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Epithelial-derived tumor cells acquire the capacity for epithelial-to-mesenchymal transition (EMT), which enables them to invade
adjacent tissues and/or metastasize to distant organs. Cancer metastasis is the main cause of cancer-related death. Molecular
mechanisms involved in the switch from an epithelial phenotype to mesenchymal status are complicated and are controlled by
a variety of signaling pathways. Recently, a set of noncoding RNAs (ncRNAs), including miRNAs and long noncoding RNAs
(lncRNAs), were found to modulate gene expressions at either transcriptional or posttranscriptional levels. These ncRNAs are
involved in EMT through their interplay with EMT-related transcription factors (EMT-TFs) and EMT-associated signaling.
Reciprocal regulatory interactions between lncRNAs and miRNAs further increase the complexity of the regulation of gene
expression andprotein translation. In this review,we discuss recent findings regarding EMT-regulating ncRNAs and their associated
signaling pathways involved in cancer progression.

1. Introduction

Epithelial-to-mesenchymal transition (EMT) is a critical
step in both embryonic development and tumor metastasis.
EMT is composed of serial phenotypic changes through
which epithelial cells lose their apical-basal polarity and
tight cellular adhesions, while acquiring protease-producing
properties that increase cell motility [1]. EMT is a well-
recognized process in tumormetastasis throughwhich tumor
cells seed and colonize areas distant from their primary sites.
The process of EMT is sophisticatedly regulated and requires
the acquisition of variable genetic alterations among tumor
cells and their microenvironment [2, 3]. Important cellular
components of the tumor microenvironment (TME) include
tumor-infiltrating immune cells, cancer-associated fibrob-
lasts, and endothelial cells. In addition, hypoxic conditions,
which alter the composition of extracellular matrix (ECM),
cytokines, chemokines, and growth factors, are critical in the
development of EMT [4, 5].

Among important TME-associated cytokines are mem-
bers of the transforming growth factor-𝛽 (TGF-𝛽) family,
which paradoxically suppress tumor metastasis in early-stage
cancers but drive the metastatic process in advanced disease.
TGF-𝛽 signaling initiates EMT by activating EMT-inducing
transcription factors (EMT-TFs), such as Snail/Slug, zinc-
finger E-box-binding homeobox 1/2 (ZEB1/2), basic helix-
loop-helix (bHLH) protein, E47, and Twist, or by tran-
scriptionally repressing epithelial-specific genes via mem-
bers of the histone deacetylase (HDAC) family [6–10].
Epithelial-specific genes, such as E-cadherin (CDH1), zona
occludens 1 (ZO-1), and occludin (OCLN), are substantially
downregulated at the transcriptional level during the EMT
process [11–13]. Notably, promoter regions of CDH1 and
OCLN genes contain EMT-TF binding sites, termed E-
boxes. CDH1 and OCLN are frequently downregulated in
high-grade malignancies with poor clinical outcomes [14–
17], whereas mesenchymal markers, such as N-cadherin,
vimentin, fibronectin, and 𝛼-smooth muscle actin (𝛼-SMA),
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Table 1: miRNAs and other molecules involved in EMT.

miRNA Expression levels in cancer Upstream regulator Known targets References

miR-200 family Breast cancer; prostate
cancer

ZEB1/2, miR-22, Slug,
GATA3, TGF-𝛽, Foxf2

ZEB1/2, Slug, GATA3,
Maml2/3, Foxf2

[69–72]

miR-1 Breast cancer; prostate
cancer

ZEB1/2, miR-22, Slug,
GATA3, TGF-𝛽

ZEB1/2, Slug, GATA3,
Maml2/3

[69–72]

miR-203 Breast cancer, pancreatic
cancer Slug, Snail, TGF-𝛽 Bmi-1, Snail, ZEB1/2 [73, 74]

miR-34 family Pancreatic stem cell,
neuroblastoma p53, epigenetic regulation Snail, ZEB1 [75–77]

miR-9 Breast cancer c-myc E-cadherin, LIFR [78, 79]

miR-135b Colon cancer, NSCLC,
HNSCC

Epigenetic regulation,
NF-𝜅B, hypoxia

APC, LATS2, 𝛽-TrCP,
NDR2, MOB1B

[80–82]

miR-210 Breast cancer Hypoxia E2F3, HOXA1, FGFLR1,
EFNA3, PTP1B, VMP1

[83–85]

miR-103/107 CRC, breast cancer Hypoxia DAPK, KLF4, Dicer [78, 86]

miR-10b Breast cancer Twist HOXD-10 [87]

miR-21 NSCLC, CRC, breast cancer TGF-𝛽/BMP, HER2/neu,
hypoxia

Pdcd4, TGFBR2, PTEN,
TAp63

[88–92]

miR-205 Breast cancer ΔNp63𝛼 ZEB1/2, Jagged1 [69, 93, 94]

miR-23b Colon cancer; bladder
cancer n/a Src, ZEB1 [95–97]

miR-138 Ovarian cancer; HNSCC n/a SOX4, HIF-1𝛼, vimentin [98–100]

miR-7 Gastric cancer; breast
cancer WISP IGF1R, Snail, SETDB1 [27, 101, 102]

HNSCC: head and neck squamous cell carcinoma; NSCLC: non-small-cell lung carcinoma; CRC: colorectal cancer; ZEB1/2: zinc-finger E-box binding
homeobox 1/2; LIFR: leukemia inhibitory factor receptor alpha; APC: adenomatous polyposis coli; LATS2: large tumor-suppressor kinase 2; 𝛽-TrCP: beta-
transducin repeat-containing protein; NDR2: nuclear-Dbf2-related 2; MOB1B: Mps one binder 1b; E2F3: E2F transcription factor 3; HOXA1: homeobox A1;
FGFLR1: fibroblast growth factor receptor like-1; EFNA3: ephrin-A3; PTP1B: protein-tyrosine phosphatase 1B; VMP1: vacuole membrane protein 1; DAPK:
death-associated protein kinase; KLF4: Krüppel-like factor 4; HOXD10: homeobox D10; Pdcd4: programmed cell death protein 4; TGFBR2: TGF beta receptor
2; PTEN: phosphatase and tensin homolog; WISP: WNT1-inducible signaling pathway protein 2; IGF1R: insulin-like growth factor 1 receptor; SETDB1: SET
domain, bifurcated 1; n/a: not available.

are upregulated [18]. Dynamic expression of these proteins
results in alterations in cytoskeleton arrangements and cellu-
lar polarity, as well as changes in the ability of cells to degrade
ECM.

Recent cancer genomic studies have identified numerous
RNAs that do not encode proteins. These noncoding RNAs
(ncRNAs), including snRNAs, snoRNAs, rRNAs, tRNAs,
piRNAs, microRNAs (miRNAs), and long noncoding RNAs
(lncRNAs), regulate biological functions through interac-
tions between their specific structural domains and DNA,
RNA, or proteins [19]. Of these ncRNAs, miRNA and lncR-
NAs have been found to serve as important gene expres-
sion regulators that fine-tune cell transcriptomes and adjust
proteomes in response to extracellular stimulation [20].
In addition, these noncoding RNAs could be transported
from primary site to another cell or distant organ through
extracellular vesicles and alter the gene expression profile
as well as their morphology and functions within the target
sites [21, 22]. Furthermore, mutations and dysregulations of
miRNAs and/or lncRNAs are associated with a diverse array
of human diseases, including cancer [23–27].

In this review, we discuss recent findings on the roles
of miRNAs and lncRNAs in regulating EMT-TFs (Tables 1
and 2). We also discuss the multilayered regulatory circuits
amongmiRNAs, lncRNAs, and protein-coding genes that are
associated with cancer EMT (Figure 1).

2. EMT-Related Signaling Pathways and
the Tumor Microenvironment

The TME is a niche composed of various growth factors
secreted by tumor cells or adjacent tissues, cytokines released
by lymphoid cells, molecular components of the ECM, and
intratumor hypoxia. The expression of EMT-TFs in cancer
cells can be turned on in response to changes in the extra-
cellular microenvironment. Signaling pathways, including
those mediated by TGF-𝛽, bone morphogenetic protein
(BMP),Wnt,Notch, integrin, epidermal growth factor (EGF),
fibroblast growth factor (FGF), platelet-derived growth fac-
tor (PDGF), and sonic hedgehog (SHH), are overactivated
during carcinogenesis [28, 29]. In addition, tumor hypoxia
is responsible for the expression of a subset of EMT-TFs and
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Table 2: lncRNAs and EMT.

lncRNAs Expression levels in cancer Upstream
regulator Targets References

ZEB1-AS1 HCC n/a ZEB1↑ [103]

lncRNA-ATB HCC TGF-𝛽 ZEB1/2↑, IL-11↑,
miR-200↓

[104]

lncRNA-HIT Breast cancer TGF-𝛽 E-cadherin↓ [105]

MEG3 HCC TGFBR1↑, TGFB2↑, SMAD2↑ [106]

lncRNA-Hh Breast cancer Twist GAS1↑ [107]

lncTCF7 Liver cancer IL-6 TCF↑ (Wnt signaling) [108, 109]

treRNA Breast cancer E-cadherin↓ [110]

H19 n/a CTCF
IGF1R↓, NOMO1↓, Twist↓, TGF-
𝛽1/SMAD↓, miR-138↓, miR-200↓,

Let-7↓,
[111–117]

MALAT1
Lung cancer, breast cancer, liver
cancer, prostate cancer, renal cell

carcinoma
TGF-𝛽1, EZH2↑ miR-205↓ [118–120]

Hotair n/a TGF-𝛽1,
miR-141

miR-34↓, miR-141↓,
miR-7

[27, 121–124]

HCC: hepatocellular carcinoma; TGFBR1: transforming growth factor beta receptor 1; TGFB2: transforming growth factor beta 2; GAS1: growth arrest-specific
1; TCF: transcription factor; CTCF: CCCTC-binding factor; IGF1R: insulin-like growth factor 1 receptor; NOMO1: NODAL modulator 1; n/a: not available.

miR-200 family;
miR-1; miR-203

miR-34
family

TGF-𝛽 signaling

ZEB1/2 TwistSnail/Slug

p53

Notch signaling

EMT process

IL-6/STAT3

miR-205

E-cadherin; occludin; ZO-1; claudins

Figure 1: The reciprocally regulatory feedback loop between
miRNAs and EMT-TFs that are involved in EMT. miRNAs form
regulatory networks with EMT-TFs and EMT-associated signaling
pathways that individually or cooperatively modulate EMT. EMT-
suppressing miRNAs, such as the miR-200 family, miR-1, miR-203,
and the miR-34 family (in blue), reciprocally suppress EMT-TFs
(ZEB1/2, Snail/Slug, and Twist) and consequently downregulate the
expression of epithelial markers (E-cadherin, occludin, ZO-1, and
claudins). This negative feedback loop can be broken by TGF-𝛽 or
IL-6/STAT3 signaling, and p53.

activation of a category of EMT-related signaling pathways.
Here, we discuss several signaling pathways that participate
in the initiation of cancer EMT.

2.1. TGF-𝛽 Signaling Pathway. TGF-𝛽 signaling is a core
pathway that tightly controls the process of cell proliferation
and EMT during organ development, tissue fibrosis, and
cancer progression [30]. This signaling pathway is typically
initiated by ligands belonging to the TGF-𝛽 superfamily,
which includes three isoforms of TGF-𝛽 (TGF-𝛽1, TGF-
𝛽2, and TGF-𝛽3) and six isoforms of BMP (BMP2–7).
These ligands are expressed and secreted in different cellular
contexts and in response to various stimuli [31]. TGF-𝛽
receptors are single-pass serine/threonine kinases that exist
in different isoforms, including seven Type I (TGF-𝛽RI)
and five Type II (TGF-𝛽RII) receptors that can form homo-
or heterodimers. Combinatorial dimerization enables TGF-
𝛽 receptors to differentially activate intracellular signaling
pathways that are broadly distinguished by their SMAD
dependence or independence. In response to phospho-
rylation of TGF-𝛽 receptors, a SMADs ternary complex,
composed of SMAD2/3, R-SMAD and SMAD4, forms and
translocates from the cytoplasm to the nucleus [32].

Several EMT-TFs, including members of the ZEB family,
Snail/Slug and Twist, are transcriptionally upregulated in
cancer cells by TGF-𝛽 signaling through conserved response
elements on the promoters of the corresponding genes [10,
33–36]. TGF-𝛽-SMADs was also shown to indirectly induce
expression of EMT-TFs by enhancing the expression of its
downstream effector, high mobility group A2 (HMGA2) [37,
38]. Activated TGF-𝛽 signaling is sustained by an autocrine
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loop, which in turn reinforces the EMT process [39–41]. Fur-
thermore, Snail and SMAD3/4 form a transcriptional repres-
sor complex, which synergistically suppresses the expression
of coxsackie and adenovirus receptor (CAR), OCLN, and
CDH1, and thus promotes EMT [42]. These results suggest
the importance of TGF-𝛽 signaling in cancer EMT and its
potential to serve as a therapeutic target.

2.2. Wnt, Notch, and MAPK Signaling Pathways. The Wnt
signaling pathway is an important regulator of EMT-TF
expression and the EMT process. WNT couples with the
membrane protein Frizzled and low-density lipoprotein
receptor (LRP), promoting translocation of 𝛽-catenin from
the cytoplasm to the nucleus. In the nucleus, 𝛽-catenin acts as
a coactivator of TCF/LEF1 (T cell factor/lymphoid-enhancing
factor-1) and upregulates the transcription of SNAIL1/2 and
TWIST, which in turn repress E-cadherin [43–45].

Notch signaling is activated by cell-cell contact. Inter-
actions between JAG1/2 (Jagged-1/2), Notch ligand, and
Notch receptors facilitate nuclear translocation of the Notch
intracellular domain (NICD), which subsequently activates
Notch effector genes [46]. Notch signaling not only enhances
SNAIL transcription but also enhances SNAIL1/2 function
through upregulation of hypoxia-inducible factor 1𝛼 (HIF-
1𝛼), thereby promoting tumor invasion and/or metastasis
[47, 48].

Additional pathways are also involved in cancer EMT. For
example, hepatocyte growth factors (HGFs) and insulin-like
growth factor-1 (IGF-1) upregulate expression of SNAIL and
ZEB1, respectively, through the mitogen-activated protein
kinase (MAPK) pathway [49–51]. Collectively, these obser-
vations suggest that EMT-TF regulatory circuits are tightly
controlled.

2.3. Tumor Microenvironment and Hypoxia. Hypoxic micro-
environments, defined as those with a pO2 level less than
10mmHg, trigger signaling cascades and immune responses
that drive cancer progression [52, 53]. The hypoxic microen-
vironment contributes to the immune escape of tumors as
well as tumor neovascularization and also promotes EMT [4].
Tumor hypoxia-dependent signaling is predominantly medi-
ated by hypoxia-inducible factors (HIFs)—important protein
complexes that regulate tumor progression and metastasis
[52]. HIFs, which consist of an unstable 𝛼-subunit and a
stable 𝛽-subunit [54], bind to promoters of target genes that
contain the hypoxia response element (HRE) and promote
the recruitment of transcriptional coactivators. In HIF-1𝛼-
mediated canonical hypoxia signaling, expression levels of
Twist, Snail, ZEB1, and E12/E47 are upregulated [55, 56].

Studies have shown that a hypoxic TME contributes to
the stabilization ofHIF-1𝛼, which functions to activate TGF-𝛽
signaling [57, 58]. TGF-𝛽, in turn, assists in the maintenance
of HIF-regulated vascular homeostasis and angiogenesis [59,
60]. The promoter region of VEGF (vascular endothelial
growth factor), encoding a secretory factor involved in vascu-
logenesis and angiogenesis, harbors both HIF-1𝛼 and SMAD
binding sites, suggesting the possibility that both hypoxia
and TGF-𝛽 signaling pathways regulate VEGF expression
[61]. The positive feedback loop between HIF-1𝛼 and TGF-𝛽

functions in the regulation of cancer EMT and angiogenesis
[62].

The TME-associated HIF-1𝛼-mediated hypoxia pathway
also regulates cancer EMT through Notch signaling [48,
63, 64]. It has been shown that interaction between NICD
and HIF-1𝛼 increases the expression of Snail and Slug,
which enhance cancer invasion and migration [48, 65]. In
addition, a hypoxic TME augments the nuclear translocation
of 𝛽-catenin, which promotes activation of Wnt signaling
[66]. Collectively, these findings demonstrate that a hypoxic
TME acts as a driving force for cancer EMT, both directly,
through stabilization of HIFs, and indirectly, through
paracrine/autocrine stimulation.

2.4. Chemoresistance. Recent findings by in vivo mesenchy-
mal lineage tracing showed that EMT might not be essential
for tumormetastasis, and interestingly the phenotype of EMT
in tumor cells was resistant to CTX (cyclophosphamide) and
gemcitabine treatment [67, 68]. Despite the fact that there
may be other EMT-inducing factors function to compensate
for the genes that were manipulated in these studies, the
discovery of EMT tumors displayed chemoresistance may
provide a new insight for developing novel therapy targeting
tumor metastasis.

3. miRNAs and EMT

miRNAs are a group of small (∼22 nucleotides) ncRNAs
that mediate destabilization and translational suppression
of downstream RNAs at the posttranscriptional level. The
expression of miRNAs can be ubiquitous or context-specific
(e.g., during development or within certain tissues). miRNAs
participate in a broad range of physiological functions.
Therefore, miRNA dysregulation may break the harmony
of normal genetic activity and result in a diverse array of
diseases, including cancer. Recent studies have revealed that
more than 50%ofmiRNAs are dysregulated in human cancer.
Moreover, prognostic and predictive miRNA signatures have
been reported in different types of cancer [125–127].

miRNAs serve both positive and negative roles in regulat-
ing cancer EMT (Figure 1 and Table 1) [128]. The regulation
of miRNAs is complicated, as highlighted by the fact that
some miRNA targets can, in turn, regulate the expression
of miRNAs, forming regulatory loops. Two EMT-related
regulatory feedback loops formed by miRNAs and EMT-TFs
will be discussed here: the miR-200 family and ZEB1/2, and
miR-203/miR-34 and Snail/Slug.

3.1. Reciprocal Regulation betweenmiRNAs and EMT-TFs:The
miR-200 Family and ZEB1/2. The miR-200 family consists
of five members, including miR-200a/b/c, miR-429, and
miR-141, all of which contain a similar seed sequence that
targets a large common subset of genes [129]. The miR-200
family directly suppresses ZEB1/2 translation, consequently
upregulating the expression of E-cadherin and maintaining
an epithelial cellular morphology [69, 129, 130]. Conversely,
ZEB1 has been shown to strongly promote tumorigenesis
and cancer metastasis by inhibiting miR-200c and miR-203
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transcription.These data suggest that themiR-200 family and
ZEB1/2 form a negative regulatory feedback loop [73].

In pancreatic and breast cancer models, the miR-200
family is reported to suppress Notch-mediated ZEB1 acti-
vation by directly targeting the Notch coactivators MAML2
and MAML3 and the Notch ligand, JAG1 [70]. In lung
cancer, miR-200 and GATA binding protein 3 (GATA3), a
direct downstream target of Notch involved in lung cancer
metastasis, have been shown to mutually inhibit each other.
This inhibitory loop between miR-200 and GATA3 is per-
turbed by the Notch ligand, JAG2 [131]. These results suggest
that Notch signaling broadens the spectrum of the miR-
200/ZEB1 negative feedback loop in regulating cancer EMT
and metastasis.

It has also been reported that miR-200 is associated with
the reverse EMTprocess—mesenchymal-epithelial transition
(MET)—in prostate cancer. miR-200 and miR-1 directly
target the SLUG 3󸀠-UTR (untranslated region), and Slug in
turn inhibits miR-200/miR-1 expression [71]. In addition,
prolonged TGF-𝛽 signaling increases miR-200 promoter
methylation and leads to miR-200 suppression. This suggests
that the induction and maintenance of a mesenchymal state
require autocrine TGF-𝛽 signaling to sustain expression of
EMT-TFs and inhibition of the miR-200 family [132, 133].

3.2. Reciprocal Regulation between miRNAs and EMT-TFs:
miR-203/miR-34 and Snail/Slug. Similar to the ZEB/miR-
200 negative feedback loop, Snail together with the miR-
34 family (miR-34a, miR-34b, and miR-34c) and miR-203
constitutes another negative feedback loop. This negative
feedback loop regulates epithelial plasticity [75]. Snail and
miR-34a/b/c control ZNF281/ZBP-99, a Krüppel-type zinc-
finger domain-containing transcription factor, acting as an
integral component of an EMT-related feed-forward loop
[134]. A negative feedback loop between miR-203 and Snail
controls the dynamic transition between epithelial and mes-
enchymal phenotypes [135, 136]. miR-203 has been shown to
suppress Slug expression in breast cancer cells, whereas TGF-
𝛽-mediated Slug activation reciprocally downregulates miR-
203 expression [136, 137].

A feedback loop also exists between p53 and miR34. The
tumor-suppressor p53 upregulates the expression of miR-34,
which subsequently suppresses EMT. Mutated p53 proteins,
in contrast, are unable to induce miR-34 expression, thus
shifting the equilibrium toward a mesenchymal phenotype
[76, 138–140]. In addition, the p53/miR-34 axis suppresses
Wnt signaling, both in development and during cancer
progression [138].

These results illustrate howmiRNAs create networks that
connect different EMT-associated signaling pathways. EMT-
related signaling not only upregulates EMT-TFs but also
suppresses miRNAs; this, in turn, breaks downmiR-200/ZEB
and/or miR-203/Snail/Slug feedback loops and facilitates
cancer EMT (Figure 1).

3.3. Other EMT-Related miRNAs. Several other miRNAs are
reported to be involved in EMT (Table 1). For example, miR-
10b is transcriptionally upregulated by Twist and induces
tumor invasion and metastasis in breast cancers by targeting

homeobox D10 (HOXD10) [87]. miR-9 directly targets E-
cadherin mRNA, resulting in activation of 𝛽-catenin sig-
naling, which promotes EMT and metastasis [78]. miR-9
upregulation has also been observed in c-myc-inducedmouse
mammary tumors [141]. In addition, miR-9 has been shown
to downregulate leukemia inhibitory factor receptor (LIFR).
LIFR suppresses breast cancer metastasis by activating the
Hippo kinase cascade, which in turn results in YAP (YES-
associated protein) inactivation [79].

A recent study revealed that miR-9-3p negatively regu-
lates the expression of TAZ, a YAP homolog [142]. A recent
study by our laboratory also showed that miR-135b increases
the levels of nuclear TAZ by directly suppressing multiple
components of the Hippo pathway, including LATS2 (large
tumor-suppressor kinase 2), MOB1B (Mps one binder 1b),
NDR2 (nuclear-Dbf2-related 2), and 𝛽-TrCP (𝛽-transducin
repeat-containing protein) [80]. Notably, miR-135b expres-
sion level, LATS2 protein, and nuclear TAZ protein levels
correlatewith disease prognosis in non-small-cell lung cancer
patients [80]. Furthermore, YAP was found to physically
interact with p72, a RNA helicase that plays roles in miRNA
processing [143]. These results may suggest how the Hippo
pathway suppresses proliferation in response to contact
inhibition.

3.4. miRNAs Involved in Hypoxia-Induced EMT. Some miR-
NAs are involved in hypoxia-induced EMT. Expression of
miR-205 and miR-124, which regulate EMT by targeting
ZEB1/2 and MMP2 (matrix metallopeptidase 2), respec-
tively, is suppressed by hypoxia [69, 144, 145]. Hypoxia also
downregulates the expression of miR-34a, which acts as a
suppressor of Snail and ZEB1. miR-34a suppression results
in upregulation of Notch1 and JAG1, and activated Notch
signaling promotes EMT [146]. Forced expression of miR-
34a under conditions of hypoxia not only reduces Notch1
and JAG1 expression but also abolishes Snail expression,
suggesting that the interplay between hypoxia and Notch
signaling is important in EMT modulation (Figure 1).

4. Long Noncoding RNAs and EMT

lncRNAs are RNA transcripts longer than 200 nucleotides
that do not encode proteins [147]. The FANTOM project
revealed that, in mammals, the number of lncRNAs is at least
four times that of protein-coding RNAs [148, 149]. Although
the functions of lncRNAs are largely unknown, accumulating
evidence suggests that they are key regulators of a number
of important biological processes, possibly exerting tissue-
specific imprinting patterns and functioning in embryogene-
sis, development, lineage differentiation, tumorigenesis, and
EMT regulation [150–152].

Recent studies have shown that lncRNA dysregula-
tion is associated with cancer progression [153]. lncRNAs
may interact with their nearby protein-coding genes, for
example, TAL1, SNAIL, SLUG, and the master regulator
of hematopoiesis, SCL/TAL1 (T Cell Acute Lymphocytic
Leukemia 1), as evidenced by the fact that depletion of certain
lncRNAs results in upregulation of these genes [154]. In
addition, some lncRNAs encompass miRNA binding sites.
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lncRNA-ATB HotairMALAT1

ZEB1-AS1

H19/miR-675

Notch signaling

MALAT1
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ZEB1/2 TwistSnail/Slug lncTCF7

H19; MEG3

IL-6/STAT3
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Figure 2: The reciprocally regulatory feedback loop between
lncRNAs and EMT-TFs that are involved in EMT. lncRNAs form
regulatory networks with EMT-TFs and EMT-associated signaling
pathways that individually or cooperatively modulate EMT. The
EMT-suppressive lncRNAs, H19 and MEG3, can downregulate
TGF-𝛽 signaling. H19, lncRNA-ATB, and ZEB-AS1 promote EMT-
TFs through direct or indirect regulation. In addition, H19 is
reported to possess a controversial ability to downregulate Twist
though its intergenic miRNA, miR-675. TGF-𝛽 and IL-6/STAT3
signaling pathways also promote activity of the lncRNAs, Hotair,
lncTCF7, andMALAT1, and thus crosstalk with Notch signaling and
Wnt signaling, to modulate EMT process. Dysregulation of these
miRNAs and lncRNAs may lead to tumor progression.

These lncRNAs function as ceRNAs (competing endogenous
RNA) that antagonize miRNAs. lncRNAs may positively or
negatively regulate EMT-associated proteins and miRNAs, as
discussed below (Figure 2 and Table 2).

4.1. lncRNAs Regulate EMT through EMT-TFs. Most lncR-
NAs act as transcription inducers or form RNA-protein com-
plexes that promote expression of EMT-associated genes at
transcriptional or posttranslational levels [105]. The lncRNA,
ZEB1-AS1, was found to be frequently upregulated in hepato-
cellular carcinoma (HCC) [103]. ZEB1-AS1, whose transcrip-
tion locus is close to ZEB1, increases ZEB1 promoter activity
through an unknown mechanism. ZEB1, in turn, suppresses
proteins that maintain the epithelial phenotype, such as E-
cadherin, ZO-1, and occludin [103].Thus, targeting ZEB1-AS1
may inhibit ZEB1-related EMT.

Expression of lncRNA-ATB, another lncRNA that upreg-
ulates ZEB1/2 expression and functions as a ceRNA, is
enhanced by TGF-𝛽. lncRNA-ATB promotes a metastatic
cascade by competitively binding to members of the miR-
200 family, thereby attenuating the inhibitory function of
miR-200 on ZEB1/2. At the same time, lncRNA-ATB upreg-
ulates interleukin-11 (IL-11) and activates IL-11/STAT3 (signal
transducer and activator of transcription 3) signaling, which
enables cancer cell colonization [104].

lncRNA-HIT, a HOXA transcript induced by TGF-𝛽, is
a newly identified lncRNA upregulated by TGF-𝛽 that also

mediates TGF-𝛽-induced EMT [105]. It has been found that
lncRNA-MEG3 associates with a PRC2 (polycomb repres-
sive complex 2) complex through interactions with EZH2
(enhancer of zeste 2 polycomb repressive complex 2 subunit).
lncRNA-MEG3 is recruited to a GA-rich sequence in target
genes, forming a RNA-DNA triplex structure that regulates
expression of the TGF-𝛽 receptor genes,TGFBR1 andTGFB2,
as well as SMAD2 [106]. lncRNA-Hh, activated by Twist
at the transcriptional level, directly targets GAS1 (growth
arrest-specific 1) and activates hedgehog signaling [103]. The
Twist/lncRNA-Hh signaling cascade enhances the stemness
property of cells, suggesting a connection between EMT and
stemness [107].

4.2. lncRNAs Regulate EMT through Their Interplay with
miRNAs. EMT is a tightly controlled physiological and
pathological process. Not only proteins but also lncRNAs
and miRNAs are involved in fine-tuning EMT regulation.
lncRNAs may serve as ceRNAs, which act as molecular
“sponges” to regulate the harmony of miRNA pools and
the biological signaling regulated by them. Interestingly,
ceRNAs absorb target miRNAs without altering their total
amount. Therefore, it is important to note that biological
functions of miRNAs are simply determined not only by
their measured abundance but also by their interactions with
lncRNAs. lncRNAs are thus attractive therapeutic targets in
miRNA-mediated diseases. Three lncRNAs—H19, MALAT1,
and Hotair—will be discussed in this section.

4.2.1. H19. H19, which is highly expressed at the embry-
onic stage in mesodermal and endodermal tissues [155],
and insulin-like growth factor II (IGF2) are reciprocally
imprinted. After the early gestation period, H19 is solely
expressed from the maternal-inherited allele whereas IGF2
is exclusively expressed from the paternal-inherited allele
[156, 157]. Loss of IGF2 or H19 imprinting leads to IGF2
upregulation and subsequent H19 promoter hypermethyla-
tion, a phenomenon commonly found in cancers [158–160].

Studies have suggested that H19 possesses tumor-
suppressor functions and have implicated chromatin insula-
tor protein CCCTC-binding factor (CTCF) in methylating
the promoter region of theH19 gene [161, 162]. HowH19 func-
tions in cells has grown clearerwith the introductionmiRNAs
[111, 163]. miR-675 is an intergenic miRNA embedded in
the first exon of H19 and coexpressed with H19. H19/miR-
675 negatively regulates insulin-like growth factor 1 receptor
(IGF1R), nodal modulator 1 (NOMO1), and Twist proteins
and suppresses TGF-𝛽1/SMADs signaling [111–114, 164, 165].
SinceTGF-𝛽/SMADsignaling is awell-knownEMTpathway,
it is possible thatH19/miR-675 plays a role in EMT regulation.

On the other hand, a cancer-promoting role of H19 has
been suggested in colorectal and gastric cancers [115, 166]. In
colorectal cancer, overexpressed H19 serves as a ceRNA that
antagonizes miR-138 and miR-200a, leading to derepression
of their endogenous targets, vimentin, ZEB1, and ZEB2 [115].
In addition, H19 was found to harbor several binding sites
for Let-7 family miRNAs and act as a sponge that negatively
regulates their activity [167]. Notably, expression of Let-7
miRNAs, which inhibit EMT by suppressing HMGA2, is
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Figure 3: The molecular network composed of miRNAs/lncRNAs and EMT-TFs. miRNAs and lncRNAs form regulatory networks with
EMT-TFs and EMT-associated signaling pathways that individually or cooperatively modulate EMT. EMT-suppressing miRNAs reciprocally
suppress EMT-TFs and consequently downregulate the expression of epithelial markers.This negative feedback loop can be broken by TGF-𝛽
or IL-6/STAT3 signaling, p53, and lncRNAs (e.g., H19, lncRNA-ATB, and ZEB-AS1). Dysregulation of these miRNAs and lncRNAs may lead
to tumor progression.

frequently downregulated in cancers with a mesenchymal
phenotype.Thus,H19may exert an EMT-promoting function
through its role as a miR-200 and Let-7 family sponge [116,
117].

These results suggest that the dual roles of H19 in cancer
EMT regulation are deciphered by cellular context, in which
different sets ofmiRNAs are involved in disease pathogenesis.

4.2.2. MALAT1. MALAT1 (metastasis associated in lung
adenocarcinoma transcript 1) has been reported to be a
prognostic marker in several cancers, including lung, breast,
pancreas, liver, colon, uterus, cervix, and prostate cancers
[118]. In bladder cancer, TGF-𝛽1 induces MALAT1 expres-
sion, whereas silencing of endogenousMALAT1 and its bind-
ing partner, SUZ12, suppresses TGF-𝛽1-induced EMT [119].
In renal cancer, reciprocal crosstalk among MALAT1, miR-
205, and EZH2 suppresses the expression of E-cadherin and
enhances Wnt signaling activity, thereby promoting cancer
metastasis [120]. EZH2 and SUZ12 are subunits of PRC2,
which is responsible for the repressive histone 3 lysine 27
trimethylation (H3K27me3) chromatin modification. Previ-
ous studies have suggested that MALAT1might be associated
with the PRC2 complex and promote cancer EMT.

4.2.3. Hotair. Hotair (Hox transcript antisense intergenic
RNA) epigenetically regulates its target sequences by recruit-
ing PRC2, which in turn results in gene silencing [168, 169].
Hotair upregulation was found to be a prognostic indicator of
poor outcome in various types of cancers [121, 122]. In addi-
tion, Hotair was shown to be required for TGF-𝛽-mediated

EMT in colon cancer [170]. Hotair epigenetically silences
miR-34 transcription, resulting in augmentation of C-Met
and Snail expression [123]. It was also found that miR-141, an
EMT suppressor, decreases the expression of Hotair through
complementary binding and thereby inhibits its oncogenic
functions [124]. miR-141 negatively regulates Hotair target
genes, including SNAIL, the nonreceptor tyrosine kinase
ABL2, and PCDH10 (protocadherin 10). In addition, the
expression levels of miR-141 and Hotair were found to be
inversely correlated in renal cancer cells [124]. These results
suggest that crosstalk between Hotair and miRNAs play
important roles in cancer EMT regulation.

5. Conclusion

EMT is recognized as the first step of cancer metastasis—
the main cause of cancer mortality. Cancer EMT is a
tightly controlled pathological process. Multilayered regula-
tory elements, including proteins,miRNAs, and lncRNAs, are
involved in the complex EMT regulatory networks through
RNA-protein, RNA-miRNAs, and RNA-DNA interactions at
pretranscriptional, posttranscriptional, and posttranslational
levels. ncRNAsmodulate epithelial plasticity by targeting dif-
ferent signaling pathways, EMT-TFs, and/or EMT-associated
proteins. Several important reciprocal feedback loops, com-
posed of ncRNAs and EMT-TFs, are involved in establishing
flexible control over EMT and MET. Therefore, peeling back
themysteries surrounding ncRNAs in EMT regulationwill be
important in furthering advances in cancer therapy strategies
(Figure 3).
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[56] K. Lundgren, B. Nordenskjöld, and G. Landberg, “Hypoxia,
Snail and incomplete epithelial-mesenchymal transition in
breast cancer,”British Journal of Cancer, vol. 101, no. 10, pp. 1769–
1781, 2009.

[57] C. Orphanides, L. G. Fine, and J. T. Norman, “Hypoxia stim-
ulates proximal tubular cell matrix production via a TGF-𝛽1-
independent mechanism,” Kidney International, vol. 52, no. 3,
pp. 637–647, 1997.

[58] D. Toomey, C. Condron, Q. DiWu et al., “TGF-𝛽1 is elevated in
breast cancer tissue and regulates nitric oxide production from
a number of cellular sources during hypoxia re-oxygenation
injury,” British Journal of Biomedical Science, vol. 58, no. 3, pp.
177–183, 2001.

[59] H. Harada, S. Itasaka, Y. Zhu et al., “Treatment regimen
determines whether an HIF-1 inhibitor enhances or inhibits the
effect of radiation therapy,” British Journal of Cancer, vol. 100,
no. 5, pp. 747–757, 2009.

[60] C. Furuta, T. Miyamoto, T. Takagi et al., “Transforming growth
factor-beta signaling enhancement by long-term exposure to
hypoxia in a tumormicroenvironment composed of Lewis lung
carcinoma cells,” Cancer Science, vol. 106, no. 11, pp. 1524–1533,
2015.

[61] T. Sánchez-Elsner, L. M. Botella, B. Velasco, A. Corbı́, L.
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