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Integrated metabolomics and 
metagenomics analysis of plasma 
and urine identified microbial 
metabolites associated with 
coronary heart disease
Qiang Feng1,2,3,*, Zhipeng Liu1,4,*, Shilong Zhong5,6,*, Ruijun Li7, Huihua Xia1,8, Zhuye Jie1,8, 
Bo Wen1, Xiaomin Chen1, Wei Yan7, Yanqun Fan1, Zhenyu Guo1, Nan Meng1,8, Jiyan Chen5, 
Xiyong Yu5,6, Zhiwei Zhang6, Karsten Kristiansen1,9, Jun Wang1,9,10,11,12, Xun Xu1, Kunlun He7 & 
Guanglei Li1

Coronary heart disease (CHD) is top risk factor for health in modern society, causing high mortality 
rate each year. However, there is no reliable way for early diagnosis and prevention of CHD so far. So 
study the mechanism of CHD and development of novel biomarkers is urgently needed. In this study, 
metabolomics and metagenomics technology are applied to discover new biomarkers from plasma and 
urine of 59 CHD patients and 43 healthy controls and trace their origin. We identify GlcNAc-6-P which 
has good diagnostic capability and can be used as potential biomarkers for CHD, together with mannitol 
and 15 plasma cholines. These identified metabolites show significant correlations with clinical 
biochemical indexes. Meanwhile, GlcNAc-6-P and mannitol are potential metabolites originated from 
intestinal microbiota. Association analysis on species and function levels between intestinal microbes 
and metabolites suggest a close correlation between Clostridium sp. HGF2 and GlcNAc-6-P, Clostridium 
sp. HGF2, Streptococcus sp. M143, Streptococcus sp. M334 and mannitol. These suggest the metabolic 
abnormality is significant and gut microbiota dysbiosis happens in CHD patients.

Coronary heart disease (CHD) is the top risk factor in modern society with annual mortality rate overpassing the 
sum of all types of cancers. The majority of cardiovascular deaths occurrence are related to the extent of people’s 
awareness of their own medical conditions and are due to lack of in-time treatment as demonstrated by a five-year 
follow-up study by MaGiCAD cohort1. The challenge for early diagnosis and prevention of CHD lies in the fact 
that there are no reliable non-invasive biomarkers. The “gold standard” for diagnosis of CHD is still coronary 
angiography which is invasive and accompanied by many deadly side effects2,3. This limited the large population 
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screening and the CHD risk prediction at early stage. So non-invasive and highly accurate approaches to diagnose 
and predict CHD are urgently needed.

Previous research has reported that fatty acids play important roles in the metabolism process of heart; they 
are predominant substrates, accounting for 60–90% cardiac ATP synthesis, for cardiac ATP generation by mito-
chondrial oxidative phosphorylation under normal physiological conditions4. Cardiovascular diseases (CVD) 
like coronary heart disease and cardiac failure undergo a “metabolic shift” as a consequence of both intrinsic and 
extrinsic perturbations. Increased low-density lipoprotein cholesterol (LDL-C) has previously been considered as 
one of the major risk factors for CHD5. The fact that core defects in cardiovascular disease are lipids metabolism6 
makes metabolomics a particularly promising method to study these types of diseases.

Metabolomics is an innovative and high-throughput bioanalytical method aiming to identify and quantify 
small molecules (molecular weight less than 1500 Daltons) present in any biological system or any specific physi-
ological state. Two major analytical techniques, nuclear magnetic resonance (NMR) and mass spectrometry (MS), 
have been widely used in endogenous compounds measurement at an exponential increasing rate in last decade7. 
MS-based techniques have made rapid progress and have been used more frequently compared with NMR since 
2005 because of the following advantages: higher sensitivity, more coverage of the metabolome, improved metab-
olites identification and discrimination capacity, and modularity to perform compound-class-specific analysis8. 
MS is mostly used in conjunction with chromatography, such as gas chromatography mass spectrometry (GC–
MS) and liquid chromatography mass spectrometry (LC–MS).

Recent studies in CVD suggest that there are direct links between diet, the gut microbiome and biologi-
cal events associated with CVD. Choline and phosphatidylcholine from diet could be metabolized to tri-
methylamine (TMA) by intestinal microbiota which would be further metabolized to a proatherogenic factor 
– trimethylamine-N-oxide (TMAO), which has proved to accelerate atherosclerosis in mice by chronic dietary 
L-carnitine and associate with increased risks for both prevalent CVD and incident major adverse cardiac events 
(myocardial infarction, stroke or death)9,10.

To explore potential characteristic metabolites signatures associated with CHD, non-targeted metabolomics 
technique is performed to discover potential metabolites by analysis of plasma and urine samples, and metagen-
omics technology is applied to further validate the potential metabolites originated from the fecal metagenomics 
data of CHD patients and healthy subjects. The workflow is shown in Fig. 1. Statistical and bioinformatics meth-
ods are used to identify significantly different metabolites that can discriminate CHD cases from healthy con-
trols. Hierarchical cluster analysis (HCA) is performed to identify metabolites clusters contributing to phenotype 
separation and spearman correlation analysis is applied to identify potential biomarkers’ correlations related to 
abnormal functions. The identified significantly changed metabolites are validated using purchased standards. 
Several significantly differential expressed metabolites are correlated with intestine flora on ECs, KOs and species 
levels. This study demonstrates the strong power of metabolomics in potential noninvasive biomarkers discovery 
from biofluids of patients. Integrated analysis of metabolomics and metagenomics could pave a new way to reveal 
the interactions between host and gut microbiobes.

Results
Metabolic profiles of plasma and urine samples.  Untargeted metabolomics analysis was performed for 
the plasma and urine samples from 59 CHD patients and 43 healthy controls. The participants’ clinical informa-
tion was listed in Supplementary Table S1. Albumin (ALB, p.value =  4.06E-05), alanine aminotransferase (ALT, 
p.value =  0.02), total protein (TP, p.value =  1.10E-14), low-density lipoprotein (LDLC, p.value =  0.01), cholesterol 
(CHOL, p.value =  4.69E-05), high-density lipoprotein (HDLC, p.value =  1.25E-07), apolipoprotein b (APOB, 
p.value =  1.17E-03) and apolipoprotein a (APOA, p.value =  0.01) were found to be significantly different in CHD 
patients from healthy controls by two-tailed student t-test.

The detailed workflow for metabolomics and metagenomics study was illustrated in Fig. 1. A total of 1347 
peaks (93.67% in original total peaks) and 2858 peaks (96.68% in original total peaks) were obtained in plasma 
and urine samples respectively after quality control. The stability and reproducibility of current data was evalu-
ated by the QC samples measured during the whole experimental period. Principle component analysis (PCA) 
scores plot representation of QC samples for plasma and urine samples were shown in Supplementary Fig. S1a 
and Fig. S1b respectively. No drift in the metabolites profiles obtained in positive ion modes, were observed 
demonstrating good stability and reproducibility in our current metabolomics data set.

Metabolic findings in Plasma Samples.  For plasma samples, cloud plot analysis of the total 1347 peaks 
(Fig. 2a) showed that the intensity of 196 peaks (14.55%) were increased in CHD patients’ plasma samples (fold 
change >  1.2) while the intensity of 319 peaks (23.68%) were decreased in CHD patients’ (fold change <  0.8). Both 
PCA scores plot (Supplementary Fig. S2a) and three-dimensional partial least squares – discriminant analysis 
(PLS-DA)11 scores plot (Fig. 2b) of these plasma samples showed that there were significant differences between 
59 CHD patient samples and 43 healthy control samples. CHD patients’ plasma samples were apart from healthy 
control’s samples with PC1, PC2, PC3 as 15.32%, 10.62%, 13.73% respectively. The permutation multivariate 
analysis of variance (PERMANOVA) (Supplementary Fig. S2b) was implemented to test the relation of individ-
ual’s phenotypes with their metabolite characteristics, and we found CHD status had significant impacts on the 
metabolic profiling (p.value <  0.001, 1000 permutations) in positive ion mode.

S-plot analysis was used for selection of potentially interesting metabolites biomarkers12. Using the criteria 
that variable importance in the projection (VIP) was larger than 1, 230 variables were selected (Supplementary 
Fig. S2c) in S-plot. On the condition that adjusted p.value <  0.05, fold change >  1.2 or <  0.8, 414 variables were 
retained in Volcano-plot (Supplementary Fig. S2d). Combing these two results, 202 shared peaks were obtained 
(Supplementary Fig. S2e). And a total of 109 significant peaks from these 202 shared peaks could be annotated 
by aligning the exactly significant peaks’ molecular mass data (m/z) with online database: HMDB and KEGG.
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The intensities of 109 annotated metabolites (20 increased and 89 decreased in CHD patients) were included 
in Supplementary Data S1. The heatmap exhibited the different distribution patterns of metabolites between 
CHD group and control group (Fig. 2c).To further identify potential metabolites from 109 m/z, both HMDB and 
HMDB SERUM databases were searched using accurate mass and mass spectrometric fragmentation patterns13. 
We found 18 matched metabolites from the above database, including 13 Lysophosphatidylcholine (LPCs), 2 
glycerophosphocholines, L-Arginine, N-Acetyl-D-glucosamine 6-phosphate (GlcNAc-6-P) and paraxanthine (as 
listed in Table 1). The intensity of 13 LPCs and 2 glycerophosphocholines were lower in CHD patients (as shown 
in Supplementary Fig. S3a). Besides, the level of L-Arginine and GlcNAc-6-P increased by 2.14 and 8.58 folds in 
CHD patients. In addition, the level of paraxanthine was significantly decreased in CHD patients.

To evaluate the interaction among these 18 metabolites, spearman correlation analysis was performed. 
Several metabolites pairs showed relatively strong positive correlations: 1-Oleoylglycerophosphocholine 
vs LysoPC(20:4(5Z,8Z,11Z,14Z)) (rho  =  0.929, q.value =  0), 1-Palmitoylglyceropho-sphocholine 
vs LysoPC(18:3(9Z,12Z,15Z)) (rho =  0.874, q.value =  0), and 1-Oleoylglycerophosphocholine vs 

Figure 1.  Overview of the study. Non-targeted metabolomics technique is performed to discover potential 
metabolites in plasma and urine samples. Statistical and bioinformatics methods are used to identify 
significantly different metabolites that can discriminate CHD cases from healthy controls. Hierarchical 
cluster analysis (HCA) is performed to identify metabolites clusters contributing to phenotype separation and 
spearman correlation analysis is applied to identify potential biomarkers’ correlations related to abnormal 
functions. Pathway analysis and association analysis of potential biomarkers and gut flora are then applied. 
Finally, potential biomarkers associated gut flora species are discovered. Metagenomics technology is applied 
to further validate the potential metabolites originated from the fecal metagenomics data of CHD patients and 
healthy subjects.
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1-Palmitoylglycerophosphocholine (rho =  0.748, q.value =  0) as shown in Supplementary Fig. S3(b–e), and 
Supplementary Data S2.

To investigate latent relationships of those 109 significantly changed metabolites, spearman correlation anal-
ysis was also performed. As illustrated in Supplementary Fig. S3f, significantly changed plasma metabolites 
with smaller adjusted p.value either in CHD enriched metabolites or in control enriched metabolites had a rela-
tively stronger correlation. Similar to correlation analysis of 13 LPCs and 2 glycerophosphocholine metabolites, 

Figure 2.  Potential biomarkers discovery in plasma and urine metabolomics. (a) Cloud plot of plasma 
metabolites profiles demonstrated significant metabolic changes had happened in CHD patients’ plasma. 
Red and blue circles indicated metabolites with increased (fold change >  1.2, 196 metabolites) and decreased 
intensity (fold change <  0.8, 319 metabolites) in CHD patients’ plasma samples compared with healthy 
controls. The darkness of color is correlated with adjusted p.value (named as q.value): color from pink to dark 
red or cyan to dark blue indicated smaller adjusted p.value. The area of circle is correlated with magnitude of 
intensity change: In the red part, the bigger the circle was, the more enriched metabolites were in CHD patients’ 
plasma samples compared with healthy controls’ plasma samples. While in the blue part, the bigger the circle 
was, the more enriched metabolites were in healthy controls’. (b) Three-dimensional PLS-DA scores plot of 
plasma samples. It depicted obvious difference between CHD patients’ plasma samples and healthy controls’ 
plasma samples with PC1(15.32%), PC2(10.62%), PC3(13.73%). (c) Heat map showed the distribution of 109 
metabolites that were significantly different between CHD patients’ plasma samples and healthy controls’ 
plasma samples. The CHD patients’ and healthy control group’s plasma samples were labeled with red and 
green ribbons and texts respectively. The mass data (m/z) which could be annotated with database such as 
HMDB, KEGG were listed. (d) Cloud plot of urine metabolites profiles also demonstrated significant metabolic 
changes happened in CHD patients’ urine. (e) Three-dimensional PLS-DA scores plot of urine samples with 
PC1(4.34%), PC2(8.25%), PC3(2.99%). (f) Heat map analysis of 160 significantly different metabolites in the 
urine samples of CHD group and healthy control group.
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analysis among those 18 identified metabolites showed that LysoPC(18:0) had strong positive correlations with 
the following metabolites: LysoPC(18:0) vs LysoPC(P-16:0) (rho =  0.861, q.value =  0), LysoPC(20:3(5Z,8Z,11Z)) 
(rho =  0.831, q.value =  0), LysoPC(0:0/18:0) (rho =  0.802, q.value =  0). LysoPC(16:1(9Z)) had strong posi-
tive correlations with LysoPC(14:0) (rho =  0.854, q.value =  0) and LysoPC(18:0) (rho =  0.815, q.value =  0). 
On the other hand, L-Arginine negatively correlated with 1-Palmitoylglycerophosphocholine (rho =  −0.558, 
q.value =  1.07E-08).

Metabolic findings in Urine Samples.  In the urine cloud plot (Fig. 2d), there were 870 peaks (30.44%) 
with increased intensity in CHD patients (fold change >  1.2) while the level of 557 peaks (19.49%) were decreased 
(fold change <  0.8). PCA and PLS-DA models were used and the analysis results were shown in PCA scores plot 
(Supplementary Fig. S4a) and three-dimensional PLS-DA scores plot (PC1(4.34%), PC2(8.25%), PC3(2.99%)) 
(Fig. 2e). These results indicated urine metabolic profiles in the CHD patients were significantly different from 
those in healthy subjects. PERMANOVA analysis (Supplementary Fig. S4b) demonstrated CHD had a significant 
impact on metabolic profile. Furthermore, S-plot analysis (Supplementary Fig. S4c) and Volcano-plot analysis 
(Supplementary Fig. S4d) were applied for potential biomarkers discovery. Using these criteria (VIP >  1, adjusted 
p.value produced by Mann− Whitney− Wilcoxon test after FDR correction <  0.05, fold change >  1.2 or < 0.8), 391 
peaks were found to be significantly changed in CHD group by intersection of 559 peaks and 558 peaks in S-plot 
and Volcano-plot, respectively, as is shown in Veen plot (Supplementary Fig. S4e).

The 391 peaks were aligned and annotated using the HMDB and KEGG database. Among the 160 annotated 
metabolites, the intensities of 96 metabolites were increased while the intensities of the other 64 metabolites were 
decreased in CHD patients (the intensity data is provided in Supplementary Data S3). These 160 metabolites were 
used to perform phenotype analysis for the 102 samples. As shown in the heat map (Fig. 2f), the CHD patients’ 
metabolism was obviously different from healthy controls. By comparing MS/MS spectra and retention time with 
commercially available reference standards, 4 metabolites were verified and the results were listed in Table 2. The 
level of GlcNAc-6-P and mannitol were increased with fold change of 165.99 and 8.45 in CHD patients respec-
tively. Meanwhile, the level of creatine and phytosphingosine were decreased with fold changes of 0.41 and 0.39 
respectively.

To evaluate correlation among 160 annotated urine metabolites, spearman correlation analysis was per-
formed. The results were shown in Supplementary Fig. S4f. Urine metabolites which were significantly changed 
(with smaller adjusted p.value) had relatively stronger correlations compared with plasma significant metabolites. 
In addition, among those 4 validated metabolites, mannitol showed a relatively high positive correlation with 
GlcNAc-6-P (rho =  0.775, q.value =  9.40E-21).

Correlations between plasma and urine significant metabolites.  To illustrate the potential phys-
iological function and build biologic networks of differentially expressed metabolites in plasma and urine14, 
Cytoscape software (3.0.2) was applied to profile the correlations among these significantly changed plasma and 
urine metabolites. As seen in Fig. 3a, these 109 annotated significantly changed plasma metabolites and 160 

m/z RT(min)* FC(CHD/control)†
Adjusted 
p.value‡ VIP§ Adduction Formula Metabolites Pathways

175.11 1.83 2.14 1.36E-11 1.61 H+ C6H14N4O2 L-Arginine|| Arginine and proline metabolism

181.07 9.05 0.43 2.39E-02 1.34 H+ C7H8N4O2 Paraxanthine|| Caffeine metabolism

496.33 13.19 0.67 2.25E-11 1.36 NAN C24H51NO7P 1-Palmitoylglycerophosphocholine|| Unknown

522.35 13.33 0.72 1.02E-07 1.15 NAN C26H53NO7P 1-Oleoylglycerophosphocholine|| Unknown

324.04 9.33 8.58 2.08E-12 2.16 Na+ C8H16NO9P N-Acetyl-D-glucosamine 6-phosphate||,¶ Amino sugar and nucleotide sugar 
metabolism

468.30 12.69 0.48 1.30E-10 1.8 H+ C22H46NO7P LysoPC(14:0)|| Glycerophospholipid metabolism

480.34 13.48 0.65 4.12E-10 1.4 H+ C24H50NO6P LysoPC(P-16:0)|| Glycerophospholipid metabolism

482.32 12.92 0.57 1.37E-08 1.58 H+ C23H48NO7P LysoPC(15:0)|| Glycerophospholipid metabolism

494.32 12.82 0.54 6.12E-12 1.74 H+ C24H48NO7P LysoPC(16:1(9Z))|| Glycerophospholipid metabolism

516.31 13.21 0.67 5.12E-07 1.19 H+ C26H46NO7P LysoPC(18:4(6Z,9Z,12Z,15Z))|| Glycerophospholipid metabolism

518.32 13.19 0.78 7.15E-11 1.04 H+ C26H48NO7P LysoPC(18:3(9Z,12Z,15Z))|| Glycerophospholipid metabolism

518.32 12.71 0.57 1.75E-06 1.43 H+ C26H48NO7P LysoPC(18:3(6Z,9Z,12Z))|| Glycerophospholipid metabolism

524.36 14.27 0.54 2.19E-08 1.65 H+ C26H54NO7P LysoPC(18:0)|| Glycerophospholipid metabolism

524.36 13.69 0.61 2.25E-11 1.64 H+ C26H54NO7P LysoPC(0:0/18:0)|| Glycerophospholipid metabolism

544.33 13.34 0.76 2.18E-07 1.02 H+ C28H50NO7P LysoPC(20:4(5Z,8Z,11Z,14Z))|| Glycerophospholipid metabolism

546.35 14.22 0.5 1.11E-09 1.81 H+ C28H52NO7P LysoPC(20:3(5Z,8Z,11Z))|| Glycerophospholipid metabolism

570.35 13.05 0.67 8.07E-05 1.14 H+ C30H52NO7P LysoPC(22:5(4Z,7Z,10Z,13Z,16Z))|| Glycerophospholipid metabolism

590.31 12.86 0.6 9.89E-05 1.31 Na+ C30H50NO7P LysoPC(22:6(4Z,7Z,10Z,13Z,16Z,19Z))|| Glycerophospholipid metabolism

Table 1.   Potential plasma biomarkers for discriminating CHD patients from control subjects. *Retention 
time. †Fold change. ‡Adjusted p.value calculated by the two-tailed Wilcoxon rank-sum tests after false 
discovery rate correction. §VIP (Variable Importance for Projection), one indicator reflecting the capability of 
the variables to explain Y. ||Metabolites matched with the online database. ¶Metabolites which have matched 
characteristic peaks but mismatched retention time with commercial available reference standards.
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annotated significantly changed urine metabolites were involved in different pathways and can be divided into 8 
categories: carbohydrate metabolism, lipids metabolism, amino acids metabolism, bile acids metabolism, purine/
pyrimidine metabolism, vitamins metabolism, microbial related metabolism and others. Lipids metabolism 
showed significantly negatively correlations with microbial related metabolism while other 6 metabolism catego-
ries were in strong positive correlation with microbial related metabolism, which indicated that microbial may 
play an important role in the metabolism in CHD.

m/z RT(min)* FC(CHD/control)†
Adjusted 
p.value‡ VIP§ Adduction Formula Metabolites Pathways

132.07 1.9 0.41 2.36E-02 1.41 H+ C4H9N3O2 Creatine# Arginine and proline 
metabolism

205.06 1.79 8.45 9.69E-12 2.87 Na+ C6H14O6 Mannitol# Fructose and mannose 
metabolism

318.29 11.37 0.39 1.65E-05 2.51 H+ C18H39NO3 Phytosphingosine# Sphingolipid metabolism

324.04 10.25 165.99 4.28E-14 2.3 Na+ C8H16NO9P
N-Acetyl-D-
glucosamine 

6-phosphate¶,#

Amino sugar and 
nucleotide sugar 
metabolism

Table 2.   Potential urine biomarkers for discriminating CHD patients from control subjects. *Retention 
time. †Fold change. ‡Adjusted p.value calculated by the two-tailed Wilcoxon rank-sum tests after false 
discovery rate correction. §VIP (Variable Importance for Projection), one indicator reflecting the capability of 
the variables to explain Y. #Metabolites matched with commercial available reference standards. ¶Metabolites 
which have matched characteristic peaks but mismatched retention time with commercial available reference 
standards.

Figure 3.  Correlation analysis of all significant metabolites or seven common metabolites in plasma and 
urine. (a) Correlation profile of 109 plasma significant metabolites and 160 urine significant metabolites among 
CHD samples and control subjects were performed by spearman correlation analysis with Cytoscape software. 
All these annotated metabolites were distributed by their engaged pathways and metabolisms: lipids metabolism 
showed significantly negatively correlations with microbial related metabolism. Ellipses were plasma 
metabolites, round rectangles were urine metabolites. Yellow lines : 0.9 >  rho ≥ 0.5, Green lines : rho ≤  −0.5. 
(b) Veen diagram of all significant differential metabolites in plasma and urine showed there are 7 common 
significantly changed metabolites. (c) Spearman correlation analysis of 7 metabolites in plasma. (d) Spearman 
correlation analysis of 7 metabolites in urine.
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Seven significantly differential expressed metabolites (Supplementary Table S2), including GlcNAc-6-P, were 
found both in plasma and urine on the condition that retention time error was less than 1 min and m/z error 
was less than 0.01 Dalton with MS/MS comparison. A Veen diagram exhibiting the common metabolites among 
plasma and urine significantly changed metabolites is provided in Fig. 3b. Two metabolites (m/z: 185.04, 202.04) 
were decreased in CHD patients while other five metabolites (m/z: 125.01, 309.05, 310.04, 311.05, 324.04) were 
increased in CHD patients.

To evaluate the correlation among 7 common metabolites, spearman correlation analysis was implemented 
using the criteria that the coefficient was larger than 0.90 (Supplementary Data S4). First, correlation among 
plasma metabolites was shown in Fig. 3c. m/z 311.05 showed strong correlation with m/z 309.05 (rho =  0.929, 
q.value =  9.31E-45), m/z 310.04 (rho =  0.911, q.value =  5.70E-40), m/z 324.04 (rho =  0.900, q.value =  1.53E-37);  
m/z 309.05 also strongly correlated with m/z 310.04 (rho =  0.929, q.value =  9.31E-45), as shown in Fig. 3c. 
Second, correlations among urine metabolites were depicted in Fig. 3d, GlcNAc-6-P (m/z 324.04) was strongly 
correlated with m/z 310.04 (rho =  0.933, q.value =  1.26E-45), m/z 311.05 (rho =  0.910, q.value =  1.17E-39), m/z 
125.01 (rho =  0.903, q.value =  3.43E-38), while m/z 125.01 also showed strong correlation with urine metabolite 
(m/z 310.04 (rho =  0.918, q.value =  1.28E-41). In addition, correlation of these metabolites in plasma and urine 
was also evaluated. The results showed that plasma metabolite have strong positive correlations with the same 
metabolites in urine (Supplementary Table S3). Among them, validated GlcNAc-6-P (324.04) showed very strong 
positive correlation with itself (rho =  0.747, q.value =  5.60E-19).

Clinical relevance of plasma and urine potential metabolites.  Receiver operating characteristic analysis.  
To evaluate the potential of the identified metabolites(18 plasma and 4 urine ones) as biomarkers, receiver operat-
ing characteristic analysis (ROC) was applied to 176 additional plasma samples (98 controls vs78 CHD patients) 
and 395 additional urine samples (173 controls vs 222 CHD patients).

In plasma validation datasets, 6 LPCs and 1 glycerophosphocholine metabolites showed area under curve 
(AUC) larger than 0.80 and were significantly different in CHD patients (Table 3). As shown in Fig. 4a, The levels 
of LysoPC(18:3(6Z,9Z,12Z)), LysoPC(P-16:0), LysoPC(15:0), 1-Palmitoylglycerophosphocholine, LysoPC(14:0), 
LysoPC(16:1(9Z)), LysoPC(0:0/18:0) were decreased in CHD patients with fold change at 0.26, 0.58, 0.51, 0.65, 
0.49, 0.62, 0.42 respectively and AUC of 0.91, 0.88, 0.88, 0.88, 0.84, 0.83, 0.83 respectively. On the other hand, other 
9 plasma potential biomarkers exhibited the same enrichment direction except that LysoPC(20:3(5Z,8Z,11Z)) 
became normal and GlcNAc-6-P even became undetected (data shown in Table 3, the training datasets ROC 
shown in Supplementary Fig. S5 and the validation datasets ROC shown in Supplementary Fig. S6a–k). These 
results suggested that LPCs could become biomarkers and targets for CHD diagnosis and therapies in the future.

In urine validation datasets, GlcNAc-6-P and mannitol exhibited AUC of 0.88, 0.81 and fold change at 36.91 
and 2.62 respectively (as shown in Fig. 4a and Table 4). However, creatine and phytosphingosine did not show 
good diagnostic ability in both training and validation datasets (Supplementary Fig. S6l, m). The ROC of training 
datasets was shown in Supplementary Fig. S7.

Among these 7 choline metabolites and 2 urine metabolites with AUC larger than 0.80, GlcNAc-6-P appeared 
the most discriminative biomarker which showed relatively good diagnostic ability with false negative (FN) of 
0.051, 0.153 and false positive (FP) of 0.047, 0.208 in the training datasets and validation datasets respectively. 
LysoPC(18:3(6Z,9Z,12Z)), LysoPC(P-16:0), LysoPC(15:0), 1-Palmitoylglycerophosphocholine, LysoPC(14:0), 

Name

Plasma training datasets Plasma validation datasets

FC(CHD/control)‡ p.value† AUC∗ FC(CHD/control)‡ p.value† AUC∗

LysoPC(18:3(6Z,9Z,12Z)) 0.57 2.72E-07 0.79 0.26 6.72E-09 0.91

LysoPC(P-16:0) 0.65 2.35E-11 0.88 0.58 2.57E-21 0.88

LysoPC(15:0) 0.57 6.56E-11 0.85 0.51 6.94E-19 0.88

1-Palmitoylglycerophosphocholine 0.67 4.56E-14 0.91 0.65 1.45E-20 0.88

LysoPC(14:0) 0.48 2.86E-11 0.89 0.49 5.94E-15 0.84

LysoPC(16:1(9Z)) 0.54 7.78E-14 0.92 0.62 5.57E-16 0.83

LysoPC(0:0/18:0) 0.61 7.98E-15 0.91 0.42 6.05E-13 0.83

LysoPC(18:4(6Z,9Z,12Z,15Z)) 0.67 3.81E-08 0.81 0.55 1.65E-12 0.79

LysoPC(22:6(4Z,7Z,10Z,13Z,16Z,19Z)) 0.6 1.30E-05 0.74 0.69 7.34E-10 0.76

L-Arginine 2.14 1.52E-11 0.91 1.64 7.63E-10 0.75

LysoPC(22:5(4Z,7Z,10Z,13Z,16Z)) 0.67 4.70E-06 0.74 0.73 4.00E-06 0.73

LysoPC(18:3(9Z,12Z,15Z)) 0.78 9.90E-14 0.9 0.77 5.42E-06 0.71

LysoPC(18:0) 0.54 2.98E-10 0.84 0.83 1.54E-06 0.7

1-Oleoylglycerophosphocholine 0.72 5.50E-09 0.83 0.88 1.24E-03 0.64

Paraxanthine 0.43 7.33E-03 0.62 0.33 4.41E-04 0.63

LysoPC(20:4(5Z,8Z,11Z,14Z)) 0.76 1.38E-08 0.82 0.85 1.39E-03 0.63

LysoPC(20:3(5Z,8Z,11Z)) 0.5 5.76E-11 0.87 1.01 8.67E-01 0.5

N-Acetyl-D-glucosamine 6-phosphate 8.58 7.55E-10 0.93 - - -

Table 3.   AUC results of plasma training and validation datasets. *AUC calculated by online tool – ROCCET 
(http://www.roccet.ca). †p.value calculated by two-tailed T-test. ‡Fold change.

http://www.roccet.ca
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Figure 4.  Receiver operating characteristic (ROC) analysis of potential biomarkers and numeric 
correlation between clinical phenotype and identified significant metabolites. (a) ROC analysis and 
boxplots of 7 identified plasma potential biomarkers and 2 identified urine potential biomarkers with AUC 
larger than 0.80 in validation datasets. (b) Spearman correlation analysis was performed between 18 plasma 
identified potential biomarkers and clinical indicators. Red, positive correlation; blue, negative correlation. +  , 
adjusted p.value <  0.05; *, adjusted p.value <  0.01. Red panel indicated increased metabolites in CHD patients 
while green panel suggested decreased metabolites in CHD patients. Paraxanthine did not show significant 
correlations with any of the 15 numerical phenotypes (adjusted p.value >  0.05, Spearman’s), creatine kinase 
MB (CKMB), aspartate transaminase (AST) and creatinine (CREA) did not show significant correlations 
with any of 18 plasma identified potential biomarkers, both of which were not shown. albumin (ALB), alanine 
aminotransferase (ALT), total protein (TP), hydroxybutyrate dehydrogenase (HBDH), triglyceride (TRIG), low-
density lipoprotein (LDLC), cholesterol (CHOL), high-density lipoprotein (HDLC), apolipoprotein (b) (APOB), 
apolipoprotein (a) (APOA), lipoprotein (a) (LPA). (c) Spearman correlation analysis was performed between 
4 urine identified potential biomarkers and clinical indicators. CKMB, ALB, ALT, TRIG and LPA did not show 
significant correlations with any of 4 urine identified potential biomarkers were not shown.
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LysoPC(16:1(9Z)), LysoPC(0:0/18:0) and mannitol exhibited diagnostic ability with FN of 0.271, 0.169, 0.136, 
0.068, 0.119, 0.119, 0.085, 0.153 and FP of 0.233, 0.163, 0.256, 0.233, 0.209, 0.140, 0.279, 0.093 in the training 
datasets; Meanwhile, in the validation datasets, their FN were 0.013, 0, 0, 0.013, 0.013, 0.013, 0, 0.135 and FP were 
0.582, 0.755, 0.673, 0.694, 0.612, 0.684, 0.714, 0.416 respectively.

Association of potential metabolic biomarkers with clinical phenotypes.  To access the effects of patients’ covari-
ates (such as age and clinical biochemical factors) on metabolic profiles, PERMANOVA analysis was performed. 
Albumin (ALB, permuted p.value =  8.40E-03), alanine aminotransferase (ALT, permuted p.value =  0.02), total 
protein (TP, permuted p.value =  1.00E-04), low-density lipoprotein (LDLC, permuted p.value =  0.01), cholesterol 
(CHOL, permuted p.value =  1.00E-04), high-density lipoprotein (HDLC, permuted p.value =  1.00E-04), apoli-
poprotein b (APOB, permuted p.value =  5.00E-04) and apolipoprotein a (APOA, permuted p.value =  8.10E-03) 
were found to be significantly different in CHD patients (Supplementary Table S1). Together with the results from 
clinical phenotypes student t-test, PERMANOVA analysis again proved that these clinical phenotypes showed 
significant effects on the plasma and urine metabolic profile in CHD patients differing from healthy controls.

Besides, spearman correlation analysis was performed among 18 potential plasma biomarkers (Fig. 4b) and 
4 potential urine biomarkers (Fig. 4c) with individual phenotypes. CHOL, HDLC and TP showed significantly 
positive correlation with plasma LPCs (Supplementary Table S4).

LysoPC (18:0) was correlated with CHOL (rho =  0.518, q.value =  7.89E-07), HDLC (rho =  0.548, 
q.value =  1.29E-07) and TP (rho =  0.573, q.value =  5.16E-08). LysoPC(P-16:0) was positively correlated with 
HDLC (rho =  0.561, q.value =  7.39E-08). This result showed that LPCs metabolism is significantly abnormal in 
CHD patients, and thus we speculated that it could be beneficial to reduce CHD occurrence by properly increas-
ing intake of these extra LPCs which were significantly decreased in CHD patients. Meanwhile, the two potential 
urine biomarkers, GlcNAc-6-P and mannitol, exhibited strong negative correlations with CHOL, HDLC, TP and 
APOB (q.value <  0.01).These results confirmed GlcNAc-6-P worked as a negative effector and may influence the 
normal metabolic processes in our body, and could be used as a good biomarker for CHD. The level of GlcNAc-
6-P level in urine should be monitored closely for tracking CHD status.

Gut flora associated potential metabolite biomarkers.  Human body is a complex biosystem with 
numerous co-existing microbial species. Previous study suggests that around 30% of metabolites detected in 
human body originate from microbiota15. In the amino sugar and nucleotide sugar metabolism pathway, it shows 
that GlcNAc-6-P could be produced by human body enzymes and gut bacterial enzymes. The facts that no related 
homo sapiens enzymes are found in the fructose and mannose metabolism so far indicate mannitol might belong 
to microbial metabolites family, and current reports suggest it could be produced by several microorganisms such 
as lactic acid bacteria16 and pseudomonas putida17. Pathway analysis for plasma and urine metabolites indicates 
that some potential biomarkers like GlcNAc-6-P and mannitol might be of microbial origin. To discover gut flora 
species significantly associated with the identified potential biomarkers, integrated analysis of metabolomics and 
metagenomics were performed for the patient and control groups, as shown in Fig. 5, and the annotated 512 
mOTU species profile was provided in the Data S5 and the analysis results of the differences among these 512 
mOTU species in 102 samples were included in the Data S6.

Analysis of metabolites pathway suggested that the following 4 metabolic pathways were significantly changed 
in CHD patients compared with healthy controls: amino sugar and nucleotide sugar metabolism, arginine and 
proline metabolism, glycerophospholipid metabolism, fructose and mannose metabolism. Integration of meta-
bolic and metagenomic pathways showed that gut-related microbial metabolites such as GlcNAc-6-P, mannitol, 
creatine, and LPCs, were involved in CHD pathways.

The corresponding gut microbial EC affecting the productions and functions of those significantly 
changed potential biomarkers were analyzed. The significantly changed ECs associated with GlcNAc-6-P were 
EC(2.7.1.69), EC(2.7.1.59), EC(3.2.1.14), EC(5.1.3.9), EC(2.7.1.60), EC(3.5.1.25), EC(5.4.2.10), EC(2.3.1.157), 
EC(2.7.7.23) and EC(4.1.3.3). Meanwhile, EC(3.5.2.10) was associated with creatine ; EC(1.1.1.14), EC(2.7.1.69) 
and EC(3.2.1.80) was associated with mannitol; EC(3.5.3.6), EC(2.1.3.3), and EC(2.1.3.9) was associated with 
arginine; EC(3.1.1.5), EC(3.1.1.32) was correlated with LPCs.

These significantly changed ECs were then annotated with 65 KOs. And spearman correlation analysis was 
applied to these 65 KOs and the total 22 identified potential plasma and urine metabolites biomarkers (18 plasma 
ones and 4 urine ones listed in Tables 1 and 2). The results showed that 16 CHD enriched KOs were significantly 
correlated with GlcNAc-6-P (both in plasma and urine) and mannitol (in urine) (Supplementary Table S5).

Name

Urine training datasets Urine validation datasets

FC(CHD/control)‡ p.value† AUC∗ FC(CHD/control)‡ p.value† AUC∗

N-Acetyl-D-glucosamine 
6-phosphate 165.99 4.44E-09 0.96 36.91 8.29E-16 0.88

Mannitol 8.45 2.11E-11 0.92 2.62 3.99E-08 0.81

Creatine 0.41 2.85E-02 0.66 0.94 7.59E-01 0.57

Phytosphingosine 0.39 1.55E-05 0.78 1.05 2.31E-01 0.55

Table 4.   AUC results of urine training and validation datasets. *AUC calculated by online tool – ROCCET 
(http://www.roccet.ca). †p.value calculated by two-tailed T-test. ‡Fold change.

http://www.roccet.ca
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Figure 5.  A workflow for the discovery of interactions between metabolites and gut microbiota. Pathways 
analysis and association analysis among plasma, urine potential biomarkers and gut microbiota were 
implemented in the workflow. First, plasma and urine potential biomarkers could be obtained in the previous 
metabolomics studies, the information of gut flora ECs, KOs and species could be attained in the metagenomics 
study. They could be applied for the metabolic and metagenomics pathways constructions. Second, we could 
find the metabolites corresponded ECs by analysing the metabolic and metagenomics pathways and get the 
corresponded KOs by tracing the ECs data, further we could obtain the corresponded species by tracing 
the KOs data. Third, association analysis would be performed between KOs and metabolites, species and 
metabolites. Significant correlations would be obtained on the condition of correlation q.value <  0.05. Lastly, 
in these significant correlations, we further strictly screened these correlations on the conditions that the 
correlated KOs and species should be significant in the metagenomics data (p.value <  0.05), and the correlated 
species should contain these significantly correlated KOs. By integrating these metabolomics and metagenomics 
data, Clostridium sp. HGF2 was found to significantly correlate with GlcNAc-6-P. Clostridium sp. HGF2, 
Streptococcus sp. M143, Streptococcus sp. M334 were found to significantly associate with mannitol.
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To further identify the microbial species correlated with the 22 significantly changed metabolites, spearman 
correlation analysis of those 22 biomarkers with 512 annotated species was also implemented (Table 5). One gut 
flora species – Clostridium sp. HGF2 (p.value =  9.86E-05, q.value =  8.65E-03), was found to positively significantly 
correlate with GlcNAc-6-P in amino sugar and nucleotide sugar metabolism and transport system pathways. 
Meanwhile, 3 gut flora species - Streptococcus sp. M334 (p.value =  3.13E-02, q.value =  2.39E-01), Streptococcus sp. 
M143 (p.value =  3.49E-02, q.value =  2.40E-01), Clostridium sp. HGF2 (p.value =  9.86E-05, q.value =  8.65E-03) 
were positively correlated with mannitol in fructose and mannose metabolism and transport system pathways. 
These three gut flora species were CHD enriched gut microbiota. Interestingly, Clostridium sp. HGF2 positively 
associated with both GlcNAc-6-P and mannitol.

In summary, by combining the association results of KOs and flora species with those 22 identified potential 
biomarkers, we found that Streptococcus sp. M334 and M143, Clostridium sp. HGF2 and their associated metabo-
lites GlcNAc-6-P and mannitol were involved in the development of coronary heart disease. This study provides 
the first direct evidence that microbial metabolites are involved in the CHD disease. Besides, the corresponding 
flora species regulating the microbial metabolites in plasma and urine of CHD patients are identified.

Discussion
In this study, MS-based metabolomics approach was applied to study the metabolic phenotype variations between 
CHD patients (n =  53) and healthy controls (n =  49) with complementary metagenomics technology for bacte-
rial metabolites associated intestinal flora discovery. Among these 59 CHD patients, 32 patients had undergone 
Percutaneous Coronary Intervention (PCI) before but no difference had been observed between these 32 postop-
erative patients group and those 27 patients group with no surgery (as shown in PCA scores plots in Fig. S8), sug-
gest the PCI did not influence the whole metabolic pattern in patients. However, some conditions were not taken 
into considerations in our study, such as age, gender, BMI, pre-clinical treatments (medications for hypertension, 
nonsteroidal anti-inflammatory drug (NSAID) use, prescribed lipid-lowering drugs etc), cardiovascular disease 
history (heart disease or stroke), physical activity, special diet, dietary supplement use, total energy intake per day 
(kcal/day), cigarette smoking, sleeping, education, overweight, obesity, family genetics.

In plasma, 18 significantly changed metabolites (13 LPCs, 2 glycerophosphocholines, L-Arginine, GlcNAc-
6-P and paraxanthine) were identified as potential biomarkers. LPCs are the major components of ox-LDL which 
show dual functions in the cardiovascular disease. It could accelerate the formation and development of ather-
osclerosis by promoting cell proliferation, enhancing lymphocyte adhesion, differentiation and activation18–20. 
GlcNAc-6-P is an endogenous metabolite which could be synthesized and metabolized by amino sugar and 
nucleotide sugar metabolism21. GlcNAc-6-P could be converted into glucosamine-6-P by N-acetylglucosamine-
6-phosphate deacetylase (NagA) enzyme which plays a central role in cell wall synthesis and glycolysis, and its 
intermediate metabolite N-acetylglucosamine-6-P (GlcN-6P) would be metabolized to fructose-6-P (Fru-6P) 
by glucosamine-6-phosphate deaminase for futher glycolysis or gluconeogenesis. Paraxanthine is a preferential 
metabolite of caffeine in caffeine metabolism in animals, a psychoactive central nervous system (CNS) stimu-
lant and competitive nonselective phosphodiesterase inhibitor22. In urine, 4 significantly changed metabolites 
(GlcNAc-6-P, mannitol, creatine, phytosphingosine) were identified as potential biomarkers in CHD patients. 
Changed mannitol in human body could induce water and electrolyte disorders in CHD patients. High level of 
mannitol in the human body could rapidly increase blood volume, cause diluted hyponatremia or accidentally 
hyperkalemia and even lead to heart failure. Creatine was also found to be decreased in CHD patient’s urine sam-
ple, a nitrogenous organic acid naturally produced by the human body from amino acids. In biosystem, creatine 
can elevate creatine phosphate levels and improve maintenance of ATP content during tissue oxygen depletion 
period, and it also has the capacity to scavenge free radicals and reduce oxidative stress23. Phytosphingosine 
is a phospholipid and a major component of mammalian tissue biological membranes. The synthesis of phy-
tosphingosine can be performed by human body and intestinal microbiota in the sphingosine metabolism. 
Phytosphingosine could induce caspase-independent apoptosis in human T-cell lymphoma and non-small cell 
lung cancer cells24,25. Among these 22 metabolites evaluated by ROC, GlcNAc-6-P appears the most discrimina-
tive biomarker which shows relatively good diagnostic ability with FN of 0.153 and FP of 0.208. Correlation anal-
ysis between potential biomarkers and biochemical clinical data suggest plasma LPCs are significantly positive 
correlated with cholesterol (CHOL), high-density lipoprotein (HDLC), and total protein (TP), while GlcNAc-
6-P and L-arginine exhibit negative correlations with CHOL, HDLC, and TP. This suggests the metabolites may 
potentially influence the normal metabolic pathways in our body.

As estimated, over 30% of metabolites in human body originate from intestinal microbes and may contribute 
to host diseases15. In this study, metabolomics and metagenomics techniques were integrated and evidence that 

Species Species-p.value* Species-q.value† Species-enrich Metabolites Coefficient p.value‡ q.value†

Clostridium sp. HGF2 9.86E-05 8.65E-03 1 N-Acetyl-D-glucosamine-6-phosphate(plasma) 0.31 1.31E-03 3.57E-02

Clostridium sp. HGF2 9.86E-05 8.65E-03 1 N-Acetyl-D-glucosamine-6-phosphate(urine) 0.27 6.24E-03 4.99E-02

Clostridium sp. HGF2 9.86E-05 8.65E-03 1 Mannitol(urine) 0.26 8.52E-03 4.68E-02

Streptococcus sp. M334 3.13E-02 2.39E-01 1 Mannitol(urine) 0.27 5.94E-03 3.95E-02

Streptococcus sp. M143 3.49E-02 2.40E-01 1 Mannitol(urine) 0.2 4.26E-02 4.72E-02

Table 5.   Spearman correlation analysis of 512 species and identified biomarkers. *Species-p.value calculated 
by the two-tailed Wilcoxon rank-sum tests. †Species-q.value and q.value calculated by false discovery rate 
correction. ‡p.value calculated by spearman correlation analysis.
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microbial species and their associated metabolites were involved in CHD diseases were uncovered for the first 
time. Firstly, mannitol was identified as a potential urine biomarker in CHD patients. The fact that no related 
homo sapiens enzymes are found in the fructose and mannose metabolism so far indicates mannitol should 
belong to microbial metabolites family. Mannitol was previously reported to be produced by lactic acid bacte-
ria16 and pseudomonas putida17. In current study, spearman correlation analysis of, KOs, species and mannitol 
indicates that three gut flora species, Clostridium sp. HGF2, Streptococcus sp. M334, and Streptococcus sp. M143, 
play important roles in metabolism of mannitol. This was further validated by mannose-specific IIB component 
of PTS system (EC:2.7.1.69) was found to be the common enzyme in all three CHD enriched gut microbiota 
species. Secondly, GlcNAc-6-P, an endogenous and microbial metabolites, was identified in both plasma and 
urine samples of CHD patients. GlcNAc-6-P participates in sugar metabolism with dual functions in regulating 
host cardiovascular activity. In our study, the metabolism of GlcNAc-6-P was found to be significantly correlated 
with Clostridium sp. HGF2 by NagA (EC:3.5.1.25) and N-acylglucosamine-6-phosphate 2-epimerase (EC:5.1.3.9). 
The discovery of these two microbial metabolites (Mannitol and GlcNAc-6-P) and their correlated microbiota 
in CHD patients has two important implications. First, it confirmed that microbial metabolites can be used as 
potential biomarkers for CHD diagnosis along with other traditional metabolites. For instance, GlcNAc-6-P in 
urine exhibited relatively strong CHD diagnostic ability with AUC of 0.88 and showed FN of 0.153 and FP of 0.208 
in the ROC analysis of validation datasets. Second, microbial metabolites reflect the abnormalities of the host 
intestine microbiota, so new strategy for CHD treatments can be developed by adjusting patients’ gut intestine 
ecosystem. In the future, microbial species and their associated metabolites could be used as new indexes and 
targets for diagnosis and treatment of CHD.

In summary, this work had demonstrated significantly altered metabolisms and metabolites, especially gut 
microbiota related metabolites and metabolites significantly positively associated gut flora species, in the CHD 
patients compared with healthy controls through MS-based metabolomics and metagenomics technology, pro-
viding targets for CHD dynamic detection and monitoring. The findings in current study could be further vali-
dated and investigated in several ways. First, a larger number of plasma, urine and fecal samples are needed for 
population-based validation; Second, semi-quantitative method was used for LC-MS data collection analysis in 
current paper. For future clinical applications, absolute quantitative analysis is recommended for stable and reli-
able biomarkers detection and monitoring. Lastly, two metabolites GlcNAc-6-P and mannitol were found to be 
significantly positively associated with gut microbiota such as Clostridium sp. HGF2, Streptococcus sp. M334 and 
Streptococcus sp. M143. The underlying mechanisms regulating correlation between gut microbiota and metabo-
lites like GlcNAc-6-P and mannitol in CHD incidents could be further investigated.

Materials and Methods
Clinical samples.  All patients with CHD diagnosed by coronary angiography techniques were recruited 
from the Guangdong General Hospital. All control people enrolled in our study were free of clinically evident 
coronary artery disease (CAD) at medical examination during the same period.

Paired plasma, urine and fecal samples of CHD patients (n =  59) and healthy controls (n =  43) were obtained 
from the Guangdong General Hospital on the same day. Coronary angiography techniques were performed to 
diagnose CHD patients recruited in this study. The healthy controls had underwent physical examination in the 
same hospital. Patients and controls did not receive probiotics or antibiotics within one month before sample 
collection. Among these 59 CHD patients, 32 patients had undergone Percutaneous Coronary Intervention (PCI) 
before. The participants’ clinical information was provided in Supplementary Table S1. Besides, 176 additional 
plasma samples (98 controls vs 78 CHD patients) and 395 additional urine samples (173 controls vs 222 CHD 
patients) were included for potential biomarkers diagnostic capability analysis, while another 314 fecal samples 
(155 controls vs 159 CHD patients) were included for gene catalogue construction.

The details of samples collections, samples preparations for HPLC-MS experiments, infrastructure parameters 
of HPLC-MS experiments, DNA extraction from fecal samples, DNA library construction and metagenomics 
sequencing of fecal samples, and experiments related materials could be found as Supplementary Materials and 
Methods. All these protocols were reviewed and approved by the Institutional Review Board of BGI-Shenzhen. 
Before collecting samples, patients were informed and written consent were obtained from them. Plasma, urine 
and fecal sampling and studies were carried out according to the approved protocols and guidelines.

HPLC-MS data analysis.  The acquired MS data pretreatments including peak picking, peak grouping, 
retention time correction, second peak grouping, and annotation of isotopes and adducts was performed using 
the same method as our previously published work26. LC− MS raw data files were converted into mzXML format 
and then processed by the XCMS and CAMERA toolbox implemented with the R software (v3.1.1). Each ion was 
identified by combining retention time (RT) and m/z data. Intensities of each peaks were recorded and a three 
dimensional matrix containing arbitrarily assigned peak indices (retention time-m/z pairs), sample names (obser-
vations) and ion intensity information (variables) was generated.

The obtained matrix was further reduced by removing peaks with more than 80% missing values (ion inten-
sity =  0) and those with isotope ions from each groups in order to obtain consistent results. As a quality assurance 
strategy in metabolic profiling, all retained peaks were normalized to the QC sample using Robust Loess Signal 
Correction (R-LSC) based on the periodic analysis of a standard biological quality control sample (QC sample) 
together with the real plasma and urine samples to ensure that the data are of high quality within an analytical 
run27. The relative standard deviation (RSD) values of metabolites in the QC samples was set at a threshold of 30% 
which was accepted as a standard in the assessment of repeatability in metabolomics data sets.

The nonparametric univariate method (Mann− Whitney− Wilcoxon test) was performed to measure and dis-
cover the significantly changed metabolites among the CHD patients and control subjects and then corrected 
by false discovery rate (FDR) to ensure that metabolite peaks were reproducibly detected. And multivariate 
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statistical analysis (PCA, PLS-DA) were performed to discriminate CHD samples from control subjects. A num-
ber of metabolites responsible for the difference in the metabolic profile scan of CHD patients and control sub-
jects can be obtained on the basis of variable importance in the projection (VIP) threshold of 1 from the 10-fold 
cross-validated PLS-DA model. The PLS-DA model was validated with permutation multivariate analysis of 
variance (PERMANOVA), a permutation-based version of the multivariate analysis of variance, which was per-
formed in R using the “vegan” package to test the statistical significant differences between metabolic profiles 
and individuals’ phenotypes28. Three dimensional PLS-DA analysis was also implemented to show the difference 
between CHD samples and control subjects. By combining the univariate and multivariate statistical analysis, 
significantly changed metabolites distinguishing CHD patients from control subjects were acquired on the con-
dition of p.value <  0.05, q.value <  0.05, fold change <  0.8 or >  1.2, VIP >  1. Phenotype analysis was performed 
to cluster those significantly distributed metabolites and heatmap was used to depict the relatively disturbed 
and unbalanced metabolism state among CHD samples and control subjects. Spearman correlation analysis was 
implemented among those significantly changed plasma metabolites, urine metabolites and clinical data of CHD 
patients and control subjects and correlations of metabolites was profiled with Cytoscape software 3.0.2. In addi-
tion, receiver operating characteristic (ROC) analysis was used to evaluate diagnostic capability of identified 
potential biomarkers with the online tool - ROCCET (http://www.roccet.ca)29.

Metabolites annotations and identifications.  The online HMDB database (http://www.hmdb.ca)30–32 
and KEGG database (www.genome.jp/kegg/)33,34 were used to annotate the metabolites by matching the exact 
molecular mass data (m/z) of samples with those from database. If a mass difference between observed and the 
database value was less than 10 ppm, the metabolite would be annotated and the molecular formula of metabo-
lites would further be identified and validated by the isotopic distribution measurements. Reference standards 
were purchased and used to validate and confirm those significantly changed metabolites by comparing their MS/
MS spectra and retention time.

Gene catalogue construction.  For the sequencing reads of the 314 samples, the employed parameters were 
the same as previous publication35, de novo assembly and gene prediction was performed using SOAPdenovo 
v1.0636 with specific parameter ‘-M 3’ for metagenomics data and GeneMark v2.737 softwares, respectively. All 
predicted genes were aligned pairwise using BLAT38. Redundant genes were removed using BLAT with the cutoff 
of 90% overlap and 95% identity (no gaps allowed), resulting in a non-redundant gene catalogue comprising of 
4,537,046 genes (4.5 M gene catalogue).

Taxonomic assignment of genes.  Taxonomic assignment of the predicted genes was performed using 
an in-house pipeline which was described in previous publication35, with 80% overlap and 65% identity top 10% 
scores (BLASTN39 v2.2.24, -e 0.01 -b 100 -K 1 -F T -m 8). The cutoffs were 65% identity for assignment to phylum, 
85% identity to genus, 95% identity to species and ≥  50% consensus for the taxon under question, if multiple hits 
remained.

Functional annotation.  Putative amino acid sequences, which translated from our gene catalogue, were 
aligned against the proteins/domains in KEGG databases (release 59.0) using BLASTP39 (e-value ≤  1e-5). Each 
protein was assigned to the KEGG orthologue group (KO) by the highest scoring annotated hit(s) containing at 
least one HSP scoring over 60 bits.

Species profiles.  Total fecal clean reads were aligned to the 79268 sequences of mOTU reference40 with 
default parameters. 512 species level were identified.
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