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Stereocilia-staircase spacing is influenced by
myosin Il motors and their cargos espin-1 and
espin-like

Seham Ebrahim!, Matthew R. Avenarius?, M'hamed Grati', Jocelyn F. Krey2, Alanna M. Windsor',
Aurea D. Sousa', Angela Ballesteros', Runjia Cui', Bryan A. Millis!, Felipe T. Salles!, Michelle A. Baird3,
Michael W. Davidson3'¢, Sherri M. Jones?, Dongseok Choi®, Lijin Dongé, Manmeet H. Raval’,
Christopher M. Yengo’, Peter G. Barr-Gillespie?* & Bechara Kachar'*

Hair cells tightly control the dimensions of their stereocilia, which are actin-rich protrusions
with graded heights that mediate mechanotransduction in the inner ear. Two members
of the myosin-lll family, MYO3A and MYO3B, are thought to regulate stereocilia length by
transporting cargos that control actin polymerization at stereocilia tips. We show that
eliminating espin-1 (ESPN-1), an isoform of ESPN and a myosin-IIl cargo, dramatically alters
the slope of the stereocilia staircase in a subset of hair cells. Furthermore, we show that
espin-like (ESPNL), primarily present in developing stereocilia, is also a myosin-Ill cargo and is
essential for normal hearing. ESPN-1 and ESPNL each bind MYO3A and MYO3B, but
differentially influence how the two motors function. Consequently, functional properties of
different motor-cargo combinations differentially affect molecular transport and the length of
actin protrusions. This mechanism is used by hair cells to establish the required range
of stereocilia lengths within a single cell.
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ellular actin-rich protrusions enable many biological
functions, including migration, exploration and response
to external stimuli’?. Such functional diversity is made
possible by variations in the dimensions, dynamics and
positioning of actin structures within cells. In the inner ear,
sensory hair cells are initially decorated with microvilli; these are
remodelled during development to generate rows of stereocilia,
which have precisely graded heights and form the mechanically
sensitive hair bundle®. The bundle’s staircase organization is vital
for its role in converting mechanical stimuli like sound to neural
signals. Remarkably, stereocilia within a bundle can range from
less than 1 to over 100 um long?. The formation and maintenance
of such an extraordinary range of lengths must require localized
regulatory mechanisms within each stereocilium, and modu-
lation must occur differentially across adjacent rows>~’. Although
mechanisms of stereocilia height regulation are largely unknown,
the significance of the problem is highlighted by the large number
of deaf mouse mutants with abnormal stereocilia morphology®.
The dimensions of the parallel actin filament bundles that
make up the stereocilia core are regulated by actin-binding
proteins™!?, as well as unconventional myosin motors and their
cargos!' 713, Complexes of either of two unconventional myosins,
MYO3A and MYO3B, together with their actin-regulating cargo
ESPN-1, are candidates for controlling stereocilia lengths, based
on several lines of evidence. Each of the three proteins localizes to
the distal tips of stereocilia, the sites of actin polymerization, in a
length-dependent distribution'>~!8, Second, ESPN-1 is trans-
ported by MYO3A or MYO3B to tips of filopodia in cultured
cells, as well as to stereocilia tips, where motor and cargo
synergistically elongate these actin structures'®!4, Third, muta-
tions in MYO3A have been linked to DFNB30, a late-onset,
progressive hearing loss!®, and mutations in the ESPN gene,
which encodes ESPN-1 as well as shorter splice forms, are
associated with hearing and vestibular abnormalities?*2!. In this
study, we investigated the roles of myosin-III paralogs and ESPN-1
in stereocilia formation using Myo3a—'~, Myo3b~/~ and
Espn-1~'~ mice. In addition, we identified a novel myosin-III
cargo, espin-like (ESPNL), which appears early in bundle
development and is essential for normal auditory function. We
show that these two myosins and their two cargos form a system
that influences the number and the length of actin protrusions,
and is critical for the formation of the normal stereocilia-staircase
structure.

Results

Loss of staircase organization in Espin-1 null hair bundles. To
test whether transport of ESPN-1 by myosin-III affects stereocilia
length, we used conventional gene targeting at the Espn locus to
generate a mouse line (Espn-1—'7) that lacks Espn-1, but
expresses short Es]pn isoforms (Fig. 1a). Stereocilia in the organ of
Corti of Espn-1~'" mice appeared normal, with the exception of
transient elongated microvillar-like protrusions on the hair-cell
surface, opposite to the hair bundle (Fig. 1g); these protrusions
disappeared by P10 (Fig. 1h). Espn-1—'~ mice had normal
hearing (Supplementary Fig. 1).

By contrast, ablation of Espn-1 produced stereocilia length
abnormalities in specific regions of the otolith organs, the utricle
and saccule, of vestibular sensory epithelia. These organs are used
for detection of linear acceleration in rodents and can be
subdivided into striolar and extrastriolar regions (Supplementarzr
Fig. 2). The striola, a region of reduced hair-cell density??,
is specialized for detection of dynamic (phasic) stimuli; the extra-
striolar regions, which include medial and lateral extrastriola,
encode tonic stimuli?>. While hair bundles in the striolar
region of the utricle and the saccule had normal morphology in
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Espn-1~'~ mice (Fig. 1b,c), extrastriolar hair cells had bundles
with a striking reduction in the slope of their staircase
(Fig. 1d,e,j), caused both by a shortening of the tallest row of
stereocilia in the bundle and elongation of shorter rows.
Stereocilia lengths measured from scanning electron microscopy
(SEM) images showed that the length difference between
tallest and shortest stereocilia in extrastriolar bundles decreased
from 10.8 + 0.9 um (mean *s.d.; #=6 cells) in heterozygotes to
19+06um (n=4) in Espn-1 ~/~  mice, a reduction
of >80%. Moreover, the diameter of vestibular stereocilia in the
Espn-1~'~ mouse was significantly less than those of wild-type
(WT) mice (Fig. 1k-m). Nevertheless, Espn-1 ~/= mice showed
no overt vestibular abnormalities (Supplementary Fig. 1a-d) and
MYOI15A was targeted normally (Supplementary Fig. 1f,g).

Because MYO3B lacks the actin-binding tail homology
domain 2 (THD2), it cannot travel to distal tips of actin
protrusions without interaction with ESPN-1 (ref. 14). Indeed, in
Espn-1~'~ mice, MYO3B was no longer detectable at stereocilia
tips of extrastriolar hair cells (Fig. 1n,0). Thus, at least in
extrastriolar hair cells, ESPN-1 is required for targeting of
MYO3B to stereocilia tips, as well as regulation of stereocilia
diameter and staircase formation.

ESPN and ESPNL are prominent in mouse utricle hair bundles.
Surprisingly, PB538, an antibody directed against the ankyrin-
repeat domain (ARD) of ESPN-1 (ref. 13), exhibited irregular
immunoreactivity towards stereocilia tips in Espn-1—'" hair
bundles (Fig. 1p). To search for ESPN paralogs expressed in hair
bundles, we used the twist-off method!??* to isolate bundles from
developing (~ P4) and young adult (~ P23) mouse utricles®>. We
detected proteins with shotgun mass spectrometry and liquid
chromatography-tandem mass spectrometry (MS/MS) using an
Orbitrap mass spectrometer, calculating each protein’s
approximate molar abundance using relative iBAQ values!®2>.
Figure 2ab shows the abundance of proteins detected
in both bundles and epithelium at the two time points; the
slope of the connecting lines indicates the bundle-to-epithelium
enrichment®,

The ESPN-1 paralog ESPNL was highly enriched in hair
bundles; on a volcano plot, ESPNL was the most statistically
significant P4-enriched protein in the entire data set (Fig. 2c),
emphasizing its high concentration in young utricle bundles. The
summed splice forms of ESPN were also highly enriched and
together were more abundant than ESPNL (Fig. 2a,b). MYO3A
and MYO3B were present at low levels, although total myosin-III
went up approximately threefold from P4 to P23. Examining
peptide intensity that distinguished the two myosin paralogs, we
estimated that the fraction represented by MYO3A went from
~20% at P4 to below the limit of detection in this assay at P23.

For greater quantification accuracy, we used parallel reaction
monitoring (PRM), a targeted proteomics modality?S, to
specifically assay ESPN, ESPN-1 and ESPNL in utricle hair-
bundle extracts using 2-3 peptides each (Fig. 2d-h). Accurate
quantification was assured by using quantified, heavy-isotope-
labelled peptides as standards for each assay; assays were also
validated by matching MS2 spectra collected at peaks to the
appropriate protein in the mouse Ensembl database. By targeted
proteomics, ESPN-1 accounted for <2% of the total ESPN; by
contrast, ESPNL was 10-fold more abundant at P4 than ESPN-1.
While ESPN-1 and total ESPN declined in utricle bundles by less
than twofold between P4 and P23, ESPNL decreased sevenfold
(Fig. 2h). MYO3B was roughly equal in concentration to ESPN-1
at P4 and P23, while MYO3A was considerably less abundant
(only detected in one out of four biological replicates at P4, and
none at P23).
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Figure 1| Altered length and width regulation in Espn-1—/ — mice. (a) Targeting strategy. PGK-Neo cassette targeted exon 1, which includes the
translation start for ESPN-1; translation start for short ESPN isoforms is in exon 6. (b,c) Phalloidin-labelled stereocilia in the striola of Espn-1_/_ utricles,
imaged with confocal fluorescence microscopy, appear normal. (d,e) Phalloidin-labelled stereocilia in an extrastriolar region of Espn-1—7 ~ utricles are of
nearly uniform lengths. (f) SEM image of WT cochlear outer cell hair bundles. (g) SEM of P4 Espn-1=7/ = outer hair cells shows elongated protrusions
opposite the bundle (arrow). (h) Extraneous protrusions disappear from Espn-1-/~ outer hair cells by P10. (i) SEM image of WT utricle extrastriolar
bundles. (j) SEM of extrastriolar bundles of Espn—]f/* utricle; stereocilia are of nearly uniform length. (k1) Transmission electron micrographs show that
extrastriolar stereocilia of Espn-1=7/ = utricle (I) have a smaller diameter than those of WT utricles (k). (m) Diameter of utricle (UTR) and saccule (SAC)
stereocilia. Mean £ s.d.; n=43 (WT utricle), 163 (Espn-1—/~ utricle), 134 (WT saccule) and 168 (Espn-1—/ ~ saccule). Differences are significant at
P<0.001 (Student's t-test). (n) MYO3B targets to stereocilia tips of utricle bundles of WT mice. (6) MYO3B no longer targets to tips of Espn-1=7~
stereocilia. (p) PB538 anti-ESPN-1 antibody detects antigen at some stereocilia tips (asterisks). Elongated protrusions (arrow) are visible in inner hair cells.
Scale bars (b,dm-0), 5um; (c,e-j), 2 um; and (k,1), 100 nm.
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Quantification of these proteins in the whole utricle ignores
regional variations in expression. Using immunofluorescence in
utricular wholemounts, we found that the myosin-III paralogs
and their espin-related cargos showed striking enrichment in
either striola (ESPNL and MYO3A) or extrastriola (ESPN-1 and
MYO3B) zones (Fig. 2i-m). Higher magnification images
revealed the boundaries clearly (Supplementary Figs 3-7).

Localization of ESPNL in hair bundles. As previously seen!>21,

a pan-ESPN antibody labelled the entire length of auditory and
vestibular stereocilia (Fig. 3a,b). The PB538 ESPN-1 antibody
labelled stereocilia tips of WT utricles; the signal was more
concentrated at tips of taller stereocilia than shorter ones!3
(Fig. 3c,d). Although this antibody cross-reacts with ESPNL, its
reactivity is stronger towards ESPN-1 (Supplementary Fig. 1i-k).
An antibody specific to the C-terminus of ESPNL (ab170747;
Supplementary Fig. 1j) labelled stereocilia tips in both vestibular
and auditory organs (Fig. 3e,f); ESPNL was most concentrated at
the tips of second and shorter rows. In utero electroporation of
GFP-ESPNL (Fig. 3i) and biolistic transfection of mEmerald-
ESPNL (Supplementary Fig. 8h,i) confirmed targeting of ESPNL
to stereocilia tips, particularly those of the second and shorter
rows. Interestingly, in both cochlea and utricle, ESPNL levels were
remarkably non-uniform between stereocilia, including adjacent
ones of the same length (Fig. 3e-i and Supplementary Fig. 8h,i).
In early postnatal cochlea, this variability was most prominent in
row 2; structured illumination microscopy (SIM) indicated that
row 1 had much smaller but nearly uniform levels of ESPNL
(Fig. 3g,h). Here ESPNL was detected with BG35961, also directed
against the C-terminus (Supplementary Fig. 9d). In the utricle,
labelling of variable intensity was seen in short- and intermediate-
length stereocilia (Fig. 3e).

In the utricle, at P0.5, ESPNL was present in all hair bundles,
although levels were higher in the striola; ESPNL was nearly gone
from extrastriolar bundles by P7.5 and was not detected there at
P20.5, despite robust expression in striolar bundles
(Supplementary Fig. 8e-g). This result was consistent with the
mass spectrometry quantification. In the cochlea, expression of
ESPNL was transient, with expression levels falling between P3
and P10 (Supplementary Fig. 8a—d). The ab170747 and BG35961
antibodies reported similar ESPNL distribution in cochlea and
utricle.

ESPNL binds but does not crosslink actin. While ESPN-1 and
ESPNL are only 26% identical, ESPNL contains a 27-residue
sequence in the middle of the protein that shares 74% sequence
homology with a region within the actin-binding module of
ESPN-1 (Fig. 4a). Indeed, when expressed in COS7 cells, tagged

ESPNL co-localized strongly with the actin filament network
(Fig. 4c) but unlike ESPN-1 (Fig. 4b), did not induce the
formation of actin bundles or protrusions. When co-expressed
with known actin-crosslinking proteins PLS1 (ref. 27) and
ESPN-3 (ref. 17), ESPNL targeted to bundled actin (Fig. 4d,e).
ESPNL thus binds to but does not crosslink actin, presumably
because it lacks the additional actin-binding modules present in
ESPN-1.

High-frequency hearing loss in Espnl null mice. To determine
the role of ESPNL in hair-bundle function, we generated a
knockout mouse line using the clustered regularly interspaced
short palindromic repeats (CRISPR)/Cas9 nuclease technique?3.
By delivering guide RNAs (gRNAs) directed at exons 1 and 8, we
generated a 25kb deletion in the Espnl gene (Espnld; Fig. 4f,
Supplementary Fig. 9a,b). Complete loss of antibody labelling
with BG35961 in the cochlea (Fig. 4gh) indicated that this
mutation was a null. We identified ~ 15 additional alleles with
insertions or deletions in either exons 1 or 8 (Supplementary
Fig. 9c). We examined one of these (EspnlA), which has the
addition of a single adenine in exon 8 and is predicted to form a
truncated protein. Indeed, no immunoreactivity was detected in
mice homozygous for this mutation using the BG35961 antibody.

When assessed by confocal microscopy, the overall morphol-
ogy of early postnatal hair bundles appeared normal in Espnl4/4
cochleas. When measured by auditory brainstem responses
(ABR) at ~1 month, Espnl¥’4 and Espni*’4 mice had high-
frequency hearing loss (Fig. 4i). The tmlb allele of Espnl
produced and phenotyped by the International Mouse Phenotyp-
ing Consortium had a very similar high-frequency hearing
loss (http://www.mousephenotype.org/data/genes/MGI:2685402).
Examination of bundles of P10.5 cochlear outer hair cells in basal
regions, where high frequencies are encoded, showed that the
shortest row (row 3) of stereocilia was mostly missing from
Espnl?’4 bundles (Fig. 4j,k). Outer hair cells from mid regions
and the apex appeared normal, as did all inner hair cells. At
P30.5, the pattern was similar, suggesting that there was no
degeneration of hair cells lacking row 3 stereocilia. ESPN-1 was
present at P9 stereocilia tips at similar levels in apical and basal
hair bundles (Supplementary Fig. 10), suggesting that the ESPNL
phenotype was independent of the presence of ESPN-1. The
organization of hair bundles in Espnl’/4 utricles appeared
relatively normal in both striolar and extrastriolar regions, and
no overt vestibular phenotype was observed.

ESPNL is transported by MYO3A and MYO3B. The ESPN-1
ARD interacts with the tail homology domain 1 (THD1) of both
MYO3A and MYO3B!>!4, The ARDs of ESPN-1 and ESPNL

Figure 2 | Proteomics of developing mouse hair bundles. (a) Mole fractions of proteins in utricular epithelium (left) and hair bundles (right) of P5 mice.
Proteins most highly enriched in epithelium are indicated at left and those highly enriched in bundles at right. Hue represents enrichment for each protein.
Far right, proteins detected only in bundles. (b) Mole fractions of proteins in epithelium (left) and bundles (right) of P23 mice. (a,b) Derived from four
biological replicates of 100 ear-equivalents of hair bundles and 10 whole utricles. (¢) Volcano plot showing relationship between P23/P5 enrichment

(x axis) and FDR-adjusted P value (y axis). Proteins that are enriched fivefold or greater between bundles and epithelium are labelled with purple.

(d) Targeted MS2 signal for ESPN peptide LASLPAWR (m/z=457.2663, 2 + charge state) detected from P23 bundles; 10 fmol of the heavy-isotope-
labelled peptide (462.2705, 2+ ) was included as a standard. (e) Targeted MS2 signal for ESPN-1 peptide YLVEEVALPAVSR (723.4036, 2+ ) detected
from P23 bundles; 1fmol of standard (728.4077, 2+ ). (f) Targeted MS2 signal for ESPNL peptide CQEYESELGR (635.7721, 2+ ) detected from P23
bundles; 1fmol of standard (640.7762, 2+ ). (g) Targeted MS2 signal for MYO3B peptide NRDTLPADVVVVLR (522.9703, 3 +) detected from P23
bundles; 1fmol of standard (526.3063, 3 +). (h) Summarized PRM signal for each protein, normalized to actin; two to three peptides were used for each
protein, and four biological replicates were measured for each age (reported as mean £ s.d.). While MYO3A was detectable in one sample at P5, its signal
was below the assay limit of detection at P23. (i-m) Low-power images of mouse utricle stained with phalloidin (top, magenta) for actin and specific
antibodies (top, green; below, grey). Approximate location of the striola, estimated from examination of the phalloidin channel, is indicated. ESPN-1 (j) and
MYO3B (m) are enriched in extrastriolar regions; ESPNL (k) and MYO3A (I) are enriched in the striola. LES, lateral extrastriola; MES, medial extrastriola;
S, striola. Scale bars, 100 um. FDR, false discovery rate.
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share 54% sequence homology and are predicted to fold similarly
(Fig. 4a; Supplementary Fig. 11). Using pull-down assays, we
found that purified GST-tagged ESPNL-ARD bound to GFP-
tagged MYO3A-THDI (Fig. 5b) or MYO3B-THDI fragments
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(Fig. 5¢), but not to regions N- or C-terminal of the THD1. When
expressed together in COS7 cells, ESPNL-ARD was transported
with MYO3A to filopodia tips (Fig. 5d). By contrast, ESPNL-ARD
and MYO3B remained diffuse in the cytoplasm (Fig. 5e). When
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Figure 3 | Immunolocalization of ESPN-1 and ESPNL. (a,b) Pan-ESPN
antibody (green) and actin (magenta) labels utricle (a) and cochlear outer
hair cell (b) stereocilia throughout. (¢,d) ESPN-T antibody labels the tips of
utricular (¢) and cochlear (d) stereocilia. (e) ESPNL antibody (ab170747)
labels some stereocilia tips strongly (arrow), some weakly (asterisk), but
does not label tallest stereocilia of utricle hair cell. (f) ESPNL antibody
labels most but not all stereocilia tips of row 2 in bundle of outer hair cell.
(g) Structured illumination microscopic image of ESPNL labelling
(BG35961) of inner hair-cell bundles. (h) Quantification of ESPNL labelling
of one hair bundle from (G). (left) Yellow lines indicate quantification
trajectories; and (right) uniform labelling in row 1 but saturation of some
tip signals in row 2 (asterisks). (i) GFP-ESPNL labelling of PO.5 inner hair
cells following in utero electroporation at E12. Scale bars, 2 pm.

full-length ESPNL was co-expressed with either MYO3A or
MYO3B; however, ESPNL co-localized with each motor at
filopodia tips (see Fig. 7). Thus the ARDs of ESPN-1 and
ESPNL each bind to the THD1 of the myosin-III paralogs, but
like with ESPN-1 (ref. 14), other domains of ESPNL enable
MYO3B tip-directed motility.

Myosin III paralogs substitute for each other in hair cells.
Results seen with the Espn-1 and Espnl knockouts suggested that
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Figure 4 | ESPNL functional characterization. (a) Domain structure of
ESPNL and ESPN-1. Blue, ankyrin repeats (ANK); black, proline-rich
domain (P); red, WH2 domain (W), green, common actin-binding region
(C); yellow, ESPN actin-binding domain (AB); and orange, ESPNL
C-terminal domain (CTD). (b) COS7 cells transfected with mCherry-
ESPNT1 (green), also labelled with phalloidin (magenta). Individual channels
shown below. ESPN-1 forms filopodia. (¢) mCherry-ESPNL localizes with
actin structures but does not induce filopodia. (d) ESPNL localizes to
filopodia induced by the actin-bundling protein GFP-PLS1. (e) ESPNL
localizes to filopodia induced by GFP-ESPN-3. (f) CRISPR targeting
strategy. gRNA-1 targeted exon 1 and gRNA-2 targeted exon 8; one of 16
alleles was a deletion between those two exons, eliminating ~20 kbp of
genomic DNA. The A protein is hypothetical; we do not have evidence that
this truncated product is even made. (g,h) BG35961 anti-ESPNL antibody
labels WT cochlear hair bundles (g) but not those of Espn/4/4 mice

(h). (i) ABRs showing high-frequency hearing loss in 30-day mice. Mice
with Espnl4/4, EspnlA/A and Espni»A genotypes had similar ABRs and
were grouped together as Espnl —/— (n=13; WT, n=19; displayed as
mean s.d.). ***P<10 5 (Student's t-test). (j) SEM of basal cochlear
outer hair cells from WT mice. Note three rows of stereocilia in each
bundle. (k) SEM of basal cochlear outer hair cells from EspnlA/A mice.
Bundles only have two rows of stereocilia except for scattered row three
stereocilia (asterisks). Scale bars, (b-ej) 2 um; and (gh) 10 um.

cargo interaction with each myosin-III paralog was important for
hair-cell function. In the mouse utricle, MYO3A was elevated in
hair cells of the striolar region (Fig. 21), and concentrated at the
distal tips of auditory (Fig. 6a-c) and vestibular (Fig. 6d)
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Figure 5 | ESPNL binds myosin-Ill tail-homology domain 1. (a) Domain structure of MYO3A and MYO3B. Light blue, motor domain. Magenta,
calmodulin-binding 1Q domains. Red, tail homology domain 1 (THD1). Grey, tail homology domain 2 (THD2). MYO3B lacks THD2. (b,c) ESPNL ARD binds
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stereocilia. Although enrichment of MYO3A was largely
correlated with stereocilia length!®, higher magnification imaging
in utricle bundles showed that MYO3A was low in the very
shortest stereocilia, rose in intensity in the intermediate-length
stereocilia, and then fell off in intensity in the longest stereocilia
(Fig. 6d). By contrast, MYO3B was concentrated in the longest
stereocilia, although it was also present at lower levels at the tips
of other stereocilia (Figs 1m,6e).

To examine the role of the myosin-III paralogs within
stereocilia, we generated Myo3a~/~ and Myo3b—'~ mice
(Fig. 6). Hair-bundle organization and structure in auditory
organs of both mutant lines appeared to be normal by SEM and
confocal fluorescence microscopy; moreover, hearing thresholds
were normal, even at 13 months (Fig. 6i,k).

While neither Myo3a =/~ nor Myo3b~'~ mice showed any
overt vestibular dysfunction, we did note a subtle defect in
stereocilia-staircase step spacing in the extrastriolar regions of the
utricle. Blind measurements of hair bundles imaged with confocal
microscopy showed that Myo3b ~/~ extrastriolar hair cells had a
significantly smaller length difference between tallest and shortest
stereocilia than did Myo3a—/~ or WT mice (Fig. 6l-q). This
effect was reminiscent of that seen with Espn-1~/~ mice, but in
Myo3b~'~ hair cells was due mostly to net elongation of short
stereocilia (Fig. 60,p). Shortening of tall stereocilia in Myo3b~/~
hair cells, while statistically significant, was less noticeable.

We next attempted to generate homozygous null Myo3a '~
Myo3b~—/~ mutants. We used several different breeding
schemes to generate double-null mice (Supplementary Fig. 12).
Although expecting ~12 double knockouts from our 88

progeny, we obtained none. We also obtained no Myo3a ™/~
Myo3b~'~ mice, despite expecting ~9. Using a y*-test and
computing P values by Monte Carlo simulation?’, the obtained
genotype distribution differed from that expected by P<0.001.
Double-null embryos presumably died during development, and
a single WT allele of Myo3a was unable to substitute for the loss
of both Myo3b copies.

Filopodia elongation depends on cargo and myosin III. COS7
cell filopodia provide a useful assay for the effects of the myosins
and their cargos on actin-protrusion elongation. To determine
how ESPN-1 and ESPNL interact with myosin-III paralogs, we
expressed various combinations of tagged proteins in COS7 cells,
and monitored filopodia initiation and length (Fig. 7). To simplify
our analysis, we used myosin-III constructs that lacked the
N-terminal kinase domain, which normally autoinhibits the
myosin motor activity30’31. Consistent with previous reportsl4,
MYO3A alone induced the formation of filopodia, while MYO3B
did not (Fig. 70). When co-expressed with ESPN-1, MYO3A and
MYO3B each produced filopodia that were significantly longer
than with the motor alone (Fig. 7p; Supplementary Table 1).
ESPNL had strikingly different effects on filopodia elongation
depending on which myosin-III was co-expressed. Cells expres-
sing MYO3A and low levels of ESPNL had filopodia with ESPNL
at their tips (Fig. 7a,g); as the expression level of ESPNL
increased; however, filopodia eventually disappeared (Fig. 7g) and
MYO3A co-localized with actin structures in the cytoplasm
(Fig. 7b). The number and mean length of filopodia in cells
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expressing MYO3A and ESPNL were inversely correlated with
the ESPNL concentration (Fig. 7gh). By contrast, in cells
expressing MYO3B and ESPNL, co-transport of both proteins
to filopodia tips was consistently observed in cells expressing
either low or high levels of ESPNL (Fig. 7c,d). With MYO3B,
ESPNL concentration and number or mean length of filopodia
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within the filopodium was shifted slightly tipward relative to
MYO3A, however, and ESPNL was shifted proximally (Fig. 7nD),
suggesting that the two cargos compete to bind to MYO3A. By
contrast, when both cargos were expressed with MYO3B, little
ESPNL was near filopodia tips, unlike ESPN-1 (Fig. 7nF).

MYO3B lacks the THDII domain of MYO3A (refs 14,32).
When we co-transfected COS7 cells with ESPNL and a hybrid
protein in which THDII from MYO3A was fused onto the
C-terminus of MYO3B (MYO3B + THDII), the hybrid mimicked
MYO3A. In cells expressing lower levels of ESPNL, filopodia
were formed and both ESPNL and MYO3B + THDII localized to
their tips; by contrast, in cells expressing high levels of
ESPNL, formation and elongation of filopodia containing
MYO3B + THDII was reduced or abolished (Supplementary
Fig. 13). The actin-binding THDII domain thus causes MYO3A
to respond to the level of ESPNL much differently than MYO3B.

The number and length of filopodia that were induced by
ESPN-1 and either MYO3A or MYO3B were affected differently
when ESPNL was present. When high levels of ESPNL were
co-expressed with MYO3A and ESPN-1, both the number and
length of filopodia formed were reduced. Instead, we observed
increased formation of cytoplasmic actin cables along which
ESPNL and MYO3A co-localized (Fig. 7e,0,p). By contrast,
ESPNL enhanced filopodia elongation by ESPN-1 and MYO3B,
even at high ESPNL expression levels (Fig. 7f,0,p).

Filopodia formed in the presence of ESPN-1 and both MYO3A
and MYO3B were significantly longer than those formed in the
presence of ESPN-1 and only one of the myosin-III paralogs
(Fig. 7L,p). ESPNL had a more modest enhancement of filopodia
length in the presence of both motors, and ESPNL antagonized
the lengthening seen with MYO3A, MYO3B and ESPN-1
(Fig. 7m,p). When ESPN-1 was co-expressed with MYO3A
and MYO3B, ESPN-1 and MYO3A co-localized at filopodia tips
and the tip-to-base gradient of MYO3A was extended'®
(Fig. 7nA, nC). MYO3B entered filopodia when ESPN-1 was
present, but was consistently proximal to MYO3A along the
filopodial shaft with a very extended tip-to-base gradient
(Fig. 7nA, nC).

When we co-expressed ESPNL with MYO3A and MYO3B
(Fig. 7nE), the position of MYO3B became more tipward than
with ESPN-1. Although exhibiting an extended comet-tail
distribution pattern, MYO3B often localized more distally relative
to MYO3A, frequently concentrating at filopodia tips. Conversely,
MYO3A was often reduced or absent from filopodia tips, and was
often only detectable towards the base of the filopodia
immediately contacting the cell body. This result was consistent
with the inhibition of filopodia tip-directed motility of MYO3A
by ESPNL (Fig. 7b). When both cargos were co-expressed with
MYO3A and MYO3B (Fig. 7nB), we observed further variations
in their relative distributions within filopodia. While MYO3B was

still consistently distal along the filopodium, relative to MYO3A,
small amounts of MYO3A sometimes accumulated at filopodia
tips (Fig. 7nB).

Discussion

We show here that MYO3A and MYO3B, along with their actin-
regulating cargos ESPN-1 and ESPNL, form a cooperative system
whereby different motor-cargo combinations control the number
and length of actin protrusions produced by a cell. While
MYO3A and MYO3B largely substitute for each other if two wild-
type alleles of either motor are present, ESPN-1 and ESPNL
interact differently with the two motors and cannot replace each
other fully, at least in hair cells. Most notably, the inner-ear
phenotypes of Espn-1 and Espnl null mice suggest that this
motor-cargo system is used to control the step size of the
stereocilia staircase.

We used filopodia formation in COS7 cells as a model system for
understanding how cells control the number and length of cellular
processes containing crosslinked parallel actin filaments, such as
control of stereocilia length by hair cells. Acting within restricted
compartments at distal tips, the myosin-III isoforms and their
cargos control the length of actin-rich filopodia and molecular
transport within them>>. Expression in COS7 cells of MYO3A,
MYO3B, ESPN-1 and ESPNL alone and in combinations allowed
us to work out the intricacies of their activities and interactions. As
shown previously, MYO3A alone stimulated filopodia formation,
but MYO3B did not'>'% when no motors were present, ESPN-1
elongated filopodia but ESPNL did not. Combinations of motor and
cargo revealed further complexities in the system. Most
importantly, while ESPN-1 and ESPNL could each combine with
MYO?3B to elongate actin processes, MYO3A-dependent elongation
was activated by ESPN-1 but inhibited by ESPNL. ESPNL also
inhibited lengthening when expressed in combination with ESPN-1,
either with MYO3A alone or when both motors were present.

To probe the role of the myosin-cargo system in the inner ear,
we analysed a series of knockout mouse lines. While MYO3A and
MYO3B are differentially expressed in regions of vestibular
organs, single Myo3a and Myo3b knockouts nevertheless showed
that the two motors are almost interchangeable during stereocilia
development. Moreover, subtle defects in stereocilia-staircase
spacing of Myo3b~/~ hair cells indicated that MYO3A cannot
fully substitute for MYO3B, especially in regions like the
extrastriolar utricle where little MYO3A is expressed. By contrast,
there presumably was enough MYO3B in hair cells of Myo3a =/~
mice to allow them to develop their stereocilia normally; indeed,
the overall level of MYO3B in utricles is much greater than that of
MYO3A, suggesting MYO3B is the predominant paralog. That
said, humans who are homozygous or compound heterozygote
for recessive MYO3A mutations suffer from non-syndromic
hearing loss (DFNB30) that is progressive!®, which suggests that

Figure 6 | MYO3A and MYO3B separately localize in bundles but replace each other in the ear. (a) Immunolabelling of MYO3A (green) in rat auditory
hair cells (P3); actin (magenta) labelled with phalloidin. (right) MYO3A label only. (b) MYO3A and ESPNL-GFP do not completely overlap in hair bundle of
outer hair cell (see inset). Elongated ESPNL-GFP labelling in row 2. (¢) SIM image of outer hair-cell stereocilia showing MYO3A cap and elongated ESPNL-
GFP. (d) MYO3A labelling in utricle bundle. (left) MYO3A image with transect indicated. (right) Intensity profile along transect. (e) (left) MYO3B labelling
is greatest in tallest stereocilia (asterisks). (right) Intensity profile along transect. (f) Representation of exons 1-7 (blue boxes) of WT mouse Myo3a locus.
The targeting vector replaced exons 4 and 5 with a floxed neomycin-resistance gene cassette, introducing a premature stop codon in exon 6. (g) Exons 1-8
of the Myo3b locus; the targeting vector (middle) was designed to eliminate exons 3 and 4, replacing them with a neomycin-resistance gene cassette
conjugated to LacZ; a premature stop codon was introduced in exon 5. (h) RT-PCR on inner-ear mRNA showing 578 bp amplicon from WT mouse and
expected 205 bp truncated band in Myo3a~/ ~. (i) Mean ABR measurements ( £s.d.) from Myo3a—/~ (n=29) and Myo3at/~ (n=27) mice at 6
months. (j) RT-PCR on inner-ear mRNA showing 695 bp amplicon from WT mouse and expected 319 bp truncated band from Myo3b~/~. (k) ABR from
Myo3b~/~ (n=9) and Myo3b*/~ (n=9) mice at 6 months. (I) WT extrastriolar bundle (phalloidin stained). (m) Myo3a~/ ~ extrastriolar bundle.
(n) Myo3b~/~ extrastriolar bundle. (0) Heights of short and tall stereocilia from indicated genotypes. Mean * s.d.; n=148 (WT), 123 (Myo3a~/~) and
199 (Myo3b~/ ~). Student's t-test indicated Myo3b ~/ ~ short stereocilia lengths are different from WTat P =10 ~2'; tall lengths are different at P= 0.007.
(p) Distribution of short stereocilia lengths. (q) Distribution of tall stereocilia lengths. Scale bars, (a,b,d,e) 5um; (¢) 300 nm; and (I-n) 2 um.
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Figure 7 | ESPN-1 and ESPNL cooperate with MYO3A and MYO3B to differentially control filopodia growth. (a,b) COS7 cells co-expressing mCherry-
MYO3A (magenta) with relatively low (a) or high (b) expression of mEmerald-tagged full-length ESPNL (green). (c,d) COS7 cells co-expressing mCherry-
MYQO3B (magenta) with relatively low (¢) or high (d) expression of mEmerald-ESPNL (green). (e) MYO3A is unable to target filopodia tips in the presence
of ESPNL, even when co-expressed with ESPN-1. (f) MYO3B consistently targets filopodia tips in cells expressing both ESPNL and untagged ESPN-1.
(g-j) Quantification of relationship between ESPNL fluorescence level (ESPNL FI) and filopodia density (g,i) or length (h,j). There was an inverse
relationship of filopodial number and length with ESPNL fluorescence for MYO3A (R2=0.4 and 0.5) but not MYO3B (R2< 0.1 and <0.01). (k) COS7 cell
expressing GFP-MYO3A (green) and mCherry-MYO3B (red), with actin labelled phalloidin (blue). (I) Filopodia are longer in the presence of MYO3A,
GFP-MYQO3B and ESPN1 (blue). (m) Filopodia are long with MYO3A, GFP-MYO3B, TagBFP2-ESPNL (blue) and untagged ESPN1. (n) Confocal images and
relative pixel intensity profiles of single filopodia from cells transfected with the indicated constructs. Colours are identical in images and corresponding
profiles. Scale in the profiles applies to the images. (o,p) Filopodia number per 10 um of cell perimeter (o) and lengths (p) for each motor-cargo
combination are presented as box plots, with upper and lower whiskers representing the range, top and bottom of the boxes representing the upper and
lower 25th percentile, and the bars bisecting the boxes representing the median values (values from ~30 COS7 cells used for each combination). Two-way
analysis of variance analysis of data in these panels is reported in Supplementary Table 1. Scale bars, 2 um.
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substitution of MYO3B for MYO3A is not completely effective in
the cochlea.

Double knockouts indicated at least one Myo3b allele is requlred
for embryonrc development no Myo3a~ Myo3b—'~ or
Myo3at/~ Myo3b—/~ mice were born from crosses that
should have generated substantial numbers of them. These
results suggest that these motors are re%urred in other tissues, in
addition to inner ear'®!> and retina®¥, a prediction that is
supported by examining their tissue expression using the Illumina
Body Map (http://www.ebi.ac.uk/gxa/experiments/E-MTAB-
513).

Myosin-III motors require ESPN-1 or ESPNL to function in
hair cells. ESPNL was the most prominent developmentally
regulated hair-bundle protein in our proteomics experiments, and
was highly enriched in bundles. Like ESPN, ESPNL both binds to
actin and has a proline-rich domain that may bind profilin-actin;
this domain may allow ESPNL to concentrate actin monomers
and contribute to stereocilia elongation!®. Indeed, ESPNL allows
filopodia to be formed with MYO3B. When low levels of ESPNL
are present, MYO3A-dependent filopodia can be formed; by
contrast, high levels of ESPNL inhibit filopodia elongation when
MYO3A is present.

Like that of Espn-1 ~/~ mice, the phenotype of Espnl~/~
mice was apparent in only a subset of hair cells; while there were
no apparent vestibular functional defects, sensitivity towards
high-frequency auditory stimuli was drastically reduced Con-
sistent with high-frequency hearing loss, Espnl~/~ mice had
altered bundles of outer hair cells—largely missing stereocilia row
3—only at the cochlea’s basal end, which encodes high
frequencies. While the loss of one stereocilia row should decrease
the total amount of transduction current by ~50%, auditory
sensitivity may drop by far more than that 1ven the special role
of outer hair cells in cochlear amplification®. Given the greater
ESPNL abundance in the second row, loss of the third row was
puzzling; ESPNL activity in short stereocilia could, however,
prevent stereocilia destabilization that is predicted to occur below
a certain length”. Regardless, we presume that Espnl ~/~ mice
have a restricted phenotype because ESPN-1 can substitute in
activating myosin-III molecules in most hair cells.

In COS7 cells, ESPN-1 stimulated filopodia initiation and
lengthening regardless of whether MYO3A, MYO3B or both
motors were present. In hair cells, ESPN-1 accounted for <2%
of the total ESPN protein but was responsible for a key subset of
functions carried out by ESPN The morphology and function
of hair bundles of Espn-1~ mice differed from those of
jerker mutant mice, which lack all ESPN isoforms and are
profoundly deaf with severe vestibular dysfunction?!3¢37,
Homozygous jerker stereocilia completed neither diameter
growth nor elongation during bundle formation, but instead
bent, shortened and disappeared®®. In contrast stereocilia in
auditory and vestibular hair cells of Espn-1~'" mice persisted
through adulthood, albeit with a altered phenotype in
extrastriolar hair cells.

While stereocilia diameter was reduced in extrastriolar hair
cells of Espn-1—'/~ mice, consistent with the observation that
ESPN-1 controls the size of actin bundlesls, near-complete
elimination of the stereocilia staircase in Espn-1~'" extrastriolar
regions revealed the principal role of the myosin-cargo system.
Why was the phenotype constrained to a single type of hair cell?
Only one myosin-III (MYO3B) was expressed in extrastriolar hair
cells at substantial levels and ESPNL was largely absent. Cell-
culture experiments showed that MYO3B required ESPN-1 or
ESPNL for transport to distal ends of actin protrusions'4, and
MYO3B was indeed absent from tips of extrastriolar Espn-1~—
stereocilia. The stereocilia of extrastriolar hair cells of Espn-1~
mice thus uniquely lacked activity of both myosin-IIT and its

/

actin-regulatory cargos, while other Espn-1=/~ hair cells
presumably retained ESPNL-dependent activation of MYO3B.
The more subtle defect in staircase formation observed in
Myo3b~'~ mice reinforced this interpretation; a small amount
of MYO3A present in extrastriolar hair cells of Myo3b~/~ mice
presumably could partially control stereocilia spacing. By
contrast, in other single knockouts we examined, where
MYO3A or ESPNL were missing, each hair cell expressed
detectable levels of both a myosin-III paralog and e1ther ESPN-1
or ESPNL. For example, some hair cells of Espnl~/~ mice still
express ESPN-1, which can activate either MYO3A or MYO3B.

Although the myosin III-cargo system can lead to massrve
outgrowth of filopodia in COS7 cells, the Espn-1—
extrastriolar phenotype showed that in hair cells, a crrtrcal
function of this system is to instead control the relative step size
of the stereocilia staircase. A comprehensive model of actin-
process elongation explains the formation of staircase spacing by
invoking gradients of actin- polymerlzatlon activators or physical
properties at the apical surface®’. Because multiple mechanisms
control stereocilia length®%38- 40, and the total actin content
seems to be fixed*!, the activity of the myosin IIl-cargo system
must be proportionally constrained to differentially activate actin
elongation in successive rows of stereocilia, so that the shortest
rows have the least activation and the longest rows have the most.
Indeed, the length dependence of MYO3A and MYO3B
localization in stereocilia, as well as the phenotype seen in
Myo3b~'~ hair cells, both consistent with such a mechanism.
Moreover, given the inhibitory activity of elevated levels of
ESPNL on motor-cargo complexes that include MYO3A, the
large amounts of ESPNL at tips of row 2 of cochlear inner hair
cells may serve to disproportionately suppress growth of this
stereocilia row, generating the much smaller rows 2 and 3 step
spacing than that of rows 1 and 2. Likewise, later in development
ESPNL accumulates at the tips of row 3 stereocilia, presumably
suppressing elongation there.

The functional significance of staircase step spacing is not fully
understood. A small intrinsic gradatlon in stereocilia height
seems to be an essential part of a bundle*?, and may be set up at
the earliest stage of bundle development®?; a further increase in
step spacing occurs after the minimal spacing is established>.
While ste4p spacing is thought to have little effect on hair- bundle
stiffness*4, this distance could control the diffusion of Ca?* to
the upper end of the tip link in vestibular hair cells and perhaps
the rate of slow adaptation%4>,

The restrlcted phenotypes in Myo3a~—/~, Myo3b~'~,
Espn-1='= and Espnl~/~ mice reinforce the suggestion that
robust compensatory mechanisms control stereocilia length. For
example, ESPNL enhances outgrowth of MYO3B-dependent
actin processes, yet inhibits those dependent on MYO3A or
motor mixtures. When hair cells lack ESPN-1 or MYO3A,
MYO3B-ESPNL complexes apparently rescue control of stereo-
cilia length. Stereocilia must maintain the staircase for a lifetime,
even though actin at tips is dynamic383%42:46-48  sugoesting that
considerable redundancy must be built in. Ehmmatron by P10 of
the ectopic long microvilli present in Espn-1~'~ auditory hair
cells may be an example of the hair cell’s ability to overcome
transient misregulation of actin-protrusion length. The myosin-
III plus cargo system operates using selective protein expression,
targeting of individual motors to specific actin protrusions, strong
stimulation of actin elongation by ESPN-1, and differential
stimulation of elongation by ESPNL depending on motor
expression; two motors and two cargos allows for combinatorial
control. Endogenous regulation likely involves auto- and
inter-molecular phosphorylation by the myosin-III klnase
domains3®®! or interaction with other cellular components*’
Together this system allows the cell to precisely tune 1nd1v1dual
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actin protrusions’ lengths, which is essential for the normal
formation of elaborate cellular architecture like hair-cell
stereocilia.

Methods

Animals. The care and use of animals for the experiments described conformed to
NIH guidelines and were approved by the Institutional Animal Care and Use
Committees at the National Institute on Deafness and Other Communication
Disorders (NIDCD ACUC), Oregon Health and Science University (OHSU
IACUC) and the University of Nebraska-Lincoln (UNL IACUC). In all experi-
ments, a mixture of male and female mice were used. No gender-specific effects
were noted.

Knockout mice. Standard methods were used to generate mouse founders carrying
deletions of exons 4 and 5 in Myo3a allele, and of exon 1 in Espn allele at the
Animal Transgenic Facility of the National Eye Institute (Bethesda, MD). Exons 3
and 4 were targeted in Myo3b, which was carried out by the Texas A&M Institute
for Genomic Medicine (College Station, TX). Final targeting vectors were trans-
fected into mouse ES cells (SV129) by electroporation. After selection based on
drug resistance, correctly targeted ES cell clones were screened by long-range PCR,
verified by Southern blotting, and microinjected into blastocysts. At least five
chimeric mice were crossed with C57BL6/] partners for germline transmission of
the modified allele. Founders for each genetically modified colony were selected by
long-range PCR genotyping and were backcrossed onto the C57B6/] background
for five generations or more before phenotypic evaluation of homozygote mutants.

For the Espnl knockout with CRISPR, gRNAs targeted to Espnl exons 1 and 8
were selected using the CRISPR web based tool (http://crispr.mit.edu/). The
gRNA sequences (exon 1, 5-GTGCATCATGCCACCCGGGC-3'; exon 8,
5'-CCGGCCACGCTCGTCCTGTG-3') were individually cloned into the DR274
plasmid (Addgene #42250) and transcribed using the MegaScript kit
(LifeTechnologies). gRNAs were purified using the NucleoSpin miRNA
(Macherey-Nagal) and quantified. Zygotes were injected with a cocktail containing
30ngpl ~ ! of each gRNA and 110 ng pil ~ ! of Cas9 mRNA (Trilink) and implanted
into pseudopregnant females. All founders were screened for mutations in Espnl
exon 1, exon 8 and any intervening deletions between these two exons. We
characterized two alleles in depth: ¢.135_1301del1165 (forming protein
p.A46Tfs14; referred to as Espnl?), and ¢.1298_1299insA, in which a single A is
inserted in exon 8 (forming protein p.Q433Qfs10; referred to as EspnlA). All genes
with predicted off-target sites (exon 1: AW551984, Clqll, Cyp26cl, Olfr523, Pdc4c,
Pomt2 and Slc12a7; exon 8: Acss2, Elf4, Krt79, Lrrc30, Ncoa4 and Phf2) were
sequenced in our founder mice; all off-target sites were WT.

Antibodies. Affinity-purified rabbit polyclonal antibodies specific for mouse
ESPN-1 (PB538/539), MYO3A (PB638) and MYO3B (PB791) have been previously
described!3~15. In some experiments, we used a rabbit polyclonal antibody against
a C-terminal region of human ESPNL (ab170747; Abcam, Cambridge, MA). In
addition, Genemed Synthesis (San Antonio, TX) generated for us a rabbit
antiserum directed to a mixture of four peptides from the C-terminal half of
ESPNL: BG35959, HWKKSAYTPALRTAACRT (residues 748-763); BG35960,
[CIMAHVPARQLRRLSRR (814-828); BG35961, CDLPAEERKMRHLL
(868-880); and BG35962, CFEVFEHLGAHGWEAVRAFHK (882-901). To purify
selective antibodies, this antiserum was run separately over individual peptides
conjugated to SulfoLink (Life Technologies); BG35960 and BG35961 were found to
give the best signal-to-noise ratio.

Expression plasmids. Because the N-terminal kinase domain of class III myosins
has been shown to downregulate motor activity>*>?, all MYO3A and MYO3B
constructs used in our study lacked this domain. GFP-MYO3A, GFP-MYO3A-
pre-THDI, GFP-MYO3A-THDI, GFP-MYO3A-post-THDI and GFP-ESPN-1,
constructs used have been previously described!3. Likewise, GFP-MYO3B,
GFP-MYO3B-pre-THDI, GFP-MYO3B-THDI, GFP-MYO3B-post-THDI,
mCherry-MYO3B and hybrid mCherry-MYO3B:THDII constructs also have been
previously described!. The mCherry-MYO3A construct used was described in
ref. 30. mEmerald- and mCherry-tagged ESPNL were generated by fusing
mEmerald or mCherry, respectively, to the N- or C-terminus of ESPNL in
N3-Clontech vectors. Briefly, for N-terminally tagged ESPNL, the following
primers were used to PCR-amplify mouse Espnl and create Nhel and BamHI
restriction sites: Nhel forward:5-GTCAGATCCGCTAGCACCGCCACCAT
GGCTGCAGTGACCATGTCCGTGTCT-3'; and BamHI reverse:5'-CCTGTA
CGGATCCGCGCTACCACTGGCTGCGCTTGCTCCACCGCTGCTTTGGG
GTGTGGCAGGGGGCG-3'. The PCR product was digested and ligated into a
similarly cut mCherry-C1 or mEmerald-C1 cloning vector to yield a fusion of
mCherry or mEmerald, respectively, with Espnl separated by an 18 amino acid
linker (mCherry-18-ESPNL or mEmerald-18-ESPNL). To label the ESPNL
C-terminus, PCR-amplified Espnl was ligated into a similarly cut mCherry-N1 or
mEmerald-N1 vector to yield a fusion of ESPNL-18-mCherry or ESPNL-18-
mEmerald, respectively. All DNA for transfection was prepared using the Plasmid
Maxi kit (QIAGEN, Valencia, CA) and characterized by transfection in HeLa cells
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(CCL2 line; ATCC, Manassas, VA) using Effectene (QIAGEN) followed by
observation under wide-field fluorescence illumination to ensure proper
localization (ET-GFP and ET-DsRed filter sets; Chroma, Rockingham, VT). The
sequences for all vectors were confirmed using Big Dye technology by the Florida
State University DNA Sequencing Laboratory in the Department of Biological
Science. The GST-ESPNL construct was generated by fusing the GST tag to the
N-terminus of ESPNL housed in a N1-Clontech vector. The following primers were
used to PCR-amplify the GST tag and create Agel and BspEI restriction sites: Agel
forward: 5'-GCGCTACCGGTCGCCACCATGTCCCCTATACTAGGTTATTGG
AAAATTAAGGGCCTTGTGCAAC-3'; BspEI reverse: 5'-TCTGAGTCCGGA
ACGCGGAACCAGATCCGATTTTGGAGGATGGTC-3'. The PCR product

was digested and ligated into a similarly cut ESPNL-N1 cloning vector

to yield a fusion of GST with ESPNL separated by a 22 amino acid linker
(GST-22-ESPNL).

Immunofluorescence and light microscopy. For experiments conducted at the
NIDCD, mice were killed and temporal bones were dissected; they were then
perfused through the round window with 4% formaldehyde in phosphate buffered
saline (PBS; pH 7.4) and fixed for 20 min at room temperature. Inner-ear epithelia
were micro-dissected in PBS before permeabilization with 0.5% Triton X-100 for
30 min, and blocking overnight at 4 °C in filtered 4% bovine serum albumin (BSA)
in PBS. In the case of PB791, tissue was treated for antigen retrieval before
blocking, by incubating in 1 mM TRIS-EDTA buffer pH 9, at 60 °C for 1h. To
process tissue for immunofluorescence!®, it was first incubated with primary
antibody (1 pgml ') for 2 h, rinsed with PBS three times, stained with goat
anti-rabbit secondary antibodies (Molecular Probes) conjugated with AlexaFluor
488 (A-11001) or Alexa Fluor 568 (A-11011) diluted 1:600 in PBS-BSA for 1h, and
counterstained with AlexaFluor-568 phalloidin (Molecular Probes, A-12380),
AlexaFluor-488 phalloidin (Molecular Probes, A-12379) or AlexaFluor-647
phalloidin (Molecular Probes, A-22287) diluted 1:600 in PBS-BSA. Tissue was then
rinsed with PBS three times, and mounted using ProLong Gold Antifade

reagent (Invitrogen). Confocal imaging of both tissue as well as cell-culture
experiments was accomplished using a TiE inverted fluorescence microscope
(Nikon Instruments) equipped with either (1) a spinning disk confocal head
(Perkin-Elmer), DU-888 EMCCD (Andor) and Apo TIRF 1.49 NA objective; or (2)
a swept-field confocal scan head (Prairie Technologies), DU-897 EMCCD (Andor),
and x 100 Plan Apo 1.45 NA objective. All image acquisition was managed
through NIS-Elements software (Nikon Instruments).

For experiments conducted at OHSU, mice were killed and temporal bones
were dissected; the inner-ear tissue was immersed in 4% formaldehyde for 45 min.
Following three washes in 1 x PBS the organ of Corti was dissected from the inner
ear and further fixed in 4% formaldehyde for 15 min. Tissue was washed three
times in 1 x PBS and permeabilized in 0.2% Triton X-100, 1.0% normal donkey
serum and 0.1% BSA for 15 min. Tissue was washed and incubated in primary
antibody (0.4 pgml ~ 1, diluted in block) overnight at 4°. Tissue was washed, then
incubated for 3 h in block containing goat anti-rabbit Alexa Fluor 488 (Invitrogen,
catalog #A21206; 4 pgml ~!) and CF633 phalloidin (Biotium, catalog #00046;
1:250). Lastly, tissue was washed in 1 x PBS and mounted in Everbrite
(Biotium). Samples were imaged on a Zeiss LSM 710 fitted with a x 63, 1.4 NA
objective. Tissue examined by SIM was processed identically to that for
confocal microscopy. SIM images were acquired on the Zeiss Elyra PS.1 and
processed using the Carl Zeiss Zen 2012 (black edition, 64 bit software) version 8.0
with the default settings.

Scanning electron microscopy. For experiments conducted at the NIDCD, after
removal of the inner ear from experimental mice, a small hole was made at the top
of the cochlea with the tip of a fine forceps, and the inner ear was gently flushed
with ~0.3 ml of 2.5% glutaraldehyde fixative solution for 2 h at room temperature.
The membranous labyrinth containing the cochlea and vestibular end organs was
removed by dissection. Specimens were processed using three 1 h incubations with
1% (w/v) OsOy,, alternated with two 1h incubations in 1% tannic acid (w/v). The
specimens were then dehydrated with a graded ethanol series and critical point
dried using liquid CO, as the transitional fluid. Samples were sputter coated with
carbon and platinum and viewed using a Hitachi S-4800 field-emission scanning
electron microscope operated at 5kV.

For experiments conducted at the OHSU, mouse temporal bones were removed
and submerged in 4% paraformaldehyde. The inner ear was dissected from the
temporal bone and forceps were used to make a small hole at the apex of the
cochlea so fixative could fully penetrate the tissue. Additional dissection was
performed to expose the sensory epithelium and the tectorial membrane was
manually removed using fine forceps. The tissue was transferred to a solution
containing 2.5% glutaraldehyde and 0.15 M cacodylate buffer at pH 7.4. Tissue was
further processed using a osmium-thiocarbohydrazide®! method (OTOTO), which
alternated three osmium (OsQO,) incubations, each for 1h, with two 1%
thiocarbohydrazide incubations for 20 min. Tissue was dehydrated with an ethanol
series and critical pointed dried using liquid CO,. Samples were mounted on stubs
and imaged using a FEI Sirion XL30 FEG field-emission scanning electron
microscope operated at 5kV.
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Culture and biolistic transfection of rat inner-ear tissue. Organ of Corti and
vestibular tissues were dissected from postnatal days 0-2 rats and attached to
collagen-coated coverslips. Cultures were maintained in DMEM/F12 (Invitrogen)
with 5% fetal bovine serum and ampicillin (1.5 pgml ~ 1; Sigma) and maintained at
37°C and 5% CO,. For transfections, 50 ug of DNA were precipitated onto 25 mg
of 1-um gold particles and loaded into the Helios Gene Gun cartridges (BioRad).
Tissue explants were transfected with the gene gun set at 95 psi of helium and
maintained in culture for 18-48 h. Samples were fixed and counterstained for
confocal microscope imaging as described above.

In utero electroporation of mouse inner-ear tissue. C57BL/6 males were crossed
with CD1 females to generate embryos for transuterine microinjection. For in utero
injection and electroporation, pregnant females with E11.5 embryos were anaes-
thetized with 6065 igg ~! body weight of Nembutal in a solution containing
20.8 mgml — 1 MgSOy, 10% ethanol and 40% propylene glycol. A ventral lapar-
otomy was performed to expose the uterine horn and embryos were visualized and
positioned using a low-intensity halogen light. A microinjection pipette was
backfilled with concentrated plasmid DNA (> 3 ug) and secured in place in pipette
holder coupled to a Picospritzer III microinjector. The pipette was aligned and
inserted into the otocyst; compressed nitrogen was used to deliver the inoculum.
Following the injection, a square wave electroporator (Protech International
CUY21SC) was used to deliver a pulse of 60-100 mA to the injected embryo. Once
the transuterine and electroporation steps were complete, the abdominal wall was
closed using an absorbable suture. Females were monitored 60 min postoperatively
and once per 24 h until birth. Immunocytochemistry was carried out as described
above. For images with ESPNL-GFP alone, tissues were co-stained with CF633
phalloidin (1:250). For images with ESPNL-GFP and co-staining for MYO3A, we
used the 3THDII antibody>? at 1:500. The secondary antibody was goat anti-rabbit
Alexa Fluor 647 (Invitrogen, catalog #A31573; 4 ug ml ~ 1); co-staining used TRITC
phalloidin (Sigma, catalog #P1951, 1:250).

Vestibular-evoked potential measurements. These experiments were carried out
at the University of Nebraska-Lincoln. Animals were anaesthetized with ketami-
ne:xylazine (18 and 2 mgml ~!), 7 ul per gram body weight, injected intraper-
itoneally. Core body temperature was maintained at 37.0 0.2 °C (mean * range)
using a homoeothermic heating pad system (FHC Inc., Bowdoin, ME). Linear
acceleration pulses (17 pulsess ~ 1, 2 ms duration) ranging from + 6 to — 18 dB re:
1.0 gms (where 1 g=9.8 ms ~2), adjusted in 3 dB steps, were presented to the head
in the naso-occipital axis. Stimuli were delivered using a non-invasive head clip
that coupled the head to a mechanical shaker (Model ET-132-203, Labworks Inc.,
Costa Mesa, CA). Subcutaneous electrodes were placed at the nuchal crest, pos-
terior to the right pinna, and at the hip for the non-inverting, inverting and ground
electrodes, respectively. Electroencephalographic activity was amplified

(200,000 x ), filtered (300-3,000 Hz) and digitized (1,024 points at 10 us per point).
Two hundred and fifty-six primary responses were averaged and replicated for each
VsEP waveform. A VsEP intensity series was collected beginning at the maximum
stimulus level (that is, +6dB re: 1.0 gms ~!) with and without acoustic masking
(50-50,000 Hz forward masker at 90 dB SPL), and then descending in 3 dB steps
until no response was visible. Thresholds (measured in dB re:1.0 gms — 1), peak
latencies, and peak to peak amplitudes were measured and analysed using t-tests
with alpha at 0.05.

Auditory brainstem response threshold. ABR thresholds for Myo3a, Myo3b and
Espn-1 mutant mice were measured at the NIDCD?2. Avertin (0.015mlg ™! body
weight) was injected intraperitoneally for anaesthesia before recording. A sound-
attenuated chamber using an auditory-evoked potential diagnostic system,
calibrated by the manufacturer (Intelligent Hearing Systems, Miami, FL, USA), was
used for ABR recordings. Averaged responses were recorded using three subdermal
needle electrodes placed at the forehead and mastoid locations. Alternating polarity
click and tone-burst stimuli of 47 ps and 5 ms duration, respectively, were used as
stimuli. Presentation number ranged from 128 to 1,024 depending on signal-to-
noise ratio; stimulus intensities producing suprathreshold responses were initially
decreased in 10dB steps, then by 5dB steps at lower intensities to determine the
response threshold. When no waveform was observed at the highest stimulus
level (90 dB SPL), the threshold was considered to be 95 dB SPL for subsequent
analyses.

ABR thresholds for Espnl mutant mice were measured at OHSU. The animals
were anaesthetized with xylazine (10 mgkg ~?, i.m., IVX; Animal Health Inc,
Greeley, CO) and ketamine (40 mgkg ~ 1, i.m.; Hospira, Inc., Lake Forest, IL), and
placed on a heating pad in a sound-isolated chamber. An operating microscope was
used to examine the external ear canal and tympanic membrane, ensuring the ear
canal was free of wax and that there was no canal deformity, inflammation of the
tympanic membrane or effusion in the middle ear. Needle electrodes were placed
subcutaneously at the vertex and at the shoulder of the test ear side. A closed-tube
sound-delivery system sealed into the ear canal was used to stimulate each ear
separately, delivering tone bursts with a 1 ms rise time at 4, 8, 16 and 32 kHz; the
tone-burst stimulus intensity was increased in steps of 5dB. ABR thresholds,
defined as an evoked response of 0.2 pV from the electrodes, were obtained
separately for each ear.

Shotgun mass spectrometry of purified hair bundles. Hair bundles were
purified from either P4 to P6 or P21 to P25 mouse utricles as described®. For
shotgun experiments, four independent preparations of 100 ear-equivalents of
bundles were used for each of the two ages. In addition, four preparations of 10
utricles were obtained for each age. Trypsin-digested peptides were prepared by
short SDS-polyacrylamide gel electrophoresis runs and in-gel digests and were
analysed using a Thermo Electron Orbitrap Velos ETD mass spectrometer!%2°. For
100 utricle ear-equivalents, NuPAGE LDS sample buffer (Invitrogen) at 1.2 x
dilution with 50 mM dithiothreitol was added to a final volume of ~ 50 pl; the
samples were heated to 65 °C for 15 min, followed by 5min at 95°C. By running
proteins ~ 1 cm into a NuPAGE 4-12% Bis-Tris gel, proteins were separated from
contaminants. After washing with water, gels were stained for 5h with Imperial
Protein Stain at room temperature (Thermo Scientific). Gels were rinsed, then,

1 cm of gel containing bundle proteins was manually sliced into six pieces, each of
which was processed separately in individual siliconized tubes. Gel slices were
washed with 200 pl high-performance liquid chromatography (HPLC)-grade water
(vortexed 30s), 200 ul of 50% 50 mM NH4HCO3/50% MeOH (vortexed 1 min),
200 pl of 50% 50 mM NH4HCO53/50% acetonitrile (vortexed 5min) and 200 pl of
100% acetonitrile (vortexed 30 s). The remaining solution was removed and the gel
pieces were dried briefly. Gel pieces were rehydrated with 100 ul of freshly made
25mM DTT in 50 mM NH,HCOj3, then were incubated for 20 min at 56 °C. After
discarding the supernatant, 100 pl of 55 mM iodoacetamide in 50 mM NH,HCO;
was added for 20 min at room temperature in the dark. The supernatant was
discarded and the gel pieces were washed twice with 400 pl HPLC-grade water. The
washes were discarded and 200 pl 50% 50 mM NH,HCO3/50% acetonitrile was
added (vortexed 5 min). This wash was discarded and 200 pl 100% acetonitrile was
added (vortexed 1 min). The supernatant was discarded and samples were dried in
the SpeedVac for 2-3min. A 1% solution of was prepared by adding 100 pl of
50 mM NH,4HCO; to the stock aliquot with swirling to mix; this ProteaseMAX
solution was kept on ice. A 1.5 ml aliquot of 0.01% ProteaseMAX/6 ng ul ~ ! trypsin
was made by adding 15 pl 1% ProteaseMAX (in 50 mM NH,HCO;) to 1,440 pl of
50 mM NH4HCO3; the solution was mixed, then 45l of a 200 ngpl ~ ! trypsin
stock (Sigma-Aldrich T6567 proteomics grade, from porcine pancreas,
dimethylated), diluted fresh in 50 mM NH,HCO;, was added. To each gel piece,
30 ul of the 0.01% ProteaseMAX/6 ngul ~ ! trypsin solution was added and
incubated for 30 min at 4 °C. Gel pieces were overlaid with 20 pul of the 0.01%
ProteaseMAX solution to maintain them fully submerged. Trypsin digestion was
allowed to proceed for 3h at 37 °C. The digest solution was transferred to new
tubes (25-40 pl of liquid from each tube); 30 pl of 2.5% trifluoroacetic acid

(in HPLC-grade water) was added to gel pieces (vortexed 15 min). The solution was
removed and combined with the initial digest solution. The solution was vortexed
and then the combined solution was centrifuged for 10 min at 14,000 r.p.m. in a
microcentrifuge. The supernatant was transferred to 0.45 pm filter tubes (Millipore
Ultrafree centrifugal filters, #UFCOHV00); samples were spun 5 min at 4,000 r.p.m.
All samples were dried in the SpeedVac until virtually all solution was evaporated
(~2h), then were stored at — 80 °C before mass spectrometry.

MaxQuant version 1.4.1.2 was used with the Andromeda search engine to
analyse the data>*>>; relative iBAQ values were calculated for each protein by
dividing the iBAQ for a protein by the sum of all iBAQ values, excluding
contaminants, for a single combined run of six gel pieces®. The data are available
via ProteomeXchange (http://www.proteomexchange.org) with identifier
PXD002167, and technical aspects of the experiments were discussed and validated
elsewhere?”.

Targeted mass spectrometry of purified hair bundles. We used PRM to
measure actin (summed isoforms), MYO3A, MYO3B, ESPN, ESPN-1 and ESPNL
peptides from four preparations from each age (P4-P6, P21-P25), each of 13-14
ear-equivalents of hair bundles. In-solution tryptic digests of the samples were
prepared using an enhanced filter-aided sample preparation (eFASP) method®”.
Proteins were digested in the filter unit in 100 ul digestion buffer with 200 ng
sequencing-grade modified trypsin (Promega) at 37 °C for 12-16 h. Peptides were
isolated by centrifugation and were extracted with ethyl acetate to remove
remaining deoxycholic acid”’. Three unique peptides for each protein of interest
were chosen for isolation based on previous data-dependent discovery data or from
online peptide databases (www.peptideatlas.org, www.thegpm.org). Synthetic
stable-isotope labelled peptides (SpikeTides-TQL) corresponding to mouse protein
sequences (actin, EITALAPSTMK, AGFAGDDAPR; MYO3A, DTFPTDIVLLLR,
FTSSGAVVGAQISEYLLEK, VSVVTQNAPLGNLER; MYO3B, ALQFSQDR,
ILQVNSLVEAFGNAR, NRDTLPADVVVVLR; ESPN, LAPWQR, LASLPAWR;
ESPN-1, DNSGATVLHLAAR, YLVEEVALPAVSR, YLVQECSADPHLR; ESPNL,
CQEYESELGR and EIQECGVSVR) were obtained from JPT Peptide Technologies
(www.jpt.com, Berlin, Germany) and used as internal standards; any cysteine
residues were substituted by carbamoylmethylated cysteines during synthesis. The
following amounts of each peptide were added (spiked in) along with the trypsin
solution before digestion of each sample: actin standards, 500 fmol; ESPN, 10 fmol;
ESPN1, ESPNL, MYO3A and MYO3B peptides, each 1fmol. Calibration curves
were run for all peptides by adding four different amounts of each peptide, centred
around the amount spiked into the sample, to four mouse utricular lysate samples
(0.5 ear-equivalents), prepared in the same way as the bundle samples. Heavy and
endogenous forms of each peptide were monitored by PRM.
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Peptide samples were analysed with an Orbitrap Fusion Tribrid mass
spectrometer (Thermo Scientific) coupled to a Thermo/Dionex Ultimate 3000
Rapid Separation UPLC system and EasySpray nanosource. Samples were loaded
onto an Acclaim PepMap C18, 5 um particle, 100 um X 2 cm trap using a
5ulmin ~ ! flow rate and then separated on a EasySpray PepMap RSLC, C18, 2 um
particle, 75 um x 25 cm column at a 300 nlmin ~! flow rate. Solvent A was water
and solvent B was acetonitrile, each containing 0.1% (v/v) formic acid. After
loading at 2% B for 5 min, peptides were separated using a 55 min gradient from
7.5 to 30% B, 10 min gradient from 30 to 90% B and 6 min gradient at 90% B,
followed by a 19 min re-equilibration at 2% B. Peptides were analysed using the
targeted MS2 mode of the Xcalibur software in which the doubly or triply charged
precursor ion corresponding to each peptide was isolated in the quadrupole,
fragmented by HCD and full m/z 350-1,600 scans of fragment ions at 30,000
resolution collected in the Orbitrap. Targeted MS2 parameters included an
isolation width of 2 m/z for each precursor of interest, collision energy of 30%,
AGC target of 5 x 104, maximum ion injection time of 100 ms, spray voltage of
2,400 V and ion transfer temperature of 275 °C. No more than 75 precursors were
targeted in each run and no scheduling was used. Precursor isolation lists
for all peptides of interest were exported from the software package Skyline
(http://proteome.gs.washington.edu/software/skyline/) and imported into the
Orbitrap control software.

Skyline was also used to analyse targeted MS/MS data. Chromatographic and
spectral data from the RAW files were loaded into Skyline and manually analysed
to determine fragment ion peaks corresponding to each peptide. RAW files
were also processed using Proteome Discoverer (Thermo Scientific) software
in order to match MS/MS spectra to an Ensembl spectral database using Sequest
HT. Fragment ion peaks that co-eluted with the fragment ion peaks for the
corresponding heavy peptide were chosen for analysis. The type and proportion of
daughter ions contributing to the peptide peak were required to match that of the
heavy peptide peak. In addition, one or more spectra within the light or heavy
peptide peak were matched to the correct peptide sequence within the spectral
database. If spectra within a specific sample were not identified, then we required
both that the retention time of the chosen peak be within 2 min of the retention
time of an identified peak for that peptide from another sample, as well as that the
type of daughter ions contributing to the peak must match the identified peptide
peak from another sample. Chromatographic peak areas from all detected fragment
ions for the light and heavy version of each peptide were integrated and summed,
and then the peak area ratio between the light and heavy peptides was calculated.
This ratio was multiplied by the amount of spiked heavy peptide to give an fmol
amount of each light peptide in the sample. The peptide fmol amounts for each
protein of interest were averaged for each sample, then normalized to the average
fmol amount for actin within the same sample. The normalized protein/actin peak
areas were then averaged for the four biological replicates of each age, giving an
average protein/actin intensity measurement for each protein of interest. For the
calibration curve samples, a linear regression of the heavy peptide peak area in each
of the four calibration samples was performed and tested for linearity around the
measurement range. Peptides that did not perform linearly (R2>0.98) were
excluded from analysis.

COS7 cell filopodia analysis. COS7 cells (ATCC CRL-1651; http://www.atcc.org/
Products/All/CRL-1651) were trypsinized, plated on coverslips and maintained at
37°C in DMEM supplemented with 10% fetal bovine serum. Cells were transfected
using Lipofectamine transfection reagent (Invitrogen) according to manufacturer’s
instructions and incubated for 24 h. Samples were then fixed for 20 min in 4%
formaldehyde in PBS, permeabilized for 30 min in 0.5% Triton X-100 in PBS and
counterstained or processed for immunofluorescence as described earlier. Relative
pixel intensity of fluorescently tagged proteins along filopodia was determined
using ImageJ (NIH) software. All measurements were performed using Image]. The
mean grey value within a specified region of interest was used to represent the
fluorescence intensity of mEmerald-ESPNL in each transfected cell.

Homology analysis of the ARD domain of ESPN-1 and ESPNL. Protein
sequences of the N-terminal ARD of mouse ESPN-1 (amino acids 1-331) and
ESPNL (amino acids 1-334) were aligned using ClustalW2 (ref. 58). The estimated
sequence homology for the ARD of both proteins was 54%. ESPN-1 and ESPNL
protein secondary structure was predicted using PSIPRED®, Structural models of
the ARD of mouse ESPN-1 and ESPNL proteins were generated using I-TASSER®
and the human ankyrin R protein as a template (PDB ID: 1n11). The models were
aligned using the MatchMaker tool included in the Chimera software®!. The
root-mean-square deviation between the ESPN-1 and ESPNL structural model
was of 1.76 A for 330 residues.

GST pull-down assays. Recombinant GST-ESPNL ARD protein was expressed in
Rosetta cells and purified from bacterial lysates by using glutathione-agarose beads
(Thermo Scientific). GFP-tagged MYO3A and MYO3B pre-THDI, THDI and post-
THDI domain fusion proteins were expressed, respectively, in COS7 cells and
lysates were prepared!3. After 24 h incubation of COS7 cells following transfection
with fusion constructs, lysates were prepared by brief sonication in ice-cold lysis
buffer (CLB) (5mM DTT, 50 mM Tris pH 7.4, 150 mM NaCl, 2mM EDTA, 1%
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Triton X — 100, 1 mM PMSF, 1 mM aprotinin and 1 mM leupeptin) and
ultracentrifugation at 150,000g for 20 min. To test for interactions with MYO3A
and MYO3B tail domains, the same amount of GST-ESPNL ARD or GST alone
was bound to glutathione-agarose beads for 1 h at 4 °C, followed by incubation with
COS7 cell lysate expressing GFP-tagged MYO3 A and MYO3B tail domain fusion
proteins, respectively, in CLB for 2h. The glutathione-agarose beads were then
washed three times with 1 x PBS. The final pellets were then resuspended in
SDS-polyacrylamide gel electrophoresis buffer.

Co-precipitates obtained from the final step of GST pull-down or COS7 lysate
supernatants were separated on NuPAGE Bis-Tris 4-12% gels (Invitrogen) and
transferred to nitrocellulose membrane for analysis by protein immunoblotting.
Rabbit polyclonal anti-GFP antibodies (Invitrogen) were used to detect GFP-tagged
MYO3A and MYO3B tail domain fusion proteins in the lysate and pull-down
fractions; rabbit polyclonal anti-GST (Calbiochem) antibodies were used to detect
GST-ESPNL ARD or GST alone in purified and GST pull-down fractions. All
immunoblots were visualized using horseradish peroxidise-linked goat anti-rabbit
secondary antibodies (Cell Signaling) and LumiGLO chemiluminescent substrate
(Cell Signaling).

Experiment repeats. Figure 1b-e: Confocal of Espn-1~/~ bundles. Experiment
repeated at least six times. Figure 1f-j: SEM of Espn-1~/~ bundle. Experiment
repeated two times, each three animals of each genotype. Figure 1kl: TEM of
Espn-1—'~ bundle. Experiment repeated two times, with three of each genotype.
Figure 1n-p: Immunofluorescence of MYO3B in WT; immunofluorescence of
MYO3B in Espn-1~'"; IF of PB538 on Espn-1~'~. Experiment repeated at least
six times.

Figure 2a-h: Mass spectrometry. Repeats described in legend. Figure 2i-m:
High-resolution stitched-panel montages of utricles labelled with antibodies against
ESPN, ESPN-1, ESPNL, MYO3A and MYO3B. Experiment repeated at least three
times each.

Figure 3a-f: Immunofluorescence of ESPN, ESPN-1 and ESPNL. Experiment
repeated more than five times. Figure 3g,h: Super-resolution. Experiment repeated
two times. Figure 3i: ESPNL-GFP. Experiment repeated four times.

Figure 4b—e: ESPN-1 and ESPNL COS?7 transfections. Experiment repeated
more than five times. Figure 4g: Antibody testing. Experiment repeated once by
immunostaining and once by protein immunoblot. Figure 4j-k: SEM of Espnl
knockout. Experiment repeated two times.

Figure 5d,e: ESPNL-ARD + MYO3A and ESPNL-ARD + MYO3B. Experiment
repeated more than three times.

Figure 6a,d,e: Immunofluorescence of MYO3A and MYO3B. Experiment
repeated more than six times. Figure 6b,c: Confocal and SIM of MYO3A.
Experiment repeated two times. Figure 6h,j: PCR with reverse transcription
(RT-PCR). Experiment repeated two times. Figure 6ik: ABR. Repeat information
in legend. Figure 6l-n: confocal of bundle morphology in Myo3a and Myo3b null
mice. Experiment repeated more than six times, with total numbers of bundles
examined listed in the legend.

Figure 7. COS7 transfections were all repeated more than six times.
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