Skip to main content
. 2016 Mar 5;26(3):137–144. doi: 10.2188/jea.JE20150068

Table 2. Determining the number of latent subgroups using the unconditional LGM.

Latent
Class
Log-
likelihood
AIC BIC SABIC ACP LMR-LRT

2LL P-value
Male              
 1 −23 170.1 46 352.3 46 395.7 46 373.6
 2 −22 018.4 44 062.9 44 150.4 44 109.1 0.89 46 723.3 <0.001
 3 −21 890.3 43 820.5 43 955.3 43 891.7 0.77 42 497.1 <0.001
 4a −21 842.0 43 738.1 43 920.0 43 834.2 0.75 42 093.8 <0.001
(4)b (21 239.5) (42 587.0) (42 949.7) (42 778.1) (0.76) (41 383.0) (<0.001)
 5 −21 822.1 43 712.3 43 941.3 43 833.3 0.70 41 945.4 <0.001
 6 −21 811.9 43 705.8 43 982.1 43 851.8 0.65 41 888.1 <0.001
Female              
 1 −21 989.5 43 991.1 44 031.3 44 012.3
 2 −20 860.9 41 747.7 41 834.9 41 793.6 0.90 46 708.7 <0.001
 3 −20 785.4 41 610.8 41 745.0 41 681.7 0.80 42 350.4 <0.001
 4a −20 723.6 41 501.1 41 682.3 41 596.5 0.75 42 170.9 <0.001
(4)b (20 144.8) (40 397.6) (40 759.1) (40 587.5) (0.72) (41 351.9) (<0.001)
 5 −20 709.6 41 487.3 41 715.5 41 607.4 0.66 41 951.4 <0.001
 6 −20 704.8 41 491.7 41 766.8 41 636.5 0.66 41 905.3 <0.001

ACP, average classification probability; AIC, the Akaike Information Criterion; BIC, the Bayesian Information Criterion; LMR-LRT, Lo-Mendell-Rubin adjusted likelihood ratio test; SABIC, sample size adjusted BIC; 2LL, 2 times the log-likelihood difference between k and k − 1 class models.

aThe model with an optimal number of latent subgroups from the unconditional LGM.

bThe model-data fit indices from the conditional LGM with covariates adjustment and distal outcome.

All estimates are weighted by a three-stage cluster sampling design of 2013 national YRBS.