj9 is a quantitative trait gene (QTG) for the withdrawal phenotypes. 

Over the past decade, this alignment of global brain gene expression data and behavioral 

QTLs has been reported in numerous publications and discussed in numerous symposia and 

reviews (e.g., Bergeson et al., 2005; Farris & Miles, 2012; Hoffman et al., 2003; Matthews 

et al., 2005; Mcbride et al., 2005; Saba et al., 2011; Sikela et al., 2006; Tabakoff et al., 

2009). The association gained further support as the focus turned to genes whose expression 

appeared to be regulated by a factor or factors within the behavioral QTL interval. Web 

tools have been developed to facilitate integrating behavioral and brain microarray data 

(e.g., www.genenetwork.org and http://phenogen.ucdenver.edu/PhenoGen/index.jsp; 

Chapter 8). This integration has been successful in detecting several candidate QTGs for 

behavioral phenotypes (see, e.g., Hitzemann et al., 2004; Hofstetter et al., 2008; Mulligan et 

al., 2006; Saba et al., 2011; Tabakoff et al., 2009).

The alignment of DE genes with a behavioral phenotype can be further examined using a 

variety of secondary analyses, e.g., examining if the DE genes cluster within known gene 

ontology categories (Pavlidis, Qin, Arango, Mann, & Sibille, 2004) or are part of a known 
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protein–protein interaction network (Bebek & Yang, 2007; Feng, Shaw, Rosen, Lin, & 

Kibbe, 2012). DE genes can also be grouped on the basis of common transcription factors 

and other regulatory elements (e.g., Vadigepalli, Chakravarthula, Zak, Schwaber, & Gonye, 

2003). In addition to DE genes, microarrays have also facilitated gene coexpression-based 

analyses, such as the Weighted Gene Coexpression Network Analysis (WGCNA; Horvath et 

al., 2006; Zhang & Horvath, 2005). The rationale behind these approaches is that 

coexpressed genes frequently code for interacting proteins, which in turn leads to new 

insights into protein function(s) and in some cases leads to discovery of protein function 

(Zhao et al., 2010). Coexpression analysis has been used to analyze differences in functional 

brain organization between nonhuman primates and humans (Oldham, Horvath, & 

Geschwind, 2006), regional differences in the functional organization of the human brain 

(Oldham et al., 2008), and the molecular pathology of autism (Voineagu et al., 2011) and 

alcoholism (see Chapter 11).

Despite these successes, microarray-based approaches are not without problems. First, 

differences in brain gene expression among genetically unique individuals or lines selected 

for behavioral traits are generally small; reported differences of 15–25% are not uncommon. 

To some extent, these small variations occur because hybridization isotherms for 

oligonucleotide arrays are frequently not linear due to probe saturation (Pozhitkov, Boube, 

Brouwer, & Noble, 2010).

A second problem with oligonucleotide arrays is the effect of single nucleotide 

polymorphisms (SNPs; Duan, Pauley, Spindel, Zhang, & Norgren, 2010; Peirce et al., 2006; 

Sliwerska et al., 2007; Walter et al., 2009, 2007). Rodent oligonucleotide arrays are based 

upon the sequence of the B6 mouse or Brown-Norway (BN) rat. Even inbred strains closely 

related to the B6 or BN strains may differ by several million SNPs (see, e.g., Keane et al., 

2011), which in turn can cause significant hybridization artifacts (Walter et al., 2009, 2007). 

Masking for SNPs can improve this situation but results in deleting probes or even an entire 

probe set from the analysis. Walter et al. (2009) used NGS to address the SNP problem, 

building upon the repeated observation that, when comparing gene expression in the B6 and 

DBA/2J (D2) inbred mouse strains (or crosses and selected lines formed from these strains) 

and after masking for known SNPs in the D2 strain, there remained an excess of genes 

showing higher expression in the B6 strain. Similarly, this was also observed in the case of 

cis-eQTLs showing higher expression associated with the B6 allele (see Mulligan et al., 

2006; Peirce et al., 2006; Walter et al., 2007). The two possible explanations for these 

observations were the following: (a) gene expression was actually higher in the B6 strain or 

(b) there were many uncharacterized D2 SNPs, which led to decreased binding of D2-

derived target on probes containing the SNP locale. Preliminary direct sequencing and 

quantitative PCR data pointed to missing SNPs. NGS was used to analyze a 3-Mbp region of 

Chr 1 (171.5–174.5 Mbp) that was enriched in a number of behavioral QTLs and transcripts 

DE between the B6 and D2 strains. B6 and D2 BAC clones tiled across the region were 

sequenced using the short-read Illumina IIx and ABI SOLiD 2 platforms. The results 

obtained (30–100 × coverage) illustrated that there were 160% more SNPs in the region than 

previously reported (Walter et al., 2009); these data have been confirmed (Keane et al., 

2011; R. Williams, unpublished observations). The integration of these SNPs to the mask 

markedly reduced the disparity in DE genes between the B6 and D2 strains.
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A third problem with oligonucleotide arrays is the annotation and summarization issues 

associated with predefined reporters/probes (e.g., Allison, Cui, Page, & Sabripour, 2006; Lu, 

Lee, Salit, & Cam, 2007). Interestingly, on some arrays, a significant number of the 

represented transcripts are actually long noncoding RNAs (ncRNAs) (see, e.g., Liao et al., 

2011). But tens of thousands of ncRNAs, many of which have important regulatory 

functions (Mattick, 2011; also see Chapter 7), are not represented on the arrays.

A fourth problem with oligonucleotide arrays is that 3′UTR-orientated microarrays provide 

relatively little information about alternative splicing, which is particularly high in brain 

(Johnson et al., 2009; Li, Lee, & Black, 2007; Licatalosi & Darnell, 2006; Mortazavi, 

Williams, Mccue, Schaeffer, & Wold, 2008). The Affymetrix Mouse 1.0 Exon ST array 

collects data on alternative splicing, but when used to detect differential alternative splicing, 

it is particularly sensitive to the “SNP effect” due to the smaller number of probes per probe 

set (Laderas et al., 2011).

3. NGS PLATFORMS

There are several excellent reviews of the various NGS platforms (e.g., Mardis, 2008, 2011; 

Martin & Wang, 2011; Metzker, 2010; Ozsolak & Milos, 2011; Rothberg et al., 2011). 

Understanding in some depth how the platforms work is critical to understanding where 

errors develop and are propagated from sample preparation to alignment to data analysis. 

The differences in platforms will not be discussed here. We simply note that for RNA-Seq 

experiments, the majority have used the Illumina platform (see, e.g., Costa, Angelini, De 

Feis, & Ciccodicola, 2010). The promise of a high-throughput, high read instrument with 

minimal library preparation remains a promise. Such an instrument would be particularly 

welcome for sequencing the brain transcriptome given the diversity of cell types present and 

the numerous comparisons that could be made.

4. RNA-Seq OVERVIEW

The first and perhaps the most important step of an RNA-Seq experiment is the same as that 

for a microarray experiment, the isolation of high-quality RNA. Although both RNA-Seq 

and microarrays can be used on fragmented RNA such as that found in formalin-fixed-

paraffin-embedded samples, the biases present in such samples for genome-wide sequencing 

are difficult to assess. RNA quality is routinely examined on the Agilent BioAnalyzer or a 

similar instrument; an RNA integrity number (RIN) of ≥8 is generally considered high 

quality. Unfortunately for brain samples, the amount of beginning tissue may be very small, 

and obtaining a reliable RIN or even accurately measuring the amount of RNA may be 

difficult. Even within very discrete brain regions, there are multiple cell types, and some 

experiments need to focus on a specific subset of cells or even a single cell. Eberwine and 

colleagues at the University of Pennsylvania have pioneered techniques for the linear 

amplification of small amounts of RNA; an online audio describing the procedures when 

beginning with only fentograms of material is available (Morris, Singh, & Eberwine, 2011). 

Many RNA-Seq experiments begin with postmortem material that has been stored, often 

under variable conditions, including differences in the postmortem interval (PMI). 

Depending on the length of the PMI, the RNA in a sample may be moderately to 
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significantly degraded as assessed by the RIN and other Q/C measures. For samples with 

integrity numbers <6, one should consider ribosome depletion as opposed to a polyA

+preparation. Ribosome-depleted samples also have the advantage of including coding and 

ncRNAs which are not polyadenylated; tiling array data suggest that more than 40% of 

transcripts are not polyadenylated (Cheng et al., 2005). Cui et al. (2010) have compared 

RNA-Seq of RiboMinus (rmRNA) and poly(A)-selected (mRNA) samples; the starting total 

RNA was extracted from BALB/c mouse whole brain. The authors found (on a percent 

basis) that there were marked read distribution differences between samples. The percentage 

of known exon reads was twice as high in the mRNA sample (60%), while the percentage of 

both intronic and intergenic reads was twice as high in the rmRNA sample (25% and 44%, 

respectively). Both samples detected reads in essentially the same population of RefSeq-

defined genes, i.e., there was not a substantial read bias. So the use of rRNA-depleted or 

poly(A)-selected RNA depends on the questions being asked and the estimated read density 

per sample. Data collected in our laboratory and elsewhere (Bottomly et al., 2011; Marioni, 

Mason, Mane, Stephens, & Gilad, 2008; Mortazavi et al., 2008) have found that 20–40 

million reads are generally adequate for most estimates of gene expression. If the goal is to 

quantitatively measure expression at the exon level, then the read density must be increased 

significantly, perhaps by an order of magnitude (see Labaj et al., 2011; Lee, Mayfield, & 

Harris, 2014). Such exon level measurements are obviously best suited for poly(A)-selected 

samples, especially when one is dealing with multiple biological replicates and assuming 

resources are reasonably limited; i.e., it is very likely that it will be necessary to multiplex 

samples. But if one is only interested in gene expression and can maintain total exonic read 

density at 20–40 million, then rmRNA could be used, and significant information on 

ncRNAs and mRNAs without a poly(A) tail can be obtained. Cui et al. (2010) also used a 

procedure that facilitates both the quantification of transcripts derived from opposite strands 

and determining the directionality of transcription (Costa et al., 2010; Martin & Wang, 

2011; see also Chapter 2). Using the strand-specific data, Cui et al. (2010) made several 

salient observations: (a) 99.9% of the junction reads are in the sense orientation; (b) nearly 

all expressed genes have natural antisense transcripts (the proportion may be as high as 70% 

of expressed genes [Katayama et al., 2005]); (c) poorly expressed genes tend to have more 

pronounced antisense transcription; and (d) the antisense transcripts are enriched in the 

promoter and terminal transcript regions. This enrichment is likely the result of divergent 

transcription initiation of RNA polymerase II (Core, Waterfall, & Lis, 2008; Preker et al., 

2008).

Samples from very discrete brain regions are often prepared by laser capture microdissection 

(LCM). Given the steps involved in preparing the LCM samples, including staining and 

dehydration, care needs to be taken to maintain RNA quality. Chen et al. (2011) appear to be 

the first to couple LCM and RNA-Seq to examine brain gene expression. They examined rat 

GABAergic neurons projecting from the nucleus accumbens to the ventral pallidum. Cells 

were labeled using the retrograde tracer, Fluorogold. Approximately 1500 cells were labeled 

and isolated by LCM in each of four animals; this in turn produced ~4 ng of RNA per 

animal, and the average RIN was 8.1. Samples were independently amplified for microarray 

and RNA-Seq; for genes detected on both platforms, the correlation for gene expression was 

~0.7. Not surprisingly, the correlation was better for the highly expressed genes. We have 
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used LCM to examine gene expression in discrete regions of the mouse brain (prelimbic 

cortex, nucleus accumbens shell, and central nucleus of the amygdala; Colville, AM & 

Hitzemann, RJ unpublished observations). Sufficient high-quality RNA was obtained from 

each sample (>100 ng) that amplification was not necessary. Although the samples were 

only used for RNA-Seq, the data obtained for the nucleus accumbens shell appear at the 

gene level to be very similar to data previously obtained for the ventral striatum when using 

microarrays (e.g., Iancu et al., 2010).

In addition to examining gene expression in discrete brain regions and discrete cell types, for 

some applications, it is desirable to assess the synaptic transcriptome (see, e.g., Eipper-

Mains, Eipper, & Mains, 2012). A key mechanism of synaptic plasticity is the local 

synthesis of proteins from synaptic mRNA. Techniques for isolating synaptosomes from 

adult brains and growth cones from developing brains are well established using gradient 

centrifugation (e.g., Hitzemann & Loh, 1978). Synaptoneurosomes are prepared by filtration 

of tissue homogenate through a series of filters to obtain a fraction that is enriched in 

pinched-off dendritic spines (Lugli & Smalheiser, 2013). Regardless of preparation, once 

isolated, these fractions can be subjected to sequencing as outlined earlier (e.g., Eipper-

Mains et al., 2011). A key to the use of these fractions will be assessments of subcellular 

contamination.

The next step in an RNA-Seq experiment involves the synthesis of high-quality double-

stranded (ds) cDNA. The most widely used procedure fragments the RNA before reverse 

transcription, followed by second-strand synthesis. This approach has the advantage of 

minimizing the effects of secondary RNA structure on first-strand synthesis. If the adapters 

needed for the sequencing are added after the ds cDNA is formed, information on 

strandedness is lost. There are several procedures, including ligating adapters to the 

fragmented RNA, that will maintain strand information (Ingolia, Ghaemmaghami, Newman, 

& Weissman, 2009; Li et al., 2008; Parkhomchuk et al., 2009). The alternative to using 

fragmented RNA is to synthesize the cDNA from intact RNA and then fragment. This 

approach has a clear advantage for platforms that are capable of long to very long reads. For 

the Illumina, SOLiD, and 454 platforms, the final step prior to the actual sequencing is the 

clonal amplification of the fragmented cDNA. Both 454 and SOLiD use emulsion PCR on a 

bead surface, while Illumina uses enzymatic amplification on a glass surface (flow cell). The 

sequencing and detection methods differ among the three platforms (see Mardis, 2011 and 

Metzker, 2010 for details). The 454 sequencer use a polymerase-mediated incorporation of 

unlabeled nucleotides; detection is via light emitted by secondary reactions with the released 

PPi. Illumina also uses a polymerase-mediated sequencing but uses end-blocked fluorescent 

nucleotides in a protocol similar to traditional Big Dye sequencing; detection comes from 

following the incorporation of the nucleotide attached fluorescent tags. SOLiD sequencing 

uses the ligase-mediated addition of 2-base encoded fluorescent oligonucleotides; detection 

is from fluorescent emission of the incorporated oligonucleotides. The SOLiD system differs 

from Illumina and 454 in that each base is determined twice. The quality of the base calls for 

all three platforms is very good. Quality is measured in terms of a Phred Score (Q), which 

was originally developed to assess base calls for the human genome project (Ewing, Hillier, 

Wendl, & Green, 1998). A Q score of 20 indicates a 99% accuracy rate, and a score of 30 
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indicates a 99.9% accuracy rate. Q30 values are routinely obtained for NGS platforms. 

Typically, the Q value decreases with increasing read length.

5. RNA-Seq AND DATA ANALYSIS

Before commenting on the analysis of RNA-Seq data, it is useful to recount the analysis 

controversies that arose with the introduction of microarrays. In 1999, Nature Genetics 

devoted an entire issue (volume 21—January) to microarrays. Cautionary concerns were 

raised around issues of data analysis (Lander, 1999). Microarray experiments, at the time, 

were generally expensive, limiting sample sizes. Small sample sizes and thousands of 

independent observations per sample were seen as a prescription for statistical disaster. 

Initial attempts to deal with this problem frequently involved using a nonstatistical threshold 

for a meaningful difference, e.g., a twofold difference in expression. This approach 

frequently worked well in some applications, e.g., when comparing cancerous and 

noncancerous tissue; however, this approach was destined not to work well in brain, where 

differences in expression among experimental groups were much smaller. Initially, journal 

reviewers, editors, and study sections panned microarray experiments as being “fishing 

expeditions,” with no clear hypothesis. The idea of discovery science as a valuable strategy 

was a minority opinion.

Despite the obstacles, microarray experiments eventually flourished; technology and 

analysis methods improved. One might have predicted that the microarray experience would 

have laid the groundwork for the acceptance of NGS. However, the introduction of the 454 

sequencer (Margulies et al., 2005) was met with a similar resistance; the argument was made 

that the data sets were so large that only one of the established genome centers would have 

the necessary bioinformatics expertise. But as NGS technology improved so did the analytic 

approaches, such that by 2007/2008, RNA-Seq data appeared from several different 

laboratories (Marioni et al., 2008; Mortazavi et al., 2008; Sugarbaker et al., 2008; Torres, 

Metta, Ottenwalder, & Schlotterer, 2008; Weber, Weber, Carr, Wilkerson, & Ohlrogge, 

2007). Workflows emerged that addressed the measurement of not only DE genes but also 

differential alternative splicing and the detection of novel transcripts (Marioni et al., 2008). 

Bullard, Purdom, Hansen, and Dudoit (2010) examined a number of statistical issues 

associated with using RNA-Seq to detect DE genes. Similar to Marioni et al. (2008), they 

found that most sources of technical variation had only small effects on detecting DE 

transcripts. The most significant effect on DE transcripts was data normalization. Bullard et 

al. (2010) concluded that their “main novel finding is the extent to which normalization 

affects differential expression results: sensitivity varies more between normalization 

procedures than between test statistics…we propose scaling gene counts by a quantile of the 

gene count distribution (the upper-quartile).”

This volume contains several chapters that address in some detail the analysis of RNA-Seq 

data (see Chapters 2, 3, and 11); these chapters especially emphasize the evolution of RNA-

Seq analysis over the past 3–4 years. In addition to improvements in analysis strategy, 

sample power has in general improved with decreasing costs and the ability to multiplex 

samples with adequate read depth (at least at a level sufficient for gene summarization 
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statistics). If one is interested in quantifying alternative splicing, then substantially greater 

read depth is required (see, e.g., Lee et al., 2014).

RNA-Seq data have some unique properties that affect the strategies for data analysis 

(Garber, Grabherr, Guttman, & Trapnell, 2011). First, unlike microarray data where the 

output is fluorescence intensity (more or less a continuous measure), the output from an 

RNA-Seq experiment is digital in the form of read counts. For the microarray experiment, 

familiar statistics such as a t-test or ANOVA are appropriate (assuming variances are equal); 

for RNA-Seq data, these statistics are not directly applicable. Robinson, Mccarthy, and 

Smyth (2009) proposed the use of the empirical analysis of digital gene expression in R 

(edgeR), a variant of a procedure used to analyze SAGE data. edgeR models count data 

using an over-dispersed Poisson model and use an empirical Bayes’ procedure to moderate 

the degree of overdispersion across genes; the overdispersion reflects the biological 

variation among samples (Robinson et al., 2009). An implementation of edgeR to mouse 

brain RNA-Seq data is found in Bottomly et al. (2011).

Second, RNA-Seq data are biased in several important ways. First, the majority of the 

counts are produced by a small number (<10% of the total) of very highly expressed genes. 

Thus, many genes of interest may have only moderate to low counts. Also, for genes with 

equal levels of expression, the long genes will be overrepresented, distorting the relative 

expression among genes. Similarly, within a given gene, long exons are overrepresented. 

Normalization and weighting algorithms can be used to address these issues, but they in turn 

may introduce new biases (Bullard et al., 2010).

Third, RNA-Seq provides a substantial amount of data with very low read counts, which 

will be quite variable (see, e.g., Cui et al., 2010), and thus, regardless of the analytic 

strategy, makes detecting DE genes difficult.

Fourth, RNA-Seq data includes multireads, i.e., reads that map equally well to multiple 

genomic locations. The multireads arise predominantly from conserved domains in 

paralogous genes and from repeats (Costa et al., 2010). Mortazavi et al. (2008) found that, in 

the mouse brain, 76% of the 25-bp transcriptome sequence segments uniquely mapped; 6% 

mapped 2–10 times in the genome; and the remainder mapped more than 10 times. 

Depending on the gene model used and assuming a high-read density, ignoring the 

multireads may only have a minimal effect on detecting DE genes. But one can easily 

contrive a situation involving alternative splicing and multireads where this would not be the 

case.

Fifth, RNA-Seq collects data across splice junctions that (a) are ignored by many alignment 

tools and (b) may be unknown. While there are <25,000 known protein-coding genes in the 

mammalian genome, the number of gene-related transcripts may well be 10–20 times higher 

(Pan, Shai, Lee, Frey, & Blencowe, 2008; Johnson et al., 2009). Given the heterogeneous 

nature of brain tissue, the complexity problem is significantly amplified. Tools are available 

that detect splice junctions and will estimate the minimum number of gene isoforms that 

account for the observed data (Guttman et al., 2010; Katz, Wang, Airoldi, & Burge, 2010; 

Trapnell, Pachter, & Salzberg, 2009; Trapnell et al., 2012, 2010). Roberts, Pimentel, 
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Trapnell, and Pachter (2011) illustrate a procedure that makes use of annotated model 

organism genomes, such as those available for the laboratory mouse and rat. For both 

correctly aligning multireads and splice junctions, paired-end sequencing is a useful 

approach. The downside is the added expense of sequencing the cDNA fragment from both 

ends.

Sixth, RNA-Seq data can be used to detect allele-specific expression and both synonymous 

and nonsynonymous SNPs within gene-coding sequences. This application may be 

particularly useful in complex crosses such as the HS-CC (Iancu et al., 2010) where RNA-

Seq can provide detailed genotype information. In the RNA-Seq context, the advantages of 

using model organisms with a well-annotated genome cannot be underestimated (Martin & 

Wang, 2011). Reference genome alignment is computationally simpler and faster as the 

problem is reduced from assembling millions of reads to assembling a much smaller number 

of reads to known loci. For both the mouse and rat, the reference genomic sequence was 

obtained using tiled BAC clones, and thus, there are essentially no gaps. But if one believes 

that there are a substantial number of missed exons, then some combination of reference-

based and de novo alignment may be the most effective approach (Martin & Wang, 2011). 

The Mouse Genomes Project (Keane et al., 2011) released genomic sequence data for 17 

inbred strains; the data are aligned to the B6 reference strain. It is important to note that 

these data are not equivalent to the reference genome. The data were acquired using a short-

read NGS platform (Illumina), which naturally means that in regions of high repeats/low 

genetic complexity, it is not possible to correctly align the sequence data. For the standard 

laboratory strains, this effect is most notable on the proximal aspect of chromosome 7 

(Keane et al., 2011). RNA-Seq data are also available for six tissues from a B6D2 F1 hybrid 

and for whole brain transcriptome data from 15 strains. These data sets can be freely 

downloaded and provide an excellent training set for RNA-Seq analysis.

6. SEQUENCING THE BRAIN TRANSCRIPTOME

PubMed lists 2702 RNA-Seq publications (6/1/14) with the first appearing in June 2008 

(Nagalakshmi et al., 2008); the number has steadily increased from 11 in 2008, to 34 in 

2009, to 127 in 2010, to 339 in 2011, to 639 in 2012, and to 1123 in 2013. Of these 

publications, 162 are also coded as “RNA-Seq and Brain” (~6% of total). However, this 

number most certainly represents a low estimate of the number of publications where RNA-

Seq is used to assess the brain transcriptome or brain surrogates such as induced pluripotent 

stem cells. Nonetheless, sequencing the brain transcriptome is still an emerging area. The 

first publication using RNA-Seq to compare brain gene expression between two inbred 

mouse strains appeared in 2011 (Bottomly et al., 2011). The first application of RNA-Seq to 

brain WGCNA appeared in 2012 (Iancu et al., 2012). Iancu and colleagues extend this 

network approach to cosplicing in Chapter 4 building upon the earlier work of Dai, Li, Liu, 

& Zhou (2012) and Aschoff et al. (2013). Mudge et al. (2008) is an early example of using 

RNA-Seq in a neuropsychiatric context (schizophrenia) but as noted by Wang and Cairns in 

Chapter 6 most of the work in this area has appeared within the last 2 years. Chapter 7 

details just how quickly our understanding of the functional roles of the ncRNAs has 

changed due to the introduction of RNA-Seq; further, Guennewig and Copper make 

compelling arguments for the roles of the ncRNAs in both normal brain function and disease 
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states. Alternative splicing is higher in the brain as compared to other tissues (Johnson et al., 

2009); RNA-Seq facilitates a genome-wide assessment of alternative splicing which is key 

to understanding both brain development (Dillman and Cookson—Chapter 9) and normal 

brain function (Zaghlool et al.—Chapter 5). Lewohl et al. (2000) were among the first to use 

microarrays to study the human brain transcriptome, comparing alcoholics and matched 

controls. Zhou et al. (Chapter 10) and Farris and Mayfield (Chapter 11) illustrate how 

readily investigators in the fields of alcoholism and drug abuse research have adopted RNA-

Seq to examine human samples. Although still in the preliminary data stage, RNA-Seq is 

being extensively used to examine the brain transcriptome in nonhuman primates 

chronically exposed to alcohol (Grant KA, Hitzemann RJ, Darakjian P, & Iancu OD, 

unpublished observations).

For many investigators, the interest in RNA-Seq and the brain transcriptome is not matched 

by available funding. Williams and Pandey (Chapter 8) describe a number of freely 

available mouse resources that allows one to interrogate the relationship(s) between 

phenotypes and RNA-Seq data. A key element to these resources has been the use of mouse 

reference populations such as the BXD recombinant inbred series and the Collaborative 

Cross (Churchill et al., 2004).

RNA-Seq has many applications outside of those mentioned in this volume. One area where 

it proven to have particular value has been in the examination of the brain transcriptome in 

nonmodel organisms. Frequently, these organisms have a significant behavioral and/or 

evolutionary value. A de novo assembly of the data can be used in the absence of high-

quality genomic sequence data by aligning the reads to conserved protein sequence and/or 

the annotated genomes of closely related organisms. Four examples are described. Fraser, 

Weadick, Janowitz, Rodd, and Hughes (2011) assembled brain transcriptome data from the 

guppy (Poecilia reticulata) and were able to detect both sex-specific expression and the 

effect of predator (Rivulus hartii) exposure. Malik et al. (2011) examined the brain 

transcriptome of blind subterranean mole rat (Spalax galili); some modest differences in 

brain gene expression were found after prolonged exposure to low oxygen concentrations (a 

normally occurring condition in the underground tunnels).Tzika, Helaers, Schramm, and 

Milinkovitch (2011) used RNA-Seq in an evolutionary context to compare brain 

transcriptomes of four divergent reptilian and one reference avian species: the Nile 

crocodile, the corn snake, the bearded dragon, the red-eared turtle, and the chicken. 

Somewhat surprisingly, the data suggest that the turtle was evolutionarily closer to the 

crocodile than was expected. All three of these examples used the Roche 454 platform for 

sequencing; the longer reads compared with other instruments facilitated the de novo 

transcriptome assembly. Balakrishnan et al. (2014) used RNA-Seq to examine the 

relationships among the brain transcriptome, avian vocal communication, and social 

behavior. Brain transcriptomes were sequenced for three emberizid model systems, song 

sparrow Melospiza melodia, white-throated sparrow Zonotrichia albicollis, and Gambel’s 

white-crowned sparrow Zonotrichia leucophrys gambelii. Each of the assemblies covered 

fully or in part, over 89% of the previously annotated protein-coding genes in the zebra 

finch Taeniopygia guttata, with 16,846, 15,805, and 16,646 unique BLAST hits in song, 

white-throated and white-crowned sparrows, respectively. As in previous studies, these 
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authors found tissue of origin (auditory forebrain versus hypothalamus and whole brain) as 

an important determinant of the expression profile.

7. CONCLUSIONS

Historically, the main arguments against using RNA-Seq (as opposed to using microarrays) 

have been cost and difficulties with data analysis. Over the past 6 years, technical 

improvements have and will continue to reduce costs; if the primary goal is gene-wide 

summarization, transcriptome samples can now be multiplexed and sequenced at adequate 

depth for less than $200/sample (not including the cost of library preparation). RNA-Seq 

data analysis remains substantially more complex than a comparable microarray analysis. 

The data sets are much larger and are generally not suitable for analysis on a personal 

computer. While the analysis of RNA-Seq data could still be described as not for the “faint 

of heart,” a rapidly improving data analysis trajectory is clear as indicated by the numerous 

reports described in this volume. RNA-Seq has several distinct advantages over microarray-

based approaches to transcriptome analysis. RNA-Seq data have a significantly greater 

dynamic range (there are no probe saturation effects); the gene expression data are not 

biased to the 3′UTR (although there is a bias to the most highly expressed and longest 

genes) and data are collected on both alternative splicing and inter- and intragenic ncRNAs. 

Overall, RNA-Seq embraces the complexity of the transcriptome and provides a mechanism 

to understand the underlying regulatory code.
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