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Abstract Inflammatory processes and alterations of lipid

metabolism play a crucial role in Alzheimer’s disease (AD)

and other neurodegenerative disorders. Polyunsaturated

fatty acids (PUFA) metabolism impaired by cyclooxyge-

nases (COX-1, COX-2), which are responsible for formation

of several eicosanoids, and by lipoxygenases (LOXs) that

catalyze the addition of oxygen to linolenic, arachidonic

(AA), and docosahexaenoic acids (DHA) and other PUFA

leading to formation of bioactive lipids, significantly affects

the course of neurodegenerative diseases. Among several

isoforms, 5-LOX and 12/15-LOX are especially important in

neuroinflammation/neurodegeneration. These twoLOXs are

regulated by substrate concentration and availability, and by

phosphorylation/dephosphorylation through protein kinases

PKA, PKC and MAP-kinases, including ERK1/ERK2 and

p38. The protein/protein interaction also is involved in the

mechanism of 5-LOX regulation through FLAP protein and

coactosin-like protein. Moreover, non-heme iron and cal-

cium ions are potent regulators of LOXs. The enzyme

activity significantly depends on the cell redox state and is

differently regulated by various signaling pathways. 5-LOX

and 12/15-LOX convert linolenic acid, AA, and DHA into

several bioactive compounds e.g. hydroperoxyeicosate-

traenoic acids (5-HPETE, 12S-HPETE, 15S-HPETE),

which are reduced to corresponding HETE compounds.

These enzymes synthesize several bioactive lipids, e.g.

leucotrienes, lipoxins, hepoxilins and docosahexaenoids.

15-LOX is responsible for DHA metabolism into neuro-

protectin D1 (NPD1) with significant antiapoptotic proper-

ties which is down-regulated in AD. In this review, the

regulation and impact of 5-LOX and 12/15-LOX in the

pathomechanism of AD is discussed. Moreover, we describe

the role of several products of LOXs, which may have sig-

nificant pro- or anti-inflammatory activity in AD, and the

cytoprotective effects of LOX inhibitors.
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Introduction

Aging-related neurodegenerative disorders, including Alz-

heimer’s disease (AD), have become some of the most

important unsolved medical problems. In spite of signifi-

cant study into the molecular mechanisms of neurodegen-

eration, there is still no satisfactory efficient treatment,

prevention or early diagnosis. Recent studies have sug-

gested that inflammatory processes may play a key role in

mechanisms of neurodegeneration. Cyclooxygenases

(COX) and lipoxygenases (LOX) are crucial enzymes

responsible for the progression of inflammation.

AD, the most common form of dementia, starts many

years before the clinical symptoms appear. It was proposed

recently that AD progression time may be divided into

three phases: damaging phase, where amyloid beta (Ab)
and hyperphosphorylated microtubule-associated protein
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tau (MAP tau, MAPT) accumulate; synaptic and metabolic

alteration phase; and final phase when clinical symptoms

may be detected [1, 2]. The neuropathological hallmarks of

AD are extracellular deposits of Ab and intracellular neu-

rofibrillary tangles (NFTs) built of hyperphosphorylated

MAPT. Amyloid b and MAPT remain the central focus of

AD research, as factors responsible for the activation of the

cascade of molecular processes leading to the progression

of neurodegeneration.

The amyloid-cascade hypothesis is commonly accepted,

but attempts to develop therapeutic methods based on an

anti-Ab approach have not yielded satisfactory results [3–

6]. Although experimental and genetic studies have con-

firmed the key role of amyloidogenesis in AD, the amyloid

theory has many weak points, mainly due to the lack of a

correlation between the severity of cognitive impairment

and the load of senile plaques in the brain. Currently, it is

believed that it is not Ab aggregates in senile plaques but

the soluble oligomers that are the most toxic form of Ab,
and this form correlates with dementia [7].

In addition to the accumulation of senile plaques in the

brain, a neuropathological hallmark of AD is the neuronal

presence of NFT. The degree of cognitive impairment

correlates with the severity of the neurofibrillary tangles.

The ‘‘tau’’ theory assumes MAPT plays a causative role in

AD [8]. The scientific literature provides evidence of both

concepts; however, Ab appears to be responsible for acti-

vation of MAPT phosphorylation. The recently proposed

‘‘dual pathway hypothesis’’ assumes that both amyloido-

genesis and hyperphosphorylation of MAPT are secondary

changes caused by other, upstream factors [9].

A growing body of evidence indicates that inflammatory

processes play an important role in the pathomechanism of

AD [10–12]. The presence of senile plaques in AD brains

induces inflammatory response, leading to activation of

microglia and astrocytes and in consequence to increased

production of pro-inflammatory mediators and neuronal

degeneration and death. It has been demonstrated that

activation of complement proteins, cytokines, chemokines,

proteases and their inhibitors, proteoglycans, growth fac-

tors, and miscellaneous enzymes occurs in the AD [13, 14].

Studies suggest that inflammation contributes significantly

to the sporadic form of AD, perhaps even initiating it [15]

but inflammation may also exacerbate the progression of

AD [16]. However, activation of the phagocytic activity of

microglial cells may have also positive effect. Microglia,

brain resident macrophages, maintain inflammatory status

by secreting cytokines, chemokines and other mediators, as

reactive oxygen and nitrogen species that affect surround-

ing cells. These cells, which constitute 10-15% of all the

cells in the brain, may express pro- and anti-inflammatory

responses, exhibiting M1 and M2 phenotypes, respectively.

The activation of COXs and LOXs in microglia leads to

synthesis of huge amounts of metabolites and to release of

reactive oxygen species that could affect the function and

phenotype of microglia cells. It was recently proposed that

anti-inflammatory and pro-resolving lipid mediators such

as resolvin D1 and lipoxin A4 may play a role in polar-

ization and maintenance of M2 microglia [17, 18]. Phar-

macological inhibition of COX-2 was also shown to affect

polarization of peripheral macrophages [19–21]. Microglia

express several receptors as RAGE (receptor for advanced

glycation endproducts), scavenger receptors SR-AI/II,

TLRs (toll-like receptors) TREM2 (triggering receptor

expressed on myeloid cells 2) and many others. Most of

these receptors are involved in Ab clearance [22–28]. It is

now postulated that if microglia lose their function, the

slumbering synapses can be awakened by inflammatory

signals evoking massive synapse loss [29]. The last data of

Johansson et al. demonstrated that prostaglandin EP2 sig-

naling suppresses beneficial microglia function in AD and

that COX/PGE2/EP2 immune pathway could be very

promising target(s) to restore microglia function and to

prevent AD progression [30].

Epidemiological data indicate that non-steroidal anti-

inflammatory drugs (NSAIDs) may have some beneficial

effect in AD. In a population-based cohort study of 6989

subjects, an 80% decrease in the risk of developing AD in

long-term users of NSAIDs was demonstrated [31]. How-

ever, most clinical trials have shown a neutral effect [32]

(NCT00004845) or only small beneficial effects of

NSAIDs [33] (NCT00065169). The meta-analysis of epi-

demiological data published in 11 articles indicated that

NSAID exposure reduced AD incidence by 58% [34]. It

was recently suggested that for a beneficial effect NSAIDs

should be administered in the early stages of the disease, in

cognitively normal individuals [2]. It is still unclear what

the molecular target of NSAIDs is in AD. Possible func-

tional targets are cyclooxygenase-1 and -2 (COX), c-sec-
retase, Rho-GTPases, and peroxisome proliferator-

activated receptors (PPAR) [2].

Also, novel genome-wide association studies (GWAS)

have suggested that the innate immune system confers the

risk of AD [35, 36]. GWAS studies (done on large cohorts

numbering thousands of patients) have indicated that

besides the APOE4 gene, some other genes are also asso-

ciated with the risk of AD [25, 35, 37–42]. It is supposed

that the effect of these genetic factors on the pathomecha-

nism of AD is associated with the regulation of the innate

immune system (ABCA7, BIN1, CD2AP, CD33, CLU, CR1,

EPHA1, MS4A6A/MS4A4E, PICALM, TREM2), and also

with the level of Ab (ABCA7, APOE, ATXN1, BIN1, CD33,

CLU, CR1, PICALM, TREM2), lipid metabolism (ABCA7,

APOE, CLU), and signal transduction (ABCA7, BIN1,

CD2AP, CD33, CLU, EPHA1, MS4A6A/MS4A4E,

PICALM, TREM2) [43]. Although the association of these
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genes with AD has clearly been confirmed, it is worth

noting that their effect on the risk of AD is not high. In most

cases, odds ratio (OR) is 1.1–1.2 (compared to APOE OR,

which is 4 to 15). However, a rare missense mutation

(rs75932628-T) inTREM2 confers increased risk of devel-

oping AD with an effect size similar to that for APOE (OR =

2.92) [42]. TREM2 is expressed in microglia and neurons

and is involved in promoting phagocytosis and in inhibiting

the production of inflammatory mediators by these cells. It

is a transmembrane protein that interacts with TYROBP

(TYRO protein tyrosine kinase binding protein, Dap12) and

forms receptor signaling complex involved in chronic

inflammation by triggering the production of constitutive

inflammatory cytokines [42]. Recent studies demonstrated

that targeting microglial receptors and their signaling

pathways may reduce inflammation and Ab-dependent
neurodegeneration.

Neuroinflammation is a double-edged sword that exerts

both beneficial and detrimental effects on neurons. The

brain’s resident immune cells, microglia, may be protective

in AD; however, their improper activation may lead to a

worsening of neuronal pathology. Accumulating data

highlight the complex nature of these cells [44]. An

increasing body of evidence indicates that this phe-

nomenon is related to the variability of phenotypes of

immune cells within the brain, but it may also depend on

age, stage of the disease and possibly on other factors,

including lipid alteration. Most published studies have

focused on the role of eicosanoids synthesized by COX-1

and COX-2. The analysis of the effect of these enzymes’

inhibitors is included in the evaluations of NSAIDs actions

and their side effects. Published data suggest that lipoxy-

genases may be involved in pathomechanism of AD. LOXs

are key regulators of inflammatory signaling, but may also

affect processes directly related to neurotoxic cascades

dependent on Ab and MAPT. In this review, we summarize

the role of lipoxygenases, especially 5-LOX and 12/15-

LOX, in the pathomechanism of AD. In addition, the

neuroprotective effect of LOX inhibitors, as neuroprotec-

tants, is discussed.

Lipoxygenases

Lipoxygenases (LOXs) are a group of iron-containing

dioxygenases that catalyze the stereoselective addition of

oxygen to arachidonic acid (AA), docosahexaenoic acid

(DHA) and other polyunsaturated fatty acids (PUFA). The

basic nomenclature of LOXs (with the exception of LOX-

3) is based on the position of the oxygen insertion in a

substrate; for example, 5-LOX inserts molecular oxygen

into AA to carbon 5 of the aliphatic chain with stereo

configuration (Fig. 1). The reaction product of LOX is

hydroperoxyeicosatetraenoic acids (HPETE) [45]. LOXs

occur in several isoforms according to the type of tissue

where they are located, for example reticulocyte type or

epidermis type. Some LOXs catalyze several reactions; for

example, reticulocyte type LOX inserts molecular oxygen

into AA to carbon 12 and 15 in various ratio in different

species [46]. There are five types of LOXs in mammalian

species: 5-,8-,12-, 15-LOX and LOX-3 [47].

Lipoxygenases are enzymes containing non-heme iron

and requiring catalytic activation. This activation process

involves transformation of non-active iron in ferrous state

Fe2? to iron in ferric form Fe3?, accomplished by lipid

hydroperoxide oxidation.

The LOX reaction consists of three consecutive steps

(Fig. 2) [48]:

a) stereoselective hydrogen abstraction from a bis-

allylic methylene group. A carbon–centered fatty

acid radical is formed in this process. This process is

a rate-limiting step of the LOX reaction,

b) radical rearrangement which is accompanied by Z,E–

diene conjugation,

c) stereoselective insertion of molecular dioxygen and

reduction of this hydroperoxy radical intermediate to

a corresponding anion and the ferrous LOX is

oxidized back to the ferric form.

The products of most mammalian LOXs are usually

specific stereoisomers. However, under certain reaction

conditions, for example extreme pH or low oxygen con-

centration, LOXs form complex mixture of sterorandom

oxygenation products [48].

The main substrates for LOXs are arachidonic acid and

docosahexaenois acid which are released from membrane

phospholipids by phospholipases A2 (PLA2) and become

accessible to COX and LOX. As AA and DHA share the

same enzymes, a competition exists for metabolism, and an

excess of one causes substantial fall in the conversion of

the other [49]. Cytosolic PLA2 (cPLA2 group IVA-F) was

postulated to be more specific for AA-phospholipids and

this enzyme could be the predominant in inflammatory

signaling [50]. However, Quach et al. presented arguments

that secretory sPLA2 is mainly involved in inflammatory

processes and the expression of sPLA2 isoforms is

changing during progression of several diseases [51]. It

seems that some cross-talk exists between cPLA2 and

sPLA2, and cPLA2 regulates and enhances activity of

sPLA2.

AA is oxygenated to hydroperoxyl derivatives including

HPETEs. These derivatives upon reduction form corre-

sponding hydroxyeicosatetraenoic acids (HETE) and leu-

kotriene (LT) via 5-lipoxygenase, lipoxins and hepoxilins

Neurochem Res (2016) 41:243–257 245
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[52–54] (Fig. 3). LOXs peroxidize membrane lipids and

lead to structural changes in the cell. The mammalian

reticulocyte 15-LOX-1 is the major enzyme which is

responsible for membrane lipid peroxidation [55]. This

process is significantly increased in aged brains during

inflammation and neurodegenerative diseases. Products of

LOXs have strong bioactivity properties even in nanomolar

concentration; for example HETEs, the metabolites of AA,

are ligands of peroxisome proliferator-activated receptors

(PPAR) [56]. HETEs also act as secondary messengers in

synapses. 5-HPETE inhibits synaptosomal membrane Na?,

K?-ATPase activity [57]. 12-HETE is a neuromodulator

the synthesis of which is activated during ischemia. Its role

in neurons is the attenuation of calcium influx and gluta-

mate release and the inhibition of AMPA receptor activa-

tion [58].

5-Lipoxygenase and Its Role in AD

The important lipid peroxidizing enzyme is 5-LOX,

which catalyzes the conversion of AA into 5(S)-hy-

droperoxyeicosatetraenoic acid (5-HPETE) and leuko-

triene LTA4. Further, LTA4 is converted into LTB4 by

LTA4 hydrolase or is conjugated with reduced glutathione

by LTC4 synthase to form LTC4 [59]. LTC4 is metabo-

lized by elimination of glutamic acid and glycine through

the action of a c-glutamyl-transferase to LTD4 and finally

LTD4 via specific dipeptidase forms LTE4 [60]. LTD4,

LTC4 and LTE4 are termed cysteinyl LTs (cysLTs)

(Fig. 3). Inflammatory eicosanoids which are generated

via 5-LOX act on 6 receptors (OXE receptor which rec-

ognizes 5-HETE and 5-oxo-ETE, LTB4 receptors BLT1

and BLT2, cysteinyl leukotriene receptors CysLT1 and
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CysLT2, which recognize leukotrienes LTC4, LTD4,

LTE4) [61].

Recent studies have identified a new branch in the

5-LOX pathway of AA metabolism by which 5-oxo-

6,8,11,14-eicosatetraenoic acid (5-oxo-ETE) is formed

[61]. 5-oxo-ETE is produced from 5-HPETE by the action

of 5-hydroxyeicosanoid dehydrogenase (5-HEDH). The

actions of 5-oxo-ETE are mediated by the OXE receptor.

An extensive review of this area can be found in [62].

Through the combined actions of lipoxygenases the

lipoxins are formed [52]. A large number of multicellular

responses to injury, inflammation stimuli or infection lead

to the formation of lipoxins. Combined activity of 12/15-

LOX (human monocytes, macrophages), 5-LOX (neu-

trophils), or of 5-LOX and platelet 12-LOX (thrombocytes)

are involved in lipoxin biosynthesis. The synthesis of

lipoxins requires transcellular interaction of various cell

types [48].

The cellular activity of 5-LOX is regulated in different

ways which involve various signaling pathways [59]

(Fig. 4). 5-LOX activity can be regulated by an increase

in intracellular Ca2? concentration, diacylglycerols,

phosphorylation of serine residues (271, 663 and 523) by

p38 MAPK and MAPKAP kinases (MK), and extracel-

lular signal-regulated kinase (ERK) 1/2 and protein kinase

A (PKA), respectively [59, 63]. The C2-like domain is

involved in the Ca2?-dependent interaction of 5-LOX

with membrane structures. Ca2? stimulates 5-LOX

translocation from cytosol to the nucleus. Free AA lib-

erated from phospholipids is transferred by the mem-

brane-bound 5-LOX activating protein FLAP to 5-LOX

for further metabolism [59, 64, 65]. Ca2?-dependent

activation of 5-LOX requires the presence of phos-

phatidylcholine (PC) or coactosin-like protein (CLP) [66].

Acting together with PC, CLP gives a threefold increase

in the amount of LTA4 produced by 5-LOX. CLP acts as

a scaffold for 5-LOX and also increases the ratio of

5-HETE/5-HPETE [67]. In vitro study has demonstrated

that Ca2? is not required for 5-LOX activity in the

presence of high concentrations of PC or AA [68]. The

stress-induced activation of 5-LOX in human polymor-

phonuclear leukocytes (PMNL) is Ca2?-independent but

involves enzyme phosphorylation [69].

5-LOX activity is regulated by phosphorylation. As

mentioned above, p38 MAPK, MAPKAP, ERK and PKA

are identified as kinases that phosphorylate 5-LOX in vitro

at Ser271, Ser663 and Ser523, respectively. The ERKs and

p38 MAPKs mediate cellular activation of 5-LOX [70, 71].

ERKs and p38 MAPKs activated by proinflammatory

cytokines, chemotactic factors, phorbol esters and Ca2?

mobilizing agents, osmotic shock, genotoxic stress, UV

light and heat shock induce nuclear translocation of 5-LOX

and activation of leukotriene production. The inhibitors of

the ERK pathway (SB203580 and U0126) efficiently

inhibit AA-induced leukotriene biosynthesis in human

polymorphonuclear leukocytes (PMNL) under conditions

that do not induce substantial mobilization of Ca2? [59,

69]. An increase in cellular cAMP level leads to phos-

phorylation of 5-LOX enzyme by PKA, and in conse-

quence to inhibition of 5-LOX activity. The data have

shown that PKA activation inhibits 5-LOX translocation

and leukotriene biosynthesis in human neutrophils [72, 73].

The redox state is an important parameter of 5-LOX

cellular activity. Inhibition of glutathione peroxidases

(GPx) or depletion of glutathione leads to an increase in

5-LOX activity [63]. Reduction of lipid hydroperoxides by

GPx-1 and GPx-4 inhibits 5-LOX [74]. The catalytic

activity of 5-LOX is increased by ATP and, to a lower

degree, by other nucleotides, such as ADP, AMP, CTP,

UTP and cAMP [63, 75].
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5-LOX activity is also regulated by the 5-LOX-acti-

vating protein (FLAP). This protein is membrane bound

and belongs to the MAPEG (membrane-associated proteins

in eicosanoid and glutathione metabolism) protein family.

Membrane-embedded FLAP selectively transfers AA to

5-LOX and then AA is oxygenated to 5(S)-HPETE and

dehydrated to leukotriene A4 (LTA4) [76]. FLAP inhibitors

may be effectively used to modulate the activity of 5-LOX

by the ability to inhibit AA binding to FLAP. Several

compounds are able to interact with FLAP, such as MK-

0591, Bay-X-1005 and MK-866 [60]. All these inhibitors

have good clinical safety profiles and show activity against

early and late phases of asthmatic responses and decreases

in lung volume after allergen challenge [77].

A growing body of evidence indicates that 5-LOX is

contributed in the pathomechanism of AD and other aging-

associated neurodegenerative disorders (Fig. 5). Aging

increases region-specific neuronal expression and activity

of 5-LOX in rodents via epigenetic regulation, which may

subsequently influence the course of neurodegenerative

processes [64, 65, 78–83]. In human brain post-mortem

analysis, it has been demonstrated that intracellular

Fig. 3 Arachodonic acid cascade—the role of LOX (according to [54])
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Fig. 5 The role of 5-LOX in the pathomechanism of AD
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immunoreactivity of 5-LOX is increased in the hip-

pocampus of AD patients, compared to healthy age-mat-

ched controls [84, 85]. Double-labeling analysis has

demonstrated a close association of 5-LOX immunoreac-

tivity with Ab plaques, NFTs and vasculature. Interest-

ingly, increased levels of 5-LOX mRNA, protein and

activity have recently been demonstrated in peripheral

blood mononuclear cells (PBMCs) from late-onset AD

(LOAD) patients. Concomitantly, reduced levels of DNA

methylation at ALOX5 promoter have been found [86].

Experiments on animal AD models have provided evi-

dence on the importance of 5-LOX and have demonstrated

its role in the pathomechanism of AD. An elevated level of

Alox5 mRNA has been demonstrated in the hippocampus

and cortex of Tg2576 mice, a commonly used transgenic

(Tg) model of AD. Genetic ablation of 5-LOX in Tg mice

(Tg2576) clearly reduced Ab load in various brain regions,

as measured by ELISA, Western blotting and immunohis-

tochemistry [84]. Interestingly, in Tg mice lacking 5-LOX

the activity of a- and b-secretase was unaltered, but the

activity of c-secretase was significantly inhibited. The

marker of inflammation (TNFa) and oxidative stress (iso-

prostane F2a-III) were also unchanged in 5-LOX deficient

mice. Genetic and pharmacological (Zileuton) inhibition of

5-LOX reduced the activity of c-secretase and the level of

Ab1–42 in mouse embryonic fibroblasts (MEFs) [84].

Accordingly, two 5-LOX-derived compounds, 5-HPETE

and LTC4, increased Ab1–40 production in HEK293 cells

stably expressing C99, precursor of Ab and the immediate

substrate for c-secretase, which suggests a direct effect of

5-LOX on the c-secretase complex [84]. Moreover, the

5-LOX inhibitor (Zileuton) reduced Ab formation in these

cell lines, supporting the important role of c-secretase in

the amyloidogenic effect of 5-LOX.

A mechanistic explanation of c-secretase activation by

5-LOX was proposed recently [87–90]. The main product

of 5-LOX, 5-HETE, directly activates CREB and promotes

its nuclear translocation. CREB has been demonstrated to

control expression of all four members of the c-secretase
complex: APH-1, nicastrin, Pen-2 and PS-1. The effect of

5-LOX on amyloidogenesis may be also related to forma-

tion of c-secretase-activating protein (GSAP) [91]. GSAP

is a crucial molecule responsible for Ab production by

interacting with the c-secretase complex. 5-LOX specifi-

cally regulates function of GSAP via caspase-3 -catalyzed

cleavage of GSAP leading to formation of its active frag-

ment, GSAP 16 kD [90]. Importantly, pharmacological

inhibition of 5-LOX in 3xTg mice with Zileuton evokes a

specific reduction of c-secretase complex and consequently

decreases the number of Ab deposits in the brain after

3 months of treatment [92]. In addition, in vitro studies

confirmed that Zileuton does not affect Notch signaling

[88]. This fact may have an important significance for the

potential use of 5-LOX inhibitors in therapeutic applica-

tions, because it suggests that by using 5-LOX inhibitors

one can avoid the toxic side-effects of inhibition of

c-secretase modulators, which have been observed in the

case of the classical inhibitors of c-secretase. The same

effect on c-secretase function and Ab load in the brain has

been stimulated in a Tg mouse model of AD by indirect

inhibition of 5-LOX activity with MK-591, an inhibitor of

FLAP [93]. Accordingly, over-expression of 5-LOX in

Tg2576 mice evokes a worsening of AD-like phenotype,

increasing the level of CREB, PS1, nicastrin, and Pen-2,

leading to enhanced accumulation of Ab in brain tissue and

to cognitive impairment [94].

The activity of 5-LOX has also been implicated in

MAPT neuropathology. The significant role of 5-LOX has

been demonstrated in triple transgenic 3xTg-AD and in

Tg2576 mice, which develop amyloid plaques and NFT

[95, 96]. Overexpression of 5-LOX by an adeno-associated

virus (AAV)-mediated gene transfer evokes c-secretase-
dependent enhancement of Ab production and plaque for-

mation, as well as cyclin-dependent kinase 5 (Cdk5)-de-

pendent MAPT hyperphosphorylation. Furthermore,

activation of neuroinflammatory processes, reduction of

synaptic markers, synpatophysin, microtubule associated

protein 2 (MAP2) and post-synaptic density protein 95

(PSD-95) and also behavioral deficits have been observed

in animals overexpressing 5-LOX. Interestingly, an

increased level of p25, a potent activator of Cdk5, was

observed. Surprisingly, additional experiments revealed

that an inhibitor of c-secretase reduced Ab levels, but had

no effect on MAPT hyperphosphorylation, indicating that

5-LOX dependent Cdk5-mediated phosphorylation is

independent of the Ab. Moreover, in vitro experiments,

using genetic and pharmacological methods of inhibition of

Cdk5, have demonstrated that 5-HETE evokes p25-de-

pendent overactivation of Cdk5, which is responsible for

the enhancement of MAPT phosphorylation at Ser396/

Thr404. It has also been suggested that Gsk-3b is a

mediator of 5-LOX-dependent MAPT phosphorylation in

Tg2576 mice [97]. Inhibition of 5-LOX activity by the

FLAP inhibitor, MK-591, reduces MAPT phosphorylation

at Ser396/Ser404, Thr231/Ser235, as well as the level of

insoluble MAPT. However, MK-591 has no effect on

Cdk5, but reduces Gsk-3b phosphorylation (Ser9) and

activity. By using genetic and a pharmacological inhibition

of 5-LOX in 3xTg mice, Giannopoulos et al. (2013, 2014)

demonstrated an amelioration of synaptic function, integ-

rity and significant improvement of memory [64, 65].

Three month-long treatment with Zileuton reduced Cdk5

activation, MAPT hyperphosphorylation and improved

memory dysfunction in aged 3xTg mice [92].

It has also been proposed that 5-LOX may be involved

in the regulation of specific pathways of Ab degradation
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[98]. The mechanism is related to the PKR-like endoplas-

mic reticulum kinase (PERK)-dependent pathway of the

unfolded protein response (UPR). Accumulation of aggre-

gates of Ab in the cell increases 5-LOX level and activity,

which in turn inhibits the PERK arm of the UPR and

enhances the rate of Ab aggregation. Inhibition of 5-LOX

(CNB-001 or BW B70C) or FLAP (MK886) stimulates the

PERK/eIF2a/ATF4 pathway leading to Ab degradation. In

a mouse model of AD, inhibition of 5-LOX with CBN-001

reduces Ab levels, maintains synaptic proteins and reverses

cognitive deficits. However, Firuzi et al. [84] demonstrated

that the levels of insulin-degrading enzyme and neprilysin,

both proteases involved in Ab catabolism, were not chan-

ged in Tg mice lacking 5-LOX.

For a better understanding of the role of 5-LOX in the

pathomechanism of AD, the importance of 5-LOX has also

been studied in inflammatory reactions, an important

component of the pathophysiology of AD. Single

intraperitoneal administration of endotoxin lipopolysac-

charide (LPS) induces a transient increase in the Alox5

gene in mouse hippocampus 12–24 h post-injection [99].

By using serial LPS injections to transgenic mice (3xTg)

Joshi et al. [83] described that 5-LOX is a crucial player

responsible for a worsening of AD-like phenotype by

activation of chronic inflammation. LPS treatment had a

rather small effect on Ab level, but significantly exacer-

bated MAPT pathology in 3xTg mice. This study showed

that neuroinflammatory response was reduced in 3xTg

mice lacking 5-LOX gene. However, the absence of 5-LOX

did not protect against an increase in MAPT phosphory-

lation at Ser202/Thr205 and Thr231/Ser235. Because the

level of p25 increased in the brains of LPS-treated mice,

the authors suggested that MAPT phosphorylation evoked

by chronic systemic inflammation was catalyzed by Cdk5,

and not Gsk-3b [83].

Because psychosocial stress is an important environ-

mental risk factor for AD, in a following study the role of

5-LOX in the corticosteroid-dependent AD-like phenotype

was analyzed in vitro and in vivo [100]. Dexamethasone,

an anti-inflammatory agent, induced 5-LOX activation and

Ab formation, and pharmacological (AA-861, MK-591) or

genetic inhibition of 5-LOX prevented dexamethasone-

evoked c-secretase-dependent increase in Ab levels. In

triple transgenic (3xTg) mice, genetic inactivation of Alox5

gene, prevented dexamethasone-evoked phosphorylation of

specific sites on MAPT and synaptic disruption [101]. It

was proposed that Gsk-3b may be responsible for dexam-

ethasone-evoked MAPT phosphorylation.

However, some studies have not confirmed the signifi-

cance of 5-LOX in the proteotoxicity of Ab or have given

contradictory results. Pharmacological inhibition of 5-LOX

(caffeic acid) or downregulation of 5-LOX expression had

no effect on Ab25–35-evoked apoptosis in primary rat

neurons in vitro [102, 103]. NDGA protected cultured rat

hippocampal neurons against the toxicity of Ab, but gave
no protection against Ab25–35-evoked cell death in human

neuroblastoma MSN cell cultures [104, 105]. 5-LOX

inhibitor (AA861) protected cultured rat hippocampal

neurons against Ab toxicity, whereas the FLAP inhibitor

L655,238 was ineffective [104].

12/15-LOX and Its Role in AD

The most abundant LOX isoforms in the central nervous

system (CNS) are 12/15-LOX. The metabolites of these

enzymes, 12(S)-HETE and 15(S)-HETE, play an important

role as secondary messengers in synaptic transmission and

are involved in learning and memory processes. 12/15-

LOX have been described abundantly in neurons and in

some glial cells throughout the cerebrum, hippocampus and

basal ganglia [106, 107]. Oxidative stress mechanisms and

inflammatory reactions have been involved in the up-reg-

ulation of 12/15-LOX activity and expression levels [106,

108] (Fig. 4).

15-LOX-1 (12/15-LOX) preferentially metabolizes

linoleic acid to 13-hydroperoxydecadienoic acid (13-

HODE), but also arachidonic acid to 15-HETE and to

12-HETE [109] (Fig. 3). Hepoxilins are the products of AA

metabolized through the 12S-LOX pathway. Hepoxilins

are bioactive epoxy-hydroxy eicosanoids. After oxygena-

tion of AA by 12S-LOX 12S-HPETE is formed. Then, the

pathway is divided into two branches, on the one hand 12S-

HPETE is reduced to 12S-HETE or on the other hand 12S-

HPETE is converted to bioactive hepoxilin A3 [53]. Vari-

ous types of cells can form hepoxilins, for example plate-

lets [110], neutrophils [111], and brain cells [112].

Hepoxilins, especially HXA3, are involved in many bio-

logical processes, for example in the regulation of mem-

brane permeability, calcium transport, insulin secretion,

and chemotaxis [111, 113]. Zafiriou et al. [113] showed

that HXA3 upregulates mRNA and protein expression of

phospholipid peroxide glutathione peroxidase (PhGPx).

The study by Pallast et al. [114] suggested that 12/15-LOX

mediated neuronal cell death by glutathione depletion

evoked by extracellular glutamate in HT22 cells. Wang

et al. [115] showed that 12-LOX activation plays a key role

in oxidative injury due to glutathione (GSH) depletion

caused by cysteine deprivation in premyelinating oligo-

dendrocytes (preOLs) and mature OLs. Inhibiting this

enzyme with AA-861 effectively protected OLs from GSH

depletion and also blocked the accumulation of ROS

induced by cysteine deprivation. It has also been suggested

that zinc can participate in the activation of 12-LOX

leading to free radical formation and neuronal injury [116].

Under pathological conditions, zinc enters postsynaptic
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neurons through NMDA receptors, calcium permeable

AMPA/kainate receptors and also voltage sensitive cal-

cium channels [117]. Oxidative stress causes zinc release,

which activates 12-LOX [116, 118]. N,N,N0,N0-tetrakis(2-
pyridylmethyl) ethylenediamine (TPEN) a zinc chelator

effectively blocks the activity of 12-LOX [116].

The first direct evidence indicating that the 12-LOX

metabolic pathway is altered in AD was demonstrated in

post-mortem analysis by Pratico et al. [119], who showed

an increase in 12/15-LOX protein level, in the frontal and

temporal cortex. Consequently, the level of 12-HETE and

15-HETE, two products derived from the activation of

12/15-LOX, was elevated in these brain structures. The

increase correlated with the level of a specific marker of

lipid peroxidation, the isoprostane 8,12-iso-iPF2aVI, and

inversely correlated with the level of vitamin E, suggesting

the prominent role of 12/15-LOX as a generator of

oxidative stress. The increase in the level of 12(S)-HETE

and 15(S)-HETE, which correlated with lipid peroxidation

(isoprostane 8,12-iso-iPF2aVI) and MAPT protein levels,

has also been observed in the cerebrospinal fluid (CSF) of

AD patients [108]. Moreover, the levels of 12(S)-HETE

and 15(S)-HETE are also elevated in CSF of individuals

with mild cognitive impairment (MCI), suggesting that the

12/15-LOX pathway plays an important role during the

initiation and early phase of AD. In accordance, absence of

12/15-LOX reduces oxidative stress in the CNS of ApoE-

deficient mice [106].

12/15-LOX participates in the processing of Ab by

modulating the BACE1 proteolytic cascade [120, 121]

(Fig. 6). Accordingly, deletion of 12/15-LOX gene reduced

the generation of Ab, and overexpression of 12/15-LOX

increased its level. The active contribution of 12/15-LOX

in Ab formation was correlated with the level of the

BACE1 protein. The significance of 12/15-LOX has been

confirmed in vivo. In a transgenic mouse model of AD

(Tg2576), a significant upregulation of 12/15-LOX

expression and activity occurs, followed by an increase in

lipid and protein oxidation, as compared to WT mice [122].

Genetic deletion of 12/15-LOX gene reduces BACE1

levels, as well as, Ab1–40 and Ab1–42 load in the hip-

pocampus and cortex of Tg2576 mice, indicating the cru-

cial role of 12/15-LOX in amyloidogenesis. Similar effects

were achieved by treatment with a specific 12/15-LOX

inhibitor, PD146176, which efficiently attenuated BACE1

pathway leading to significant reduction in Ab levels and

substantial improvement of memory function in 3xTg mice

[123]. 12/15-LOX activates BACE1 by increasing mRNA

and protein level via transcription factor Sp1 [121].

Importantly, in mice devoid of 12/15-LOX, the reduction

of cognitive deficits has been observed. Consequently,

overexpression of 12/15-LOX in Tg2576 mice evokes

activation of astrocytes and microglia cells, alterations of

brain synaptic integrity and worsening results in contextual

and cued fear conditioning tests, suggesting both hip-

pocampal and amygdala impairment [121, 124]. In neu-

ronal cells stably expressing human Swedish mutant APP

(N2A-APPswe), specific metabolites produced by 12/15-

LOX (12(S)/15(S)-HETE) induce an increase in BACE1

expression and activity, without any impact on APP or

ADAM10. Two selective and structurally different inhibi-

tors of 12/15-LOX (PD146176 and CDC) reduce the level

of Ab secreted by cells stably expressing human APP.

Baicalein improves cognition in Ab-evoked toxicity in

mouse and increases cell survival in APPsw-expressing

PC12 cells subjected to oxidative stress [125, 126]. How-

ever, due to potent antioxidative properties, non-specific

effects of baicalein must be taken into consideration [127,

128].

It has been observed that genetic or pharmacological

(baicalein) inhibition of 12-LOX prevents c-jun dependent

apoptosis evoked by Ab25–35 in primary cultures of rat

cortical neurons [102, 103]. Accordingly, 12(S)-HETE

induces an increase in c-jun expression and apoptosis.

12/15-LOX also contributes to MAPT pathology. The

level of insoluble fraction of MAPT and the level of phos-

phorylation of MAPT at Ser396/Thr404 (PHF-1), Ser396

(PHF13), Ser202/Thr205 (AT8), Thr231/Ser235 (AT180)

was significantly reduced in 3xTg mice treated with 12/15-

LOX inhibitor, PD146176 [123]. Overexpression of 12/15-

LOX increases phosphorylation of MAPT at Ser202/Thr205

and Ser396 both in the brains of Tg2576 mice and in N2A

(neuro-2 A neuroblastoma) cells stably expressing human

APP bearing double Swedish mutation [124]. A significant

increase in the level and activity of Cdk5, but not Gsk-3bwas
observed. Moreover, pharmacological (roscovitine) or

genetic inactivation of Cdk5 efficiently prevented MAPT

phosphorylation, indicating that this phosphorylation was

specifically mediated by activity of Cdk5.

12/15-LOX

p25 Sp1 neuroinflammation

Cdk5

MAPT amyloid β

ROS

synaptic
dysfunction

BACE1

cognitive
impairment

NPD1

antiapoptotic
antiinflammatory
antioxidative
antiamyloidogenic

c-jun

apoptosis

Fig. 6 The role of 12/15-LOX in the pathomechanism of AD
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However, the important role of LOX in the pathome-

chanism of AD has also been related to the brain cell

survival pathway via involvement in the synthesis of

antiapoptotic and neuroprotective docosahexaenoic acid

(DHA)-derived 10R,17S-dihydroxy-docosa-4Z,7Z,11E,13E,

15Z,19Z-hexaenoic acid, known as neuroprotectin D1

(NPD1) (Fig. 7) [129–131]. Due to an increase in the

expression of NF-jB-sensitive miRNA-125b, the level of

15-LOX mRNA is reduced in hippocampi of AD patients

[132]. Consequently, the level of NPD1 was decreased. As

NPD1-induced gene expression regulates secretion of Ab,
and has antiapoptotic and anti-inflammatory effects, inhibi-

tion of cPLA2/15-LOX-dependent pro-survival pathway

could lead to a worsening of AD-related pathology [133].

Synthetic, exogenous NPD1 down-regulates inflammatory

signaling, amyloidogenic APP cleavage and apoptosis in

cells overexpressing APPsw or exposed to oligomeric Ab
peptide [134].

Summary

Among the many pro-oxidative pathways, COX and LOX

seem to be especially important in AD-related pathology,

including inflammatory processes. Consumption and

metabolism of AA by the brain is up-regulated in AD

patients, suggesting that AA is involved in the pathome-

chanism of this disease [135]. Accordingly, the level of

many enzymes responsible for AA metabolism (e.g.

cPLA2, sPLA2, iPLA2, COX-1, COX-2, mPGES-1,

12-LOX, 15-LOX, cPGES-1, p450 epoxygenase) is chan-

ged in postmortem AD brain samples [136]. The alterations

of the above enzymes lead to oxidative stress and in con-

sequence to free radical-dependent DNA damage and

poly(ADP-ribose) polymerase-1 (PARP-1) overactivation,

neuronal degeneration and death. Also, our study demon-

strated that inflammatory processes significantly affect

PARPs and NADPH oxidase expression [137]. The main

enzymes liberating AA and DHA in basal and inflamma-

tion conditions in the nervous system are cPLA2 and

monoacylglycerol lipase (MAGL) [138, 139]. It has been

proposed that enzymes located downstream, e.g. LOX and

COX, and specific receptors for selected eicosanoids

should offer promising targets for therapy.

Epidemiological studies have suggested that anti-in-

flammatory therapy may be effectively used to prevent,

treat, or slowdown the progression of AD [140, 141].

However, chronic treatment with COX inhibitors appears

ineffective, at least in middle to late stages of AD. More-

over, serious gastrointestinal and cardiovascular side-ef-

fects of anti-COX therapy reduce the usefulness of this

therapeutic strategy. Recently, it was suggested that

5-LOX-mediated metabolism of AA may contribute to the

side-effects evoked by NSAIDs [142]. The conventional

NSAIDs are inhibitors of COX-2 and COX-1, but have no

effect on enzymatic activity of 5-LOX, therefore they

disturb the balance between COXs and LOXs. This situa-

tion leads to enhancement of 5-LOX activity and to accu-

mulation of leukotrienes LTC4, LTD4 and LTE4. These

compounds, in addition to their well-known potent

Fig. 7 DHA cascade—the role of LOX (according to [130, 146, 147])
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bronchoconstrictor properties, together with prostanoids

are potent mediators of the main phenomena of inflam-

mation, such as vascular changes, increase in body tem-

perature and leucocyte migration. Other data have

demonstrated that downregulation of 5-LOX improves

synaptic function and memory in animal models of AD.

Compounds inhibiting both COX and LOX, so-called

‘‘dual inhibitors’’ or ‘‘multiple target inhibitors,’’ could

show improved side-effect profiles [142, 143]. For these all

reasons dual COX and LOX inhibition is probably better

than inhibition of one pathway.

Moreover, it was recently suggested that, for beneficial

effect, NSAIDs should be administered in early stages of

AD (phase 1), in cognitively normal individuals. Unfortu-

nately, it is still unclear what the molecular target of

NSAIDs in AD is. Possible targets are COX-1 and COX-2,

c-secretase, Rho-GTPases, NADPH oxidase and PPAR [2].

It seems that a better understanding of the role of LOX in

the pathogenesis of AD might enable the development of

far more effective disease-modifying approaches based on

inhibitors of LOX. Finally, in our attempts to use LOX

inhibitors and other anti-inflammatory compounds in AD

we should consider the cytoprotective potential of inflam-

mation. Additionally, the heterogeneity of individual

inflammatory response must also be analyzed [144, 145].
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