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Abstract

Accurate information on the distribution of existing species is crucial to assess regional bio-
diversity. However, data inventories are insufficient in many areas. We examine the ability
of Multivariate Adaptive Regression Splines (MARS) multi-response species distribution
model to overcome species’ data limitations and portray plant species distribution patterns
for 199 South Korean plant species. The study models species with two or more observa-
tions, examines their contribution to national patterns of species richness, provides a sensi-
tivity analysis of different range threshold cutoff approaches for modeling species’ ranges,
and presents considerations for species modeling at fine spatial resolution. We ran MARS
models for each species and tested four threshold methods to transform occurrence proba-
bilities into presence or absence range maps. Modeled occurrence probabilities were
extracted at each species’ presence points, and the mean, median, and one standard devi-
ation (SD) calculated to define data-driven thresholds. A maximum sum of sensitivity and
specificity threshold was also calculated, and the range maps from the four cutoffs were
tested using independent plant survey data. The single SD values were the best threshold
tested for minimizing omission errors and limiting species ranges to areas where the associ-
ated occurrence data were correctly classed. Eight individual species range maps for rare
plant species were identified that are potentially affected by resampling predictor variables
to fine spatial scales. We portray spatial patterns of high species richness by assessing the
combined range maps from three classes of species: all species, endangered and endemic
species, and range-size rarity of all species, which could be used in conservation planning
for South Korea. The MARS model is promising for addressing the common problem of few
species occurrence records. However, projected species ranges are highly dependent on
the threshold and scale criteria, which should be assessed on a per-project basis.
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Introduction

Species distribution model (SDM) applications use the climate and occasionally the environ-
mental characteristics of known species occurrence locations or abundance to estimate a likeli-
hood of occurrence at other locations where no occurrence information is available [1].
Multiple SDMs can be used to identify national patterns of high biodiversity for conservation
network planning [2]. However, the number of occurrence records available per species to
develop a model varies from few to many. Some species have rarely been recorded or electronic
data are not available, which makes them difficult to model using a SDM because model quality
is influenced largely by the number of records used in model building [3,4]. In addition, there
may remain undiscovered species, some regions have sparse ecological surveys, and we cannot
be assured of the data quality for each species.

Multi-response SDMs may offer benefits for applications with large numbers of species that
include species with few records ([5]; ‘Multi-response’ models were previously called ‘commu-
nity’ models). Multi-response SDMs combine all species data and use information on the pres-
ence of other species to supplement information for the modeled species. The potential
benefits of a multi-response SDM include a possibly more accurate representation of biodiver-
sity, and a method to synthesize complex data into a simpler form. This method may be useful
for modeling rarely recorded species of conservation concern which otherwise would be
excluded from regional analyses, because significant predictor variables for some species identi-
fied by the MARS algorithm may help to inform how species with few presence points react to
the same predictor variables. Multi-response SDMs produce information on spatial patterns of
biodiversity at a multi-species level as well as at an individual level [5-7].

Accurate information on the distribution patterns of as many species as possible is crucial
for attempts to assess regional biodiversity variations and develop conservation plans; however
data inventories are insufficient in many areas [8]. This is especially true for publically available
records for vascular plants in South Korea, which total 2,012 points comprising 289 species.
Many species have only one or few occurrence points, which makes utilizing an individual-
level SDM and validating a model almost impossible.

We addressed these challenges by using the Multivariate Adaptive Regression Splines
(MARS) multi-response SDM model which can be used to simultaneously model multiple spe-
cies that have varying numbers of observation records [9]. We conducted a sensitivity analysis
on four methods of selecting range projection thresholds from the MARS outputs, to see which
one could be the most useful for assessing patterns of biodiversity.

The MARS algorithm considers interactions between predictor variables locally, and is com-
putationally efficient since each species does not have to be modeled individually [4,6,10].
MARS SDMs have been tested in various ways. The MARS multi-response model performed
particularly well among other methods for predicting occurrence patterns of species in a study
that compared SDM modelling methods, including individual-level SDMs using a large inter-
national dataset [6]. Mateo et al. [4] found that optimal minimum occurrence points were 18-
20 for running MARS; Elith and Leathwick [11] tested using presence-only data in the MARS
modeling; and Leathwick et al. [12] used the MARS model to predict the distribution probabili-
ties of freshwater diadromous fish.

The goals of this study are to test the suitability of the MARS model to spatially portray rare
plant species ranges for the development of maps describing national plant species richness
patterns. Because we are working with species that have low numbers of recorded observations,
we used the MARS algorithm. We test the suitability of the SDM outputs to produce as much
spatial resolution as the data permit through comparison of alternative range cutoffs, the use of
an independent species occurrence data set to test predicted range map accuracy, and a spatial
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examination of potential pseudoreplicate values in predictor variables to rank the confidence
we have in the rare species ranges produced.

Materials and Methods

There were five main steps to the analysis: 1) Gather vascular plant species occurrence records
and climate and environmental data for South Korea; 2) Run MARS models and evaluate the
outputs; 3) Develop occurrence probability maps for each species; 4) Assess the spatial effect of
the use of different threshold values for the development of range maps; and 5) Identify the
spatial patterns of high plant biodiversity areas.

Study area

South Korea constitutes the southern Korean Peninsula (Fig 1). South Korea's total land area is
100,033 km?, and it has a population of 48.0 million people [13]. The Korean Peninsula is topo-
graphically complex, with mountains covering around 70% of the land. The primary mountain
range stretches along the east coast of South Korea. The mountains interface with southern
and western coastal plains that produce most of the agricultural crops of South Korea. This
study was confined to mainland of South Korea (95,219 kmz), and excludes its large number of
islands.
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Fig 1. National parks and high biodiversity mountain range (Baeckdudaegan mountain range) (left), and locations of modeled occurrence points
and topography of South Korea (right).

doi:10.1371/journal.pone.0149511.9001
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Species data

The publically available national survey data for vascular plants in South Korea consists of
2,012 points, representing 289 species (The Second National Ecosystem Survey data; http://
library.me.go.kr/search/Search.Result.ax?sid=21&s=CID&st=DESC; S1 Dataset). Each point
represents the occurrence of a single species [14]. The South Korean Wildlife Protection and
Management Act (enacted in 2004, amended in 2014) has designated 77 vascular plant species
as endangered species, of which 18 are identified by 68 points in the national survey data. In
addition, 50 endemic species are identified by another 307 points in the survey data. The over-
all number of individual species occurrence records varies from one to 69, and consist only of
presence points. We used another independent national survey data (The Third National Eco-
system Survey data) to test the probability cutoff method options for 166 species found in both
datasets and to define each species’ range (S1 Dataset).

Environmental variables

We used a series of climate and topographic variables as predictors in the species modeling.
Climatic variables are important factors that influence species’ distribution particularly for
plants [15]. Bioclim is a series of 19 variables derived from monthly temperature and rainfall
values as potentially ecologically meaningful predictors [15,16]. Bioclim varliables were origi-
nally developed for species distribution modeling and have been widely used [10,17]. We
obtained 30 arc-second resolution (~ 1 km) Bioclim variables for current and future times
from the WorldClim website ([16]; http://www.worldclim.org/).

Topography can influence local climate conditions with resulting effects on plants by vary-
ing sunlight, soil moisture, and nutrients [18]. Topographic data (30 m resolution) were
obtained from the Korean Water Management Information System (WAMIS), and we calcu-
lated aspect and northness (the sine of aspect) for each species location [19].

A subset of the predictor variables was selected by running a principal components analysis
of the 23 potential predictor variables across the study area and selecting 11 of the least corre-
lated predictors from among Bioclim variables [20,21]: annual mean temperature, temperature
seasonality, mean temperature of the warmest and coldest quarter of the year, annual precipita-
tion, precipitation of the wettest and driest quarter of the year; and the topographic variables:
elevation, slope, curvature, northness, to build the models. The selected predictor variables
were used in the subsequent modeling.

We used environmental variables from different data sources as predictors in the species
modeling. Matching raster objects (in terms of origin and resolution) is required to conduct
spatial analysis in R using the ‘raster’ package. Because the climate and environmental variable
rasters we used have different data structures (grid cell sizes), we needed to decide on the oper-
ational grid scale for the modeling, either 30 m or 1 km.

To make this decision, we conducted two analyses. First, we resampled the 30 m elevation
raster to 1 km grid scale by using bilinear interpolation, and checked the elevation variations
on each species’ occurrence points between 30 m and 1 km elevations. Second, we calculated
the distances between points for each species to check any significant problems from possible
raster replicates that could originate in the resampling of the Bioclim variables to 30 m.

Modeling technique

MARS is a generalization of stepwise linear regression, and is appropriate to large numbers of
predictor variables as a modification of the regression tree approach. Knots, points where the
coefficients of predictor variables change along the extent of each predictor variable, are used
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to select relevant value ranges for each predictor, and a linear response is modeled for each sec-
tion (S1 Fig) [4,6,10].

We used the ‘extract’ and ‘predict’ functions in the ‘raster’ package [22] found in R (version
3.0.2) to extract environmental values from each occurrence point and to predict occurrence
probability of each species in study area, and the ‘mda’ package [23] to run the MARS model.

MARS fits interactions between predictors automatically and selects predictor variables by
using the signal from many species simultaneously [11]. To output suitability surfaces for each
species, we re-scaled the predictor variable grids selected by MARS to 0.1 km? rasters to lower
computational demands. We used Elith and Leathwick’s codes [11] to constrain predictions
between 0 and 1. MARS originally only accommodates normal error terms as its available algo-
rithms, so Elith and Leathwick [11] reprogrammed MARS to be able to run a generalized linear
model (GLM) with a binomial error distribution.

We assumed that species with many occurrence points would contribute to better overall
model outputs. However, we used all species with at least two observations in modeling because
this provided outputs for the highest number of species, including endangered and endemic
species that would otherwise have been excluded. Thus, the total number of species modeled
was 199 out of 289 species, including 12 endangered species and 35 endemic species, two of
which are endangered (S1 Table).

The independent survey data shared 166 species with the modeled data and the number of
points is 7,352 (S1 Table). We used the independent data in a sensitivity analysis to select the
most appropriate cutoff value for defining the presence areas, or range map, of each species.

Choice of threshold to find species range

A threshold (or cut-off) is required to transform occurrence probabilities from the models into
binary presence or absence values that can represent potential species’ ranges. However, the
selection of thresholds is one of the least investigated areas in the SDM studies [24]. The MARS
software combines all species data and supplements information from the presence of more
common species to help select the relevant predictor variables and determine the occurrence
likelihood for the rarer species in a dataset. This was the case for many species in our data,
whose records are few and consist of only presence records. Therefore, an alternative approach
from commonly used techniques to define range cutoffs (e.g. assessment of sensitivity and
specificity based on varying the probability thresholds; [10]) was needed.

Nenzen and Araujo [24] identified three categories of threshold optimization methods: 1)
fixed, 2) data-driven (using species data and predicted probability values), and 3) accuracy-
based (using the threshold in the best agreement between the evaluation and the original data).
For each species’ cutoff values, we extracted the modeled occurrence probabilities from the
location records of each species separately using the data-driven approach, and evaluated them
in two ways. For each species, we took the mean, median, and one standard deviation value of
the occurrence probabilities from each species’ occurrence points, and used these three values
as cutoffs to develop range maps from probability maps, in a sensitivity analysis to select the
most appropriate cutoff value. For the mean and median values, we identified as range all map
areas with equal or greater probability as part of each species’ range. For one standard deviation
cutoff, we classified map areas with values within one standard deviation as the presence areas.
The standard deviation thresholds include the values to either side of the mean, and therefore
render as range some areas with probabilities lower than the mean value. The representation of
occurrence areas of species can be wrong in two ways: false presence and false absence [25].
Since we did not have absence data to be used for balancing threshold values, we wanted to
define areas where the underlying data were well reflected. Thus, we devised the inside areas of
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one standard deviation as threshold to reduce the risk of false presence and false absence
errors.

According to Liu et al. [26], max SSS threshold (maximizing the sum of sensitivity and spec-
ificity) is promising when using presence only data, and it is not affected by pseudo-absences.
Therefore, we calculated the max SSS threshold value for each species using inventory pseudo-
absences, which are the locations of concurrently modeled species used by MARS model to fit a
model for each species, and generated output probability values. We then compared our data-
driven threshold values to the max SSS threshold values which are an accuracy-based approach
to generating thresholds. We generated range maps and calculated the percentage of each spe-
cies’ occurrence points from the independent survey data occurring in the corresponding
range map derived from each of the four threshold cutoft approaches.

Because many species have a few occurrence records and the number of species’ point data
varies, we examined whether the number of species’ occurrence points influences model results
and range maps derived from each threshold, by iteratively excluding modeled species with
<3, <5, <7, and <10 records in the original species location records.

As a second check on the selection of appropriate threshold level for production of range
maps, we combined the binary range maps of all species under each of the four cutoft options
and assessed the spatial patterns of national-scale high species richness areas derived from each
cutoff method to see if they identify the Baekdudaegan Mountain Range, which is a known
high biodiversity area [27]. We used these two lines of evidence to select the most appropriate
threshold method.

Identification of high plant biodiversity areas

The binary range maps of each species were combined to portray patterns of plant biodiversity
on a 0.1 km? basis. We categorized the species richness maps into three groups: 1) all species,
2) endangered and endemic species, and 3) range-size rarity weighted maps from all species.

Endemism refers to a species being limited to a particular area regardless of the size of that
area, while range-size rarity is the reciprocal of the calculated range size, which weights
restricted species more heavily when summing species richness values [28]. Hotspots of range-
size rarity are important because these areas are richest in the most restrictedly distributed spe-
cies [29]. Range-size rarity was calculated for all the species in a grid cell as the sum of each spe-
cies’ inverse range extent in our study. Then, we computed a correlation matrix between each
combination of two maps from among the three species richness maps to find dependencies
among these groups.

In South Korea, the Baekdudaegan Mountain Range is a known high biodiversity area (Fig
1) [27]. We overlaid the maps of Baekdudaegan Mountain Range as well as all national parks
with our various maps of species richness, to assess the accuracy of the species richness maps.

Results
Resolution of environmental variables

We found elevation differences between the two resolution (30 m and 1 km) elevation rasters
for each species (S2A Table). The range of differences of each species’ average elevation is from
-117 to +221 m. The minimum and mean distance between occurrence points for all species is
25.4 and 92.6 km, respectively, beyond the 1 km at which values from the Bioclim variables
would be the same for two or more points (S2B Table). For two species the mean distances
between points are less than 1 km.

Therefore, we resampled the 1 km Bioclim variables to 30 m resolution to create input val-
ues for the MARS modeling by using bilinear interpolation. We selected the 30 m grid for
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model operational resolution, to retain the more detailed topographic information because of
South Korea’s complex topography.

Fitted MARS model

A small set of predictors plays a dominant role in explaining the probability of occurrence for
the plant species in South Korea. Predictor environmental variables selected by the model were
precipitation of wettest quarter, mean temperature of coldest quarter, elevation, and mean tem-
perature of warmest quarter. Examination of the marginal contribution of each predictor vari-
able in the model shows that precipitation of wettest quarter had the most explanatory power
among these variables (Table 1). Changes in residual deviance were calculated while dropping
each predictor variable in the final model and averaged across all species [12].

The reduction in deviance for each species with a null model ranges from 2.08 to 191.94,
and the pseudo R-squared that represents the proportion of the total deviance explained by the
model ranges from 0.02 to 0.90. On average, the model accounted for 20% of the null or total
deviance [30].

Cutoff thresholds for binary selection

We used the presence points from each species in the independent survey data as a way to
check the performance of range maps produced from different cutoffs. The average percent of
points inside presence areas from each threshold value was: 20% under the mean threshold,
22% under the median threshold, 43% within one standard deviation, and 38% under the max
SSS threshold (Table 2). Concerning the number of species’ occurrence points, the number of
records available influenced the performance of model and a range map from all four cutoff
options (Table 2). The higher the number of occurrence points, the higher proportion of inde-
pendent survey data that was included in the range maps derived from cutoff values.

Species range extents were greatly affected by the selection of thresholds, and also affected
total estimated species richness values that ranged, depending on the threshold chosen, from
107 to 120 (Table 2 and Fig 2). When using ‘mean’ as the cutoff, areas with potential for more
than 100 species were 0.02% (19 km?) of the study area, and for more than 50 species were
2.06% (1,962 km?) of the mainland of South Korea. When using ‘median’ as the cutoff, areas
have potential for more than 100 species were 0.02% (19 km?) of the study area, and for more
than 50 species were 2.49% (2,371 km?) of the mainland of South Korea. By using one standard
deviation as the cutoft, areas have potential for more than 100 species were 2.67% (2,542 km?)
of the study area, and for more than 50 species were 33.53% (31,927 km?) of the mainland of
South Korea, which were the highest among the four cutoff options. In the case of using ‘max

Table 1. Environmental variables used in the model.

Precipitation of wettest quarter

Mean temperature of coldest quarter®
Elevation®

Mean temperature of warmest quarter*

1. Unit: Milimeters

2. Scaling Factor: 10, Unit: Degrees Celsius
3. Unit: Meters

4. Scaling Factor: 10, Unit: Degrees Celsius

doi:10.1371/journal.pone.0149511.t001

Minimum value Maximum value Knot value Delta deviance Rank
450 1034 707 4.72 1
-109 43 -3 0.62 2
1 1895.27 15t 307.97 2": 830.34 0.49 3
144 253 242.02 0.00 4
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Table 2. Proportion of the occurrence points from the independent survey data included in the presence areas by using each cutoff threshold and
analysis results of species richness maps using each cutoff.

Proportion of occurrence points included in species range maps for Analysis of total species richness maps
Cutoff All Common Endangered Endemic Species Species Species Species Maximum  Area (km?) Area (km?)
threshold species species species species with >3 with>5 with>7 with>10 numberof containing>100 containing > 50
approaches records records records records species species species
Mean 0.20 0.20 0.32 0.20 0.21 0.25 0.27 0.27 118 19 1,962
Median 0.22 0.22 0.35 0.22 0.24 0.27 0.30 0.31 118 19 2,371
1SD 0.43 0.42 0.44 0.50 0.44 0.50 0.54 0.57 107 2,542 31,927
Max SSS 0.38 0.37 0.59 0.40 0.41 0.46 0.51 0.54 120 19 15,797

doi:10.1371/journal.pone.0149511.t002

SSS’ as the cutoff, areas have potential for more than 100 species were 0.02% (19 km?) of the
study area, and for more than 50 species were 16.59% (15,797 km?) of the mainland of South
Korea. All combined species richness maps from the four cutoff methods showed that the cen-
tral part of South Korea (the boundary between Chungcheongbuk-do and Gyeongsangbuk-do)
has high species richness. However, we found that the Backdudaegan Mountain Range, which
is a known high biodiversity area [27], was somewhat underestimated in the combined range
maps from mean, median, and max SSS cutoffs.

Since the range maps derived from one SD cutoffs performed better than those from max
SSS cutoffs in the cross-validation with the independent survey data and the Baekdudaegan
Mountain Range was evaluated as high species richness areas in the combined range map from
one SD cutoffs, we conclude that the data-driven cutoff approach is appropriate in our study.
Thus, we selected the within one standard deviation threshold for systematic use in the follow-
ing analyses, to minimize omission and commission errors.

High biodiversity areas

When we combined the binary range maps of all species using the one standard deviation
threshold values, all of the cells with the highest number of species has an estimated 107 species
(1.33 km?) and all of the cells with the highest number of endangered and endemic species has
an estimated 26 species (118 km?) (Fig 3A and 3B).

The model predicts the highest species richness in Gangwon-do province (the central &
eastern northern South Korea, in the circle of Fig 3A) and around central South Korea (on the
border between Chungcheongbuk-do province and Gyeongsangbuk-do province, and the east-
ern part of Jeollabuk-do province). Endangered and endemic species richness is also highest on
the middle part of Gangwon-do province, but not across the entire area (in the circle of Fig
3B). These are also generally high on the border between Chungcheongbuk-do province and
Gyeongsangbuk-do province, and extending to the eastern part of Jeollabuk-do province (Fig
3B). High species richness areas near Gangwon-do province are broadly the same areas that
are rich in species with restricted ranges within South Korea (in the circle of Fig 3C). However,
highly-ranked areas of range-size rarity are also distributed along the east coast of South Korea
(in the oval of Fig 3C) and are low in Jeollabuk-do province, which differs from total species
richness.

Pairwise correlation of total species richness and endangered and endemic species richness
is moderately correlated (0.58). Species richness for range-size rarity is also moderately corre-
lated with species richness for endangered and endemic species (0.61), and has a high correla-
tion with total species richness (0.79).

Based on our combined maps, the Backdudaegan Mountain Range includes the areas with
the highest estimated number of species (107) and the highest number of endangered and
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Fig 2. Total species richness from each cutoff threshold: (a) Mean, (b) Median, (c) 1 SD, and (d) Max SSS.

doi:10.1371/journal.pone.0149511.g002
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Fig 3. Species richness maps from each group category, using the one standard deviation thresholds: (a) All species, (b) Endangered and
endemic species, (c) Range-size rarity weighted maps from all species. Non-zero values are grouped into five classes, each class contains equal

numbers of grid cells (quintile).

doi:10.1371/journal.pone.0149511.g003

endemic species (26). Areas in national parks also include the highest predicted numbers of
species (107) and highest number of endangered and endemic species (26). In terms of total
species richness, 67.3% of the Backdudaegan Mountain Range and 44.4% of the national parks
present the highest values of predicted richness (66-107 species) (52 Fig). These areas represent
20% of mainland South Korea. For endangered and endemic species, 56.4% of the Baekdudae-
gan Mountain Range and 39.9% of national parks are estimated to harbor species richness in
the highest quintile of species richness for endangered and endemic species in mainland of
South Korea, from 16 to 26 species.

Discussion

This study identified biodiversity hotspot areas for vascular plants in South Korea by using an
inventory that includes many species with too few observations to reliably project a range map
with standard SDM techniques. We addressed this weakness by deploying a multi-response
SDM to take advantage of occurrence data from more common species that frequently co-
occur with the rare species for which we have sparse data. Using this approach, we were able to
better predict potential locations of plant biodiversity hotspots in South Korea. Because model
quality is influenced by the number of occurrence records used, models of species with few
occurrence points likely increase the level of uncertainty in the overall national species richness
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maps (Table 2). However, our objective was to portray patterns of plant species richness
including rare species, which is why the MARS model was used. We found that national species
richness maps were more spatially detailed by including the species with five or fewer observa-
tion points, and that the spatial patterns of species richness differed when these were included
(S3 Fig). Moreover, some of the hotspots predicted using all species correspond well to hotspots
identified in the biodiversity report from South Korean Ministry of Environment [27]. How-
ever, the hotspot areas we identified may not be representative of all 4,130 plant species in
South Korea [31]. This is because the distributions of rarely recorded species are not strongly
nested within the distributions of widespread species, as shown by only moderate correlation
values between total species richness and endangered and endemic species richness. Therefore,
many other plant species with few or no occurrence records could potentially identify other
hotspot locations. These results agree with Williams et al. [29] that overall species richness
does not always provide a reliable surrogate for rare species. Therefore, total species richness
cannot be the only criterion for identifying biodiversity hotspots in South Korea. This finding
corresponds to previous work suggesting that species richness hotspots are largely driven by
common, widespread species, and concentrating on protecting diversity hotspots can miss spe-
cies most in need of conservation [32]. In the event that these results would be used in a conser-
vation planning exercise for South Korea, the distributions of endangered, endemic and range-
size rarity maps should also be considered.

Rarely recorded data

Previous studies on the effects of sample size on individual-level SDMs have assessed model
performance using different modeling methods, different spatial scales, and differing environ-
mental variables [33,34]. In our study, a MARS multi-response model was used to handle a
large number of species, including rarely recorded ones, and to develop overall plant biodiver-
sity information for South Korea. One advantage to this approach is that the MARS multi-
response SDMs use information on the presence of other species in predicting suitability for
rare species. Under this framework, we were able to include 12 endangered and/or endemic
species that have only two occurrence points and 32 endangered and/or endemic species with
less than 10 data records (26 endangered and/or endemic species with less than 6 data records),
which under single species level SDM approaches would likely have been excluded (S1 Table).
The inclusion of such species could be critically important in estimating patterns of plant bio-
diversity for conservation planning, partly because model outputs that include locations for
rare species are more useful for conservation practitioners than those that do not. Multi-
response SDMs such as MARS are becoming more available. Further tests on the degree to
which species with more occurrence records can improve the modeling of less commonly
reported species can help the conservation community understand the useful applications of
this approach.

However, model quality is largely influenced by the number of records. We found that the
higher proportions of the independent occurrence records were included in the modeled
range maps for species with more than 10 occurrence records (0.57 using one SD cutoffs)
compared to species with less than 9 occurrence records (0.36 using one SD cutoffs) on aver-
age (Table 2 and S1 Table). The scarcity of occurrence points for some species also made it
difficult to derive alternative threshold statistics. For example, 41 species in the data set had
only two location records. Thus, more complete survey data can bring better modeling
results. The South Korea national ecosystem survey should be updated to cover as many spe-
cies as possible including rare species for further regional biodiversity assessments or conser-
vation plan developments.
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Pseudoreplication in predictor variables

There is some risk of pseudoreplication when we resample the environmental variables to
smaller grids because a species’ occurrence points may wind up sampling from the same cli-
mate variable grid cell if they are too close together. However, given the low number of occur-
rence records for many species, and the desire to map as many as possible for inclusion in
national species richness maps, we retained all species records.

While the average minimum distance between each species’ occurrence points is 25.4 km,
which indicates no risk of pseudoreplication, we assessed which species’ models might be sub-
ject to pseudoreplication because two or more occurrence points occurred within the extent of
the origin-scale Bioclim grid cells (925 m average), as a way to relatively rank confidence in
individual species’ models. Fifty three species have duplicate climate values because of two or
more occurrence records are within a single grid cell. Overall, 146 species (73.4%) do not have
multiple samples from a single grid cell. The degree to which these pseudoreplicates affect
model outputs is likely further to depend on the number of occurrence records. For our least
well recorded species, less than or equal to five occurrence points, there are eight species that
have one double sample each: Abies koreana, Allium senescens, Cardamine lyrate, Cephalotaxus
koreana, Cnidium tachiroei, Deutzia coreana, Forsythia ovata, Thymus quinquecostatus (S2B
Table). When considering range models for individual species, maps from these eight should
be considered potentially less accurate. However, we feel that the overall effect of this potential
pseudoreplication on patterns of plant biodiversity at the national scale is likely minimal. This
is due to South Korea’s relatively small area extent and its very complicated topography, with a
large number of successive mountain ranges across the entire country (Fig 1). Topography can
influence local climate conditions on plants by varying sunlight, soil moisture, and nutrients
[18], and retaining as much of this detail in this study was a strategic decision which in this
case provided more detail through improved elevational detail, and more species than was
potentially lost due to some model inaccuracies.

Cutoff selection and implications

Among many factors that contribute to uncertainty in SDM results, selection of cutoff values
for transforming probabilities of occurrence into binary (presence or absence) range maps is
one of the least explored areas [24]. Previous multi-response SDM studies have mainly pio-
neered the modeling technique itself or been focused on improving reliability by exploring the
effects of the number of presences [4,11,12]. However, the effect of different cutoffs in these
models has been little investigated.

We used independent presence data from another survey in an exercise to evaluate the per-
formance of maps selected under the different cutoffs. The one SD cutoff produced reasonable
accuracy scores when compared to the mean or median cutoffs that have been used in other
studies [24]. With the independent survey data, and we found that the one SD cutoff performed
better than the max SSS cutoff which has been considered a promising cutoff method when
only presence data are available [26].

Specificity could be calculated with pseudo-absences generated by the MARS program dur-
ing species distribution modeling, but is likely to be inaccurate in our study. Because the large
number of pseudo-absences is almost the same for all species (MARS uses all occurrence points
of other concurrently modeled species as pseudo-absences for each modeled species), each
specificity value depends on modeled range size rather than true negatives. The larger the mod-
eled range, the lower the specificity values will be. Since the one SD threshold produces a larger
range size than the mean or median threshold, a systematic result in model performance using
this approach can be detected. Average specificity values for all species under mean and median
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cutoffs were almost perfect (0.90 and 0.89, respectively), and average specificity under one SD
was 0.68. Thus, specificity using the pseudo-absences that MARS generates is not an informa-
tive test of model performance with our results.

We conclude that restricting predicted range size is beneficial for subsequent analysis. This
result is similar to Calabrese et al. [35], who demonstrated that stacking thresholding occur-
rence probabilities would tend to over-predict species richness. The approach used here to
develop a conservative view of species range size is similar, and we found confining presence
areas can reduce errors from modeling. In conclusion, our study results show that different cut-
off values have great influence upon projected spatial patterns of plant biodiversity and the use
of data-driven cutoffs according to circumstances and regional context is highly
recommended.

Our application of MARS with rarely recorded data for projection of biodiversity hotspots is
one of the first in SDM studies. We found it performs well, even considering the paucity of reli-
able occurrence data for many species. However, data status is still very important in running a
SDM model, since species occurrence points are directly related with environmental informa-
tion where the points are located. Among our occurrence data, observation data were largely
collected in mountainous areas. Only 13% of the records are of low elevation or mesic-adapted
species. Thus, it is possible that these results are representative of only mountainous species.
Therefore, we recommend an effort to more completely collect plant species records, with a
focus on areas that have been under-reported.

Biodiversity on the Korean Peninsula is under threat due to habitat loss from urbanization,
industrialization, and climate change. Therefore, protection of biodiversity in the major eco-
logical regions and expansion of protected areas is important for conservation [27]. Although
the number of species in the data is not enough to represent the 4,130 plant species in South
Korea [31], our biodiversity assessment results could be used to prioritize some locations for
conservation planning. Our results agree with national assessments [27] that most of the Baek-
dudaegan Mountain Range has high biodiversity. However, there generally is not enough bio-
diversity information beyond this area. This study is one of the first to find potentially high-
biodiversity areas outside of the Baekdudaegan Mountain Range. Those areas could become
candidates for priority biodiversity surveys, and potentially for addition to the national net-
work of national parks and protected areas. Encouragingly, the current extent of protected
areas overlaid with our model outputs showed that some of the most species rich areas are
already under conservation management.

Supporting Information

S1 Dataset. Survey data and independent testing data. The “SurveyData.csv” file includes the
plant species’ locations from the South Korea Second National Ecosystem Survey. We used
data from another independent national survey (The Third National Ecosystem Survey) to test
our method. The “TestData.csv” file includes the 166 plant species’ locations found in both
datasets.

(Z1P)

S1 Fig. We provide five fitted MARS functions as examples of how the model selects rele-
vant segments of predictor variables for model fitting.
(PDF)

S2 Fig. The Baekdudaegan Mountain Range and the national parks on the species richness
maps of South Korea.
(PDF)
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S3 Fig. Species richness maps by number of occurrence points from each group category,
using the one standard deviation thresholds: (a) All species, (b) Endangered and endemic spe-
cies, (c) Range-size rarity weighted maps from all species.

(PDF)

S1 Table. The list of modeled plant species.
(PDF)

S2 Table. Elevation variations on each species occurrence points between 30 m and 1 km
elevation rasters, and distance between points for each species.
(PDF)
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