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Abstract

The genetic differentiation of populations in response to local selection pressures has long been 

studied by evolutionary biologists, but key details about the process remain obscure. How rapidly 

can local adaptation evolve, how extensive is the process across the genome, and how strong are 

the opposing forces of natural selection and gene flow? Here, we combine direct measurement of 

survival and reproduction with whole-genome genotyping of a plant species (Mimulus guttatus) 

that has recently invaded a novel habitat (the Quarry population). We renovate the classic 

selection component method to accommodate genomic data and observe selection at SNPs 

throughout the genome. SNPs showing viability selection in Quarry exhibit elevated divergence 

from neighboring populations relative to neutral SNPs. We also find that non-significant SNPs 

exhibit a subtle, but still significant, change in allele frequency towards neighboring populations, a 

predicted effect of gene flow. Given that the Quarry population is most probably only 30–40 

generations old, the alleles conferring local advantage are almost certainly older than the 

population itself. Thus, local adaptation owes to the recruitment of standing genetic variation.

INTRODUCTION

Nearly all species exhibit spatial genetic structure. When dispersal is limited and/or local 

selection is sufficiently strong, local populations become genetically distinctive across the 

geographic range of species (Clausen et al. 1940). In these circumstances, migrant 

individuals will introduce divergent haplotypes into a population, a phenomenon often 

dubbed ‘admixture.’ Admixture is a central focus of study of anthropology where genetic 

data is used to infer the history of human dispersal (Elhaik et al. 2014) and also in the search 

for genes causing disease (Patterson et al. 2004). For evolutionary biologists, admixed or 

hybrid populations illustrate the tension between the diversifying forces of natural selection 

and genetic drift and the homogenizing force of gene flow (Barton and Hewitt 1989).

Gene flow of maladaptive alleles into a population can generate substantial variance in 

fitness. The genomic consequences of migration-selection balance depend on the basis and 

extent of local adaptation. If local adaptation owes to few loci, we expect minimal gene flow 

at those loci and at closely linked polymorphisms, but effective homogenization elsewhere 

in the genome (Wu 2001; Nosil et al. 2009; Feder et al. 2012; Renaut et al. 2013). If many 
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loci are targets of local selection, then gene flow may be reduced across the entire genome, 

although this depends on the strength of selection (Barton and Bengtsson 1986). Even if 

many loci contribute to local advantage, introgression will occur unless the fitness of F1 

hybrids is very low. Many studies of migration-selection balance have attempted to infer the 

process from static genetic patterns, mainly allele frequency divergence among populations 

as a function of genomic position (Bierne et al. 2013). However, mechanisms are most 

incisively identified by directly measuring the processes that cause and maintain divergence.

As antecedent to direct study, we renovate the classic selection component technique 

(Christiansen and Frydenberg 1973) to accommodate genomic data (Andolfatto et al. 2011; 

Hohenlohe et al. 2012). A selection component analysis (SCA) combines the essential 

features of the field observational study of selection (Lande and Arnold 1983) with a mating 

system estimation experiment (Ritland and Jain 1981). As in the former, one surveys a 

collection of individual through their lifetimes, scoring survival and measuring reproductive 

success. In a phenotypic selection study, fitness components are correlated to trait values. 

Here, we predict fitness components from individual genotypes at Single Nucleotide 

Polymorphisms (SNPs) across the genome. The second component of the data is typical of 

mating system estimation: From each female that successfully reproduces, we genotype a 

random set of progeny. Combined with genotype information from the known parent (the 

mother), we can probabilistically infer the paternal contribution to the offspring generation. 

This enables tests of selection through differential male success without having to measure 

the reproductive success of individual males, which is often impossible.

After developing the relevant theory, we apply SCA to field data collected from the Quarry 

population of Mimulus guttatus. Over a single complete generation, we measure allele 

frequency change at SNPs dispersed across the genome. Viability selection is estimated 

from genetic differences between plants that progress to flower and those that do not. The 

second signal in the data – the difference in allele frequency between flowering plants 

(parents) and the population composed of their progeny – can owe to numerous evolutionary 

forces. Fecundity and/or sexual selection within the parental generation can effect a change 

within the population of successful gametes, as can gametic selection through either male or 

female function. There is also opportunity for selection between zygote and genotyped 

offspring (e.g. seed abortion or differential germination). Finally, gene flow via immigrant 

pollen can change allele frequency, a consequence that is likely to be subtle at any one locus 

but important genome-wide.

The Quarry population (Oregon, U.S.A.) was chosen for study as ecologically and genetic 

divergent population of Mimulus guttatus. The population occupies a rock quarry that was 

initiated in the 1960s, but fell into disuse in the early 1980s. The population of annual plants 

occupying the basin is thus likely about 30–40 generations old, yet is clearly differentiated 

in morphology and phenology. Most populations in this area, including the Iron Mountain 

(IM) and Browder Ridge (BR) populations that we contrast to Quarry, are ‘fast-progressors.’ 

Plants have a limited time in which to bolt (after snow clears from the location), mature and 

flower, before the area dries completely and all plants die of desiccation (often only 8–10 

weeks). In most years at IM and BR, surviving plants can produce only a single flower 

before desiccating (Mojica et al. 2012). The water supplied to Quarry sustains over a longer 
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time interval, effectively lengthening the growing season. As a consequence, Quarry plants 

are substantially larger as adults and produce more flowers than do neighboring populations.

The phenotypic divergence of Quarry suggests local adaptation. Supporting this hypothesis, 

the genomic SCA reveals allele frequency change consistent with conflicting effects of 

selection and gene flow. To interpret the direction of allele frequency change, we conducted 

pooled population sampling of Quarry, IM, and BR with subsequent sequencing of each 

sample (Pool-Seq (Schlotterer et al. 2014)). With these data, we compare estimates of 

selection within Quarry to the observed divergence in allele frequency between local M. 

guttatus populations at the same SNPs. The viability selection evident at hundreds of SNPs 

within Quarry is usually increasing differentiation from IM and BR. Estimates of allele 

frequencies in the pollen pool from the SCA indicate a genome-wide ‘pull’ of Quarry allele 

frequencies toward those of neighboring populations, consistent with an effect of gene flow. 

While local adaptation is known to be prevalent in nature, these data provide a dynamic, 

genome-wide view of the process.

THEORY

The SCA, as described by Christiansen and Frydenberg (1973), is a likelihood based 

technique to measure life-stage specific episodes of natural selection. Depending on the 

particular sampling scheme, the method estimates and distinguishes viability selection (the 

differential survival of zygotes to adulthood), sexual selection (differential mating success), 

fecundity selection (differential offspring production by reproductive individuals), and 

gametic selection (segregation distortion in heterozygotes when producing successful 

gametes). The relevant data is a random samples of genotypes from each of several different 

population cohorts such as adult males, adult females that fail to reproduce, adult females 

that succesfully reproduce, and the offspring of these successful females. Given certain 

conditions, the counts of genotypes in each cohort can be expressed as multinomial 

probabilities with the relevant parameters contingent on the presence or absence of each 

selective process. Assuming a selective process to be absent reduces the number of 

parameters forming a ‘sub-set model’ that is naturally evaluated by likelihood ratio tests.

Here, we derive likelihoods suitable for a SCA of genomic data. Genomic data adds an 

additional layer of uncertainty in that individual genotypes are estimated but not known. 

Christiansen and Frydenberg 1973 assumed genotypes are estimated without error and were 

thus able to pool across individuals within each cohort (e.g. reproductive females) and 

derive probabilities for the resultant counts. With uncertain genotype calls, it is necessary to 

retain the family structure of the data and consider parents and offspring (within families) 

jointly. The exact nature of uncertainty and hence the appropriate model depends on the 

genotyping method. Chip-based genotyping methods (Tang et al. 1999) may require a 

different treatment than the RADseq markers we consider in this study. In the latter case, the 

data for an individual at a polymorphic SNP is a finite set of sequence reads, with each read 

scored as R if it matches the reference genome or A (Alternate), if not. After accounting for 

various sources of error, the read counts for an individual yield a likelihood for each 

possible underlying genotype (RR, RA, or AA for a diploid locus). These likelihoods, 

denoted LRR, LRA, and LAA in the equations below, are the inputs to a genomic SCA.
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SCA are contingent on how a population is sampled (Christiansen and Frydenberg 1973). 

Here, we consider a monoecious population subject to structured sampling. The parental 

portion of the data consists of nS individuals that survive to reproduce (in our case, 

successfully progress to flowering) and nD individuals that die before reproducing (plants 

that fail to flower). If based on a random sample of the entire population, nS /(nS + nD) 

estimates ω, the mean viability.However, it is often advantageous to sample in such a way to 

enrich the less abundant type. In many species, only a small fraction of zygotes survive to 

reproduce and a random sample will thus be dominated by inviables. This limits power to 

detect differences in genotype frequencies between viable and inviable (because estimation 

error associated with the smaller group will obscure differences) and yields few individuals 

to subsequently test for selection through differential reproductive success. With structured 

sampling, the investigator determines nF and nNF, but then additional information is required 

to estimate ω (see below). The second component of the data is a sample of genotypes from 

the progeny of reproductive individuals. Since the population is monoecious, individuals 

that survive can reproduce through both male and female function. However, it is typically 

only possible to directly assign offspring to the female parent.

Likelihoods

We here derive likelihoods for a diploid SNP with two alleles, R and A. As in mating system 

estimation models (Ritland and Jain 1981; Koelling et al. 2012), the log-likelihood (ln L) is 

a simple sum across families:

(1)

where Ui is the genomic data for the i’th dead individual, Uj is the data for the j’th survivor, 

ujk is the data for the k’th offspring of that parent j (ujk is a series of data sets with k ranging 

from 1 to nj, the number of genotyped offspring in the family), and Pr[*] denotes a 

probability statement. Parents and offspring are considered jointly in the latter term, because 

with uncertain calls, the relative likelihoods of the possible parental genotypes are at least 

potentially informed by the genotype data of progeny.

For the D individuals, families consist of a single individual:

(2)

where LRR[i] is the likelihood of the data if the individual has genotype RR and XRR is the 

frequency of RR among D individuals. The second and third terms contain the 

corresponding terms for RA and AA genotypes. Here, the L terms are implied by the 

sequence data while the X are model parameters with the constraint that XRR = 1 - XRA - 

XAA. For S families,

(3)

where Yg is the frequency of genotype g among survivors. Pr[ujk|MG] is the probability of 

obtaining the observed offspring data given maternal genotype MG.
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We now assume that the population is outcrossing (see DISCUSSION), but allow multiple 

sires per maternal family. We also assume discrete, non-overlapping generations. The 

offspring conditional likelihoods, Pr[ujk |MG], depend on how many different sires fathered 

the collection of offspring in ujk. For the njz full-siblings within one sub-family of mother j,

(4)

where Lg [j,k] is the likelihood of the offspring data if it has genotype g and Zg is the 

frequency of genotype g among sires in the population. Within each maternal family, we 

take a product across all full sib families, assuming that sires unrelated. The implementation 

of eqs (4) requires that we can allocate progeny within a maternal family to distinct sub-

families consisting of full sibs. Estimating parentage is the purview of mating system 

estimation methods, e.g. (Ritland 2002). Here, whole genome genotyping provides a great 

advantage; comparing siblings at thousands of SNPs allows a much finer estimation of 

relative similarity than afforded by genotyping at a few markers. Our method for assignment 

of offspring to full sib families is described below (METHODS).

Equations 1–4 are based on Mendelian inheritance and are neutral with respect to 

evolutionary processes. We distinguish four evolutionary models (0, 1, 2, and 3) as special 

cases by expressing the genotype frequencies (X, Y, and Z) in terms of evolutionary 

parameters (Table 1, equation 5 below). All models share the assumption of Hardy-

Weinberg frequencies in the zygote population with q equal to the frequency of the 

reference base. The most elaborate model (model 3) has six parameters: q, SRR (survival of 

RR individuals), SRA, SAA, ZRR, and ZRA. The quantities in the likelihood equations above 

are functions of these parameters:

(5)

where ω = q2 SRR + 2(1−q)qSRA + (1 − q)2 SAA and ZAA = 1 - ZRR - ZRA.

Tests compare a model that allows a process to a model that eliminates that process via 

parameter constraints (Table 1). For example, Model 2 eliminates viability selection (SRR = 

SRA = SAA), but does not constrain genotype frequencies among sires. Model 3 allows 

viability selection (SRR ≠SRA ≠ SAA), but does not constrain sires. Thus, the likelihood ratio 
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statistic, Δ32 = 2(L3−L2), provides a test for viability selection (Lk is the maximum log-

likelihood of model k). Given that model 3 has two more free parameters than model 2, we 

compare Δ32 to the chi-square (χ2) distribution with 2 degrees of freedom (df) to test for 

viability selection. Model 1 allows viability selection but constrains genotype frequencies 

among sires to equal those among all reproductive individuals: ZRR = YRR and ZRA = YRA 

This eliminates two free parameters from model 3, and as a consequence, ∆31 = 2(L3−L1), is 

also compared to a χ2-distribution with 2 df. In principle, one could test for viability 

selection by comparing Model 2 to Model 0 and test for male allele frequency deviation by 

comparing Model 1 to Model 0. By choosing Δ31 and Δ32 as test statistics, we essentially 

allow process A when testing for process B, and vice versus. We find this method to be 

more conservative, e.g. fewer significant tests with Δ32 than with Δ20, but more robust 

because the operation of one process will not interfere with assessment of the other.

We call Δ31 the qM / qS test because it tests for a difference in allele frequency between 

successful male gametes and all reproductive individuals. A significant qM / qS test could 

reflect fecundity selection or sexual selection, but importantly, it does not distinguish clearly 

between selection through male and female function. qS, the allele frequency among all 

reproducing individuals (calculated as YRR + YRA/2) is comprised of both males and 

females, whereas qM (ZRR + ZRA/2) estimates allele frequency among successful male 

gametes. However, qM ≠ qS does not imply that qM differs from qF, the allele frequency 

among successful female gametes. qF = qS if any differential fecundity through female 

function (among survivors) is unrelated to genotype. One can distinguish qF from qS if data 

is available on the total female reproductive success of individuals. Generalizing the 

likelihood model to accommodate fecundity data is straightforward (J.K. Kelly, 

unpublished), as it is to treat dioecious species (Christiansen and Frydenberg 1973). Finally, 

qM may differ from qS without any selection if there is gene flow into the population through 

immigrant males (or pollen in our study).

With structured sampling, the investigator determines nS and nD As a consequence, the 

model of eq (1) is not fully identifiable with regard to the survival parameters. In other 

words, different combinations of SRR, SRA, and SAA may yield equally good model fits 

because genotype frequencies within cohorts (the X and Y terms of eqs (5)) depend only on 

the relative values of these quantities. For this reason, we include data from a fully random 

survey of the population. These individuals are not genotyped but simple counts inform the 

composite quantity ω within equations (5). Letting NS be the observed number surviving to 

reproduce and ND be the number that die before reproducing in this survey,

(6)

The overall likelihood becomes ln L + ln Lsurvey and maximizing this quantity allows the 

survival parameters to be distinguished.
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METHODS

Field sampling and progeny testing

The three populations under study are located in the central Oregon cascades: Quarry 

(44.3454243 N, −122.1362023 W; Elevation ~1200 meters), IM (44.402217 N, 

−122.153317 W; Elevation ~1400 meters), and BR (44.373238 N, −122.130675 W; 

Elevation ~1200 meters). BR is approximately 3.2 km north of Quarry and IM is 6.5 km 

north/northwest of Quarry. These populations have overlapping flowering phenologies, but 

neither BR nor IM is likely to be the immediate source of migrants (via seed or pollen) to 

Quarry. However, IM and BR are phenologically similar to the many other fast-progressing 

Mimulus populations surrounding Quarry. We adopted a spatially explicit scheme, sampling 

S and D individuals in approximately equal frequency at Quarry. We established four main 

transects spanning the primary area of occupation within the Quarry, each 10 meters in 

length. At regular intervals (~1 meter), we laid sub-transects perpendicular to the main 

transect and established six points along each sub-transects. At each point, we marked two 

individuals closest to the point. The first was a plant that we anticipated would successfully 

progress to flowering (S group) and one we anticipated would fail to reach flowering 

(Dgroup). Designation of these plants was confirmed at final sampling when we collected 

whole plant tissue and seed; plants had completely senesced ensuring appropriate 

classification as S or D. Our viability sampling is likely incomplete because the D group 

excludes plants that failed to germinate and seedlings that died prior to our initial survey. 

We germinated and grew 4 progeny from the first or second fruit of each of these plants in 

the University of Kansas greenhouse. We harvested dried leaf and calyx tissue from field 

collected parental plants and young leaves from greenhouse germinated progeny for 

subsequent DNA extraction (Holeski et al. 2014). To determine the overall proportion of the 

population that survived to flower, we surveyed a random set of 1000 seedlings marked 

early in the season at the BR location. 700 of these plants eventually flowered. We use these 

as estimates for NS and ND (eq. 6) within Quarry (see Discussion).

Library preparation and sequencing of Quarry plants

We generated genomic libraries for genotyping using Multiplexed-Shotgun-Genotyping 

(MSG) (Andolfatto et al. 2011), a form of RADseq (Miller et al. 2007) that uses restriction 

enzymes to reduce genomic representation to homologous loci that are flanked by restriction 

cut sites. We digested genomic DNA from each plant using the restriction enzyme AseI 

(NEB Biolabs). Each DNA sample was ligated to one of 48 distinct bar-coded adaptors, 

each containing a unique 6 bp barcode. Each set of these 48 uniquely bar-coded samples is 

then pooled independently to create a sub-library. After PCR, we size-selected our library 

for 250–300bp fragments using a Pippin Prep (http://www.sagescience.com/products/pippin-

prep/). We then performed PCR reactions at 14–18 cycles using Phusion High-Fidelity PCR 

Master Mix (NEB Biolabs) and primers that bind to common regions in the adaptors. The 

larger number of cycles was used when the input quantity of DNA was low, which was more 

frequently the case with field collected tissue. In the PCR step, each sub-library was 

combined with one of 24 distinct Illumina indices allowing 24×48=1152 samples to be 

combined in a single Illumina lane. To remove primer dimers, we did two rounds of 

AMPure XP bead cleanup (Beckman Coulter, Inc) using a 0.8 bead volume to sample ratio. 
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A single combined library was constructed containing both parents and offspring by pooling 

the cleaned sub-libraries based on their molar concentration. We sequenced the library in 

two lanes of an Illumina Rapid Run (paired end 150bp reads) and then again in one High 

Output lane (100bp paired end sequencing). We included a 10% phiX spike-in for all lanes 

to provide additional sequence complexity.

We demultiplexed the fastq files from the sequencing into sample specific sequence files. 

We processed reads with Scythe (https://github.com/vsbuffalo/scythe/) to remove adaptor 

contamination and Sickle (https://github.com/najoshi/sickle/) to trim low quality sequence. 

Using BWA with default parameter values (Li and Durbin 2009), we mapped the processed 

reads, one sample at a time, to the v2 draft of the Mimulus guttatus genome (http://

www.phytozome.net/) after masking repetitive regions. Following read mapping, MSG data 

from 326 parents and 707 offspring were considered simultaneously to identify SNPs and 

call genotypes using the UnifiedGenotyper algorithm in the Genome Analysis ToolKit 

(GATK; (McKenna et al. 2010)). We filtered the SNPs present in the Variant Call File 

produced by GATK in two stages using custom python scripts. In the first stage, we reduced 

the dataset to only those SNPs where (1) two bases segregated, (2) at least 50 parents and 50 

progeny had calls, (3) the (initial) estimated allele frequency within both parents and 

offspring was in the range of 0.05–0.95, (4) the GATK Haplotype score was less than 13, (5) 

the mapping quality score was at least 30, and (6) the average read coverage per plant was at 

least 1 and at most 100. When more than one SNP was identified within a RAD marker (the 

150 bp sequence flanking a restriction enzyme cut site), we thinned the data to a single 

polymorphism by choosing the SNP with the most genotyped individuals. After analyzing 

Quarry sequences from the Pool-seq experiment (described below) and conducting an initial 

run of the SCA, we imposed two additional filters. We required that SNPs from the MSG 

dataset were also ascertained in the Quarry Pool-seq dataset with a total read count of 1–

300. Extremely high read count SNPs were excluded because they appear to be cases where 

gene duplicates are being mapped (incorrectly) to a single location in the reference genome. 

Second, we required SNPs to be polymorphic in the final dataset (after all filters were 

imposed). This final SNP set, consisting of 15,658 polymorphisms, is presented as 

Supplemental Table 1.

Genotype inference at RADseq markers

We calculated posterior probabilities (QRR, QRA, QAA) for genotypes of each plant at each 

SNP using the GATK genotype likelihoods combined with the estimated allele frequency. 

We used Hardy-Weinberg proportions as the genotype priors. This revealed an unexpected 

relationship between read depth and heterozygosity (Figure 1). Heterozygotes are under-

called in samples with low to intermediate read depths. We hypothesize this to be a 

consequence of PCR amplification bias during library construction, which has been 

previously shown to cause under-calling of heterozygotes by variant calling programs 

(Heinrich et al. 2012). Ideally, each allele of a heterozygous individual would be equally 

represented in the library such that subsequent random sampling of reads during sequencing 

corresponds to a binomial process with p = 0.5. However, when the amount or quality of 

input DNA is low, random differential amplification of the two alleles of a heterozygote can 

substantially skew library allele frequency away from 0.5. As a consequence, sequencing of 
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heterozygous loci is far more likely to produce skewed outcomes. To illustrate, consider a 

sample with four reads with one base and none with the other. The binomial predicts the 4/0 

outcome (or 0/4) from heterozygotes only 12.5% of the time, but this may be far more likely 

if one allele predominates in the library following PCR amplification. The magnitude of 

PCR bias (really, it is more overdispersion than bias if either allele is equally likely to 

predominate) depends on the number of distinct sequences of each allele in the sample prior 

to PCR amplification (Heinrich et al. 2012). For the present study, this is unknown and 

likely to be highly variable, contingent on the amount and quality of DNA extracted from 

the original sample. However, the more severe under-calling of heterozygotes for dry 

samples (parents collected in the field after dessicating) than for wet sample (progeny grown 

in greenhouse providing fresh tissue) is expected given the lower amount and quality of 

DNA from the former. Unfortunately, the bioinformatic step of removing PCR duplicates 

(Xu et al. 2012) cannot be applied to MSG RADseq data. It may be possible to remove PCR 

duplicates with RAD methods that involve sequencing of a randomly sheared DNA 

fragment, e.g. (Davey et al. 2011). Andrews et al. (2014) review the differences among 

RADseq methods.

We address PCR bias by evaluating the entire dataset (simultaneously) to estimating τk, the 

probability that a true heterozygote yields both alleles in a sample of k reads from an 

individual. In the absence of PCR bias, τ1 = 0, τ2 = 1/2, τ3 = 3/4, and so on. Our method is 

based on two assumptions: (1) the population is near Hardy-Weinberg genotype proportions 

for most loci and (2) that true heterozygosity is unrelated to read depth at a SNP. Given 

these assumptions, it is straightforward to write the likelihood of the entire dataset (observed 

genotypes for all individuals at all SNPs) in terms of SNP specific allele frequencies and τk 

values over the range of observed read depths (1–250 in our case). We estimate the 

parameters by maximizing the likelihood (Appendix 1), obtaining a distinct set of τk values 

for parental DNA samples (dry tissue from both S and D adults) and progeny DNA samples 

(wet tissue). Estimates are presented in Supplemental Table 2. Our procedure also allows 

allele frequency at a SNP to differ between generations. As expected, τk → 1 as read count 

increases for both Wet and Dry samples. We use updated genotype likelihoods for all 

subsequent calculations. In cases where the original genotype likelihoods favor a 

homozygote (LRR > LRA or LAA > LRA), we update the heterozygote likelihood using 

LRA‘ = (1–τk)/2 (the probability that a heterozygote looks like a homozygote is 1–τk, but we 

assume it is equally likely to appear RR or AA). The favored homozygote always remains 

most likely, but the strength of evidence against heterozygotes is reduced with small to 

moderate k. Importantly, when we recalculate heterozygosity (across plants and SNPs) using 

updated likelihoods, the association between heterozygosity and read depth is eliminated 

(Supplemental Figure 1).

Heterozygosity, genetic distance, and full sib assignment

The genotype matrix that emerges from this analysis has three genotypic posterior 

probabilities (QRR, QRA, QAA) specified for each plant and SNP. Basic population genetic 

statistics can be calculated from these probabilistic genotype calls. For example, the total 

heterozygosity of a plant is a simple sum of QRA across all called SNPs. The standardized 

Multi-Locus Heterozygosity, sMLH (Coltman et al. 1999; Hoffman et al. 2014), is the ratio 
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of this sum to the total expected heterozygosity given the SNPs called for this plant (the sum 

of 2q(1-q) across called SNPs). For these calculations, we estimated q separately for parents 

and offspring at each SNP.

To estimate genetic distances between plants, we distilled the three posterior probabilities 

into a genotype score: T = 2QRR + QRA + (0)QAA. T is a SNP specific estimate for the 

number of R alleles carried by the plant. We calculated the simple Euclidian distance 

between plants across all SNPs for these scores using the “daisy” function in the R package 

“cluster” (Maechler et al. 2013; Team 2013). A second application based on the scores was 

to distinguish full-sibs from half-sibs within progeny sets. Consider two plants from the 

same maternal plant with scores T1 and T2. The expected difference between T1 and T2 

depends on the maternal genotype, on whether the progeny were sired by the same or 

different plants, and on the genotype(s) of the sire(s). If the maternal plant is RR or AA, then 

the expected (absolute) difference between T1 and T2 is q(1-q) for full-sibs and 2q(1-q) for 

half sibs, assuming that males are randomly sampled from a population in Hardy-Weinberg 

proportions. If the maternal plant is heterozygous, then the expected difference is (1+q(1-

q))/2 between full sibs and ½ + q(1-q) between half sibs, respectively.

For each pair of plants within each maternal family, we calculated the absolute difference in 

scores for each SNP where both plants had calls and then summed these across SNPs. To 

obtain a standardized difference for the pair, we divided this observed sum, by a sum of 

expected differences. For the latter, we consider the maternal genotype at each scored SNP 

and calculate the expected full-sib difference, (QRR + QAA)q(1-q) + QRA (1+q(1-q))/2, and 

the expected half-sib difference, (QRR + QAA)2q(1-q) + QRA (1/2+q(1-q)). Across sib-

contrasts, divergence relative to full-sib expectation ≈ 1.41 divergence relative to half-sib 

expectation (Supplemental Figure 2). We thus used only the full-sib distance with a 

threshold of 1.21 (distances greater than threshold diagnosed as half-sibs). Given the matrix 

of pair-wise distances within each maternal family, we performed average euclidean 

distance hierarchical clustering as implemented in the R function “hclust”.

Linkage Disequilibrium and STRUCTURE analysis

For STRUCTURE and estimation of linkage disequilibria (LD), we consider only parental 

plants and then thinned the entire genotype matrix to include only high confidence calls 

(SNPs where one of the three possible genotypes has a posterior probability greater than 

0.90). This reduced matrix contains 300 plants scored at 11751 loci, albeit with a large 

amount of missing data. Using STRUCTURE v2.3.4 (http://pritchardlab.stanford.edu/

structure.html), we ran 10 replicate MCMC simulation chains for each value of K (the 

hypothesized number of ancestral populations) with K ranging from 1 to 4. Each chain 

consisted of 100,000 steps following a 100,000 step burn-in. The estimates for individual 

plant admixture proportions were extracted from the K = 2 replicate with the highest average 

log-likelihood.

Estimating LD is hindered by the fact that our genotyping method does not provide 

haplotype information except at the smallest genomic scale (within read pairs). To estimate 

LD between loci in the absence of phase information, we calculate the covariance of T 

scores (as defined above) between SNPs (Hill 1974; Rogers and Huff 2009). We calculated 
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r2 as a standardized measured of LD (Hill and Robertson 1968): r2 = D2 / (q1(1-q1)q2(1-

q2)) where D is the estimated linkage disequilibrium, q1 is the frequency of the minor allele 

at SNP 1 and q2 the corresponding value for SNP 2. To consider a SNP pair for LD, we 

required at least 20 parental plants to be called at each SNP and for q1 and q2 to be at least 

0.2. These constraints insure that high estimated r2 is very unlikely between SNPs that are in 

linkage equilibrium. We used randomization to establish the null (linkage equilibrium) 

distribution of r2, permuting genotypes across samples but preserving observed sample 

sizes, genotype frequencies, and the missing data pattern.

Genomic SCA

Using the updated likelihoods for each SNP, we estimated models 0–3 (see THEORY). 

Models were fit sequentially with L0 estimated first. We used the resultant estimates for q 

and S as parameter starting points in the numerical search for L1 and L2. We calculated 

likelihoods and optimized for each model using programs written in Python (available upon 

request). Likelihoods were maximized using the BFGS bounded optimization routine 

available in SciPy (http://www.scipy.org/). The optimization for L3 was initiated from two 

different start points using the parameter estimates of L1 and L2, respectively. These two 

runs nearly always converged to the same maximum for L3. We calculated p-values for each 

likelihood ratio statistic (∆31 and ∆32) using the chi-square probability calculator of 

Minitab14©. Finally, given the full set of p-values for each test statistic, we applied a False 

Discovery Rate (Benjamini and Hochberg 1995) of 0.10 to declare genome-wide 

significance (q-values are reported for all SNPs in Supplemental Table 1).

Pooled population samples and FST calculations

We collected 200 plants from IM, BR, and Quarry in 2013 (distinct from the sampling of 

Quarry plants described above). DNA was extracted from each plant and quantified. We 

then combined DNA samples within each population in equal molar ratios. We constructed 

TruSeq Illumina libraries for each pooled population sample at the KU Genomics Core 

facility. The indexed libraries were pooled for subsequent sequencing in three High-Output 

lanes of the Illumina HiSeq 2500 instrument (PE 100). Prior to read mapping, we trimmed 

low-quality ends using Sickle and Scythe (as described above for the MSG data). Using 

BWA, we mapped the processed read pairs, to the masked v2 draft of the M. guttatus 

genome. After mapping, we removed PCR duplicates with Picard tools (http://

picard.sourceforge.net). The mapped reads from each population were then considered 

simultaneously with the RADseq data to identify SNPs and call genotypes in GATK. The 

median depth of coverage was 47 for BR, 57 for IM, and 67 for Quarry. Given that these 

counts are far below the actual number of alleles sampled from each population into our 

libraries (400) and that we eliminated PCR duplicates, we treat each read as an 

independently sampled allele from the population. Our estimate for population allele 

frequency at a SNP is just the count of reference alleles divided by the total depth at the 

SNP. We estimate FST as the among population variance relative to the total variance when 

scoring individual reads as binary variables (0 if reference, 1 if alternate). Given this 

scoring, the one-way ANOVA provides an unbiased estimate for the within and among 

group variance, properly accounting for sampling error.
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RESULTS

Heterozygosity and Admixture

The mean standardized Multi-Locus Heterozygosity, sMLH (Coltman et al. 1999; Hoffman 

et al. 2014), is 0.99 for progeny (n = 707, SD = 0.06) and 0.95 for adults (n = 325, SD = 

0.16). sMLH equals 1 for an outbred plant within a randomly mating population and the 

distributions for both parents and offspring are centered on 1 (Supplemental Figure 3). 

However, a minority parental plants appear to be at least partly inbred: mean sMLH of S 

plants is 1.00 (n = 159, SD = 0.12), while the D mean is 0.89 (n = 166, SD = 0.18), a highly 

significant difference (F1, 323 = 45.3, p < 0.0001). Genetic evidence of two different types 

suggest that Quarry is an admixed population. STRUCTURE (Pritchard et al. 2000) 

estimates that plants are mosaics of two different ancestral populations with one 

predominant (Figure 2). The average log-likelihood across replicate simulations is much 

higher for K = 2 (−294,656) than K = 1 (−314,453), but then declines as the postulated 

number of ancestral populations (K) increases (Supplemental Table 3). The mean percentage 

of the genome from the minor population was only 4.9% among plants that survived to 

flower, but 7.9% among D plants, a highly significant difference (Figure 2; F1,298 = 25.7, p 

< 0.0001).

Linkage Disequilibria (LD) between SNPs provides a second, distinct, signature of 

admixture. Our genotyping method provides limited information about haplotypes (see 

METHODS), but we still find that LD is substantially elevated within Quarry (Figure 3). 

SNP pairs exhibiting strong association (estimated r2 ≥ 0.2) are much more frequent than 

predicted by linkage equilibrium at distances of 10s to 100s of kilobases (bars exceed dotted 

line in right portion of Figure 3). Most striking, SNPs separated by millions of bases on a 

chromosome, and even across chromosomes, often exhibit high, and occasionally perfect (r2 

= 1), association. Pairwise comparisons between parental individuals indicate a relationship 

between genomic similarity and survivorship: S individuals are more similar to each other 

(on average) than to D individuals. D individuals were most dissimilar to other D plants 

(Supplemental Figure 4). Pairwise comparisons among siblings within the progeny 

generation indicate that maternal families are a mixture of full sibs and half sibs. Given four 

progeny genotyped per family, we inferred a single sire for 36 maternal families, two sires 

for 73 families, three for 57 families and four sires for 26 families.

Selection on SNPs within Quarry

In total, 367 SNPs exhibited a significant difference (genome-wide) in genotypic 

frequencies between S and D plants (∆32), indicative of viability selection. 1733 SNPs 

proved genome-wide significant for qM / qS (i.e. do genotype frequencies among successful 

males differ from that among all flowering plants?; ∆31). Figure 4 illustrates the locations of 

sig/ns SNPs for both ∆31 and ∆32 across the 14 chromosomes. To characterize allele 

frequency change owing to the different components of selection, we calculate ∆qv = qS – q 

as the predicted change owing to viability selection (Table 2A). Mean ∆qv is near zero 

among ns SNPs, but substantially negative among significant SNPs where the more common 

allele is favored nearly two thirds of the time (Figure 5). A small number of significant 

SNPs have point estimates for genotype survivals suggesting over/under dominance (these 
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SNPs have small ∆qv in Figure 5). A more compelling trend involves intermediacy of allele 

frequency: q was between 0.1 and 0.9 for 94% of viability-sig SNPs, but only 57% of ns 

SNPs which may reflect that ∆qv should be proportional to q(1-q).

Let ∆qMS denote the estimated difference in the frequency of the reference base between 

successful male gametes (qM) and the frequency in all flowering plants (qS). Across all 

SNPs, the average ΔqMS is substantially positive: mean = 0.015, SE = 0.001. Parsing these 

SNPs according to qM / qS test significance, we find mean ΔqMS is positive among 

significant and non-significant SNPs (Table 2B). 163 of 367 SNPs significant for viability 

selection were also significant for qM / qS. Among these, there is a slight negative 

association between Δqv and ΔqMS (r = −0.17, p < 0.03). This is consistent with antagonistic 

selection, but the evidence is not strong. A negative correlation is built into this contrast 

because qS is estimated with error and it contributes positively to Δqv but negatively to 

ΔqMS.

Selection within Quarry in relation to differentiation from neighboring populations

In total, over 9.8 million SNPs and insertion/deletions were ascertained in the pooled 

population samples. However, the overwhelming majority of these SNPs are outside the 

MSG-RAD loci analyzed for selection, and we thus thinned the data to SNPs in the SCA. 

Among these, there is a high correlation (r = 0.84) of allele frequency estimates between 

MSG and pooled-genomic samples from Quarry. The frequency of the reference base is 

typically lower in the Quarry pooled sample (mean = 0.74) than in the IM (mean q = 0.84) 

or BR (mean q = 0.82). The high frequency of the reference base in IM is expected. The 

reference genome is based on a single inbred line from IM.

We estimate divergence of Quarry from and IM and BR in two different ways, FST between 

populations (Wright 1951) and the simple difference in alternative base frequency between 

Quarry and IM/BR (data from these populations combined). The average pairwise FST for 

IM vs Quarry is 0.132 (SE=0.001) and 0.124 (0.001) for BR vs Quarry. Divergence between 

BR and IM is much lower: Fst = 0.065 (0.001). FST for contrasts of Quarry to IM and BR is 

significantly higher at SNPs under selection than for non-significant SNPs (Supplemental 

Table 4). Moreover, there is a strong directionality to differentiation in terms of the 

frequency of the reference base. The alternative base is generally more common in Quarry 

than in IM or BR (means reported above), but this inflation is much greater at SNPs 

significant for viability selection (left side of Figure 6) and at SNPs significant for qM/qS.

DISCUSSION

The selection component method (SCA) was developed to characterize the different ways 

that natural selection can act throughout the life cycle of an organism. Sampling and 

subsequent genotyping of a population that includes mother-offspring combinations can 

estimate the change in allele frequency owing to viability selection, sexual selection, and 

fecundity selection (Christiansen and Frydenberg 1973). While SCA has been employed in a 

few systems (Prout 1965; Watt 1977; Clark and Feldman 1981; Heath et al. 1988; Barbadilla 

et al. 1994), applications have been limited by logistical constraints. In particular, large 

sample sizes are required to demonstrate that reasonable per-locus selection coefficients are 

Monnahan et al. Page 13

Evolution. Author manuscript; available in PMC 2016 July 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



significantly non-zero. In a sufficiently large experiment, the effort and cost of genotyping 

parents and offspring at more than a few loci has, until recently, been prohibitive. Genomic 

methods make this problem much less severe. While incorporating genomic data into SCA 

does present substantial challenges, it also has the potential to address previously intractable 

questions.

The products of an SCA depend on the sampling design, as well as the features of the 

organism under study. Equations 1–6 describe a minimal design, in which a monecious 

population is sampled prior to viability selection, survivorship to reproduction is noted, and 

then a sample of offspring is collected from each reproductive female. The data is genotypes 

in three sets: (1) individuals that failed to reproduce, (2) individuals that survived to 

reproduce, at least through female function, and (3) progeny of those individuals. Contrasts 

between these sets address two hypotheses. First, genotype frequencies should not differ 

between (1) and (2) if there is no viability selection. The null hypothesis for the contrast 

between (2) and (3), what we call the qM/qS test, is that allele frequency among all survivors 

(qS) equals that among successful male gametes (qM). There are multiple possible causes for 

a significant qM/qS test. General fertility selection (e.g. some flowering plants are more 

fecund than others through both male and female function) or male-specific selection (some 

flowering plants are more effective at outcross siring distinct from the number of seed set) 

could generate a difference between qM and qS. Gametic selection through pollen 

competition or meiotic drive could create a difference even if the number of progeny sired is 

equivalent across males. Also, because qM is inferred from the male contribution to 

offspring, there is opportunity for selection between the formation of zygotes and the 

genotyping of progeny. Finally, a significant qM/qS test could reflect migration.Immigration 

of male gametes into a population could alter qM without any differential performance of 

resident sires.

The extension of the method to dioecious species is accomplished by parsing category (2) 

into adult males and reproductive females (Christiansen and Frydenberg 1973). More 

nuanced tests can be made by adding measures of individual reproductive success. If the 

total number of offspring of each female is recorded and the likelihood model elaborated to 

accommodate these counts, allele frequency among successful female gametes (qF) can be 

predicted. Tests involving qF can more clearly delineate female fecundity selection (is qF 

different from qS?) from other causes of a significant qM/qS test. For example, an important 

question in hermaphroditic organisms is the extent to which selection through male function 

is distinct from selection through female function (Delph and Ashman 2006; Arnold 1994). 

At a single locus, this is equivalent to asking if qF is different from qM. Like the qM/qS test, 

the qM/qF test can be accomplished without having to identify specific male parents; the 

latter necessary when the intention is to determine how particular phenotypes affect male 

reproductive success.

Genotype inference is an important aspect of SCA based on genomic data. The genotype of 

an individual at a locus is a set of probabilities (e.g. LRR, LRA, and LAA), not a fixed value. 

In our experiment, genotype uncertainty owes to having low sequence read numbers at many 

RAD loci in many individuals (and also due to PCR bias as discussed below). However, 

uncertainty is not specific to RADseq. Alternative methods such as low-level, whole-
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genome sequencing will also yield imperfect estimates of individual genotypes. In fact, 

equations 1–6 are entirely suitable to data where most individuals have only one or two 

reads at most SNPs. A single high quality read substantially informs likelihood calculations. 

Consider an individual with a single G read at a SNP that is A/G polymorphic. We may not 

know if the individual is GG or AG, but it is very unlikely to be AA. Moreover, if this 

individual is offspring to a mother that is GG (or strongly indicated to be GG), there is a 

very high likelihood that the male parent contributed the A allele (thus informing qM 

estimation in the entire population). In principle, one could sequence individual DNA 

samples to sufficient depth (more problematically, sufficiently high depth across all 

samples) to eliminate genotype uncertainty. However, even where this is possible, it is not 

likely the best allocation of effort. Each read added to a locus informs the likelihood to a 

lesser and lesser extent. Expanding the number of individuals that are sampled from the 

population, even if genotypes are encumbered with uncertainty, will provide greater power 

to estimate allele frequency change.

In the next section, we describe how data from a minimal SCA design can be synthesized 

with other analyses to address a particular problem, migration-selection balance within an 

admixed population. In isolation, the SCA yields an abundance of significant tests, but the 

secondary analyses provide essential context. The STRUCTURE and Linkage Disequilibria 

analyses are based on the data of the SCA (SNPs in RAD loci), but retain the multi-locus 

genotype information of individuals. These results indicate that the SNP-specific Δq from 

the SCA are not likely independent outcomes. The second set of analyses, based on distinct 

genomic data (Pooled population sequencing of Quarry and neighboring populations), 

provide a basis for interpreting the magnitude and direction of Δq in relation to the 

hypothesized processes of local selection and countervailing gene flow.

Migration-selection balance

A basic population genetic principal is that natural selection should target specific loci, 

while gene flow affects the entire genome (Lewontin and Krakauer 1973). This is the 

conceptual basis for the FST outlier tests that have been extensively applied in genome scans 

of many species (Beaumont and Nichols 1996; Cruickshank and Hahn 2014). Consistent 

with this view, we find a genome-wide effect of gene flow (Table 2, ΔqMS for non-

significant SNPs). However, selective effects are not confined to a few loci, which are often 

termed ‘genomic islands’ in the FST outlier literature. Instead, selective effects are quite 

broadly dispersed, affecting SNPs within each region of each chromosome (Figure 4). Few 

of these SNPs are likely to be the specific targets of selection, but instead reflect allele 

frequency change owing to hitch-hiking (Maynard Smith and Haigh 1974). Less than 1% of 

the M. guttatus genome is contained within the RADseq loci surveyed for selection. 

However, owing to linkage and admixture, these SNPs are associated with other 

polymorphisms thousands, perhaps millions, of bases away (Figure 3).

A diversity of selective processes are likely at work in the Quarry population, but multiple 

lines of evidence indicate a major role for migration-selection balance. STRUCTURE 

suggests that Quarry plants are genetic mosaics of two different ancestral populations, and 

we find that survival to flowering is lower in plants with a higher genomic proportion of the 
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minor ancestor (Figure 2). This is predicted with local selection if we interpret the major 

population as the locally adapted type and the minor population as an aggregate of 

immigrant genotypes. Consistent with this interpretation, survivors (S plants) are 

genomically more similar to each other than they are to plants that failed to flower (D 

plants) or D plants are to each other (Supplemental Figure 4). The dominant ‘type’ of a 

locally adapted population is expected to be more genetically homogenous than the 

immigrant population given that the latter is derived from many different locations.

In the SCA, there is a tendency for viability selection to increase the frequency of the 

alternative base (Table 2). The Pool-Seq data indicate that the reference base has higher 

average frequency in the neighboring IM and BR populations and thus the net effect of 

viability selection is to increase divergence of Quarry. Most importantly, Figure 6 suggests a 

history of divergent selection at the SNPs exhibiting viability selection during 2013. They 

are nearly twice as divergent (in terms of alternative base frequency) as non-significant 

SNPs. The same trend is observed when we measure divergence with Fst (Supplemental 

Table 4). Of course, viability selection did not always favor the alternative base, about 1/3 of 

significant Δqv were positive. Among these, we observe that selection is nearly always 

favoring the more common allele (upper right quadrant of Figure 5). This same tendency is 

observed for significantly negative Δqv (lower left quadrant of Figure 5), although to a lesser 

extent. Regardless of whether the reference or alternative base happens to be locally 

advantageous, migration-selection balance models predict that the locally favorable allele 

will be the more locally frequent at equilibrium (Wright 1931).

There were substantially more SNPs significant for qM / qS than for viability selection, but 

interpretation is less clear for these. The most basic observation is the positive mean ΔqMS 

across all SNPs. We interpret this most likely as genome-wide effect of gene flow through 

pollen contributed from neighboring populations where the frequency of the reference base 

is, on average, substantially higher. The transects of our survey spanned the central portion 

of Quarry where water persists farthest into the summer, but there are many additional small 

groups of monkeyflowers within 10m of the main population. These patches occur in faster 

drying areas and so their phenology more closely resembles plants in IM and BR. The 

difficulty for interpreting significance of SCA for ΔqMS is that, with migration, qM differs 

from qS even in the absence of selection. For example, if gene flow increases allele 

frequency at a SNP, then we are much more likely to detect subsequent fecundity or sexual 

selection if it increases allele frequency (pushing qM further away from qS) than if it 

decreases allele frequency (erasing the effect of gene flow). Unfortunately, we cannot easily 

‘factor out’ the effects gene flow. The predicted change owing to migration is proportional 

to the difference in allele frequency between populations (Wright 1931) and this difference 

certainly varies among SNPs. Perhaps not coincidentally, qM/qS is much more likely to be 

significant at SNPs that show elevated divergence of between Quarry and IM/BR (right side 

of Figure 6).

Caveats

The SCA models (equations 3–5) assume random mating. This is a noteworthy assumption 

given that M guttatus self-fertilizes to varying degrees in nature (Awadalla and Ritland 
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1997; Koelling et al. 2012) and because admixture, which is an evident feature of Quarry 

(Figures 2–3), can generate deviations from Hardy-Weinberg proportions owing to the 

Wahlund effect (Crow and Kimura 1970). Our genotype inference method assumes 

approximate Hardy-Weinberg proportions, but the implementation of this method does not 

strongly constrain individual values for the standardized Multi-Locus Heterozygosity 

(sMLH = 1 for a fully outbred individual). Both generations (S and D parents as well as 

progeny) exhibit distributions for sMLH centered on 1, but there is a slightly lower mean 

among parents (0.95 instead of 0.99) and greater variability. Perhaps more importantly, this 

limited variation in sMLH among parents is associated with survivorship. Average 

heterozygosity was slightly less in plants that failed flower than those that succeeded. 

Similar heterozygosity-fitness correlations have been noted in many natural populations 

(Hoffman et al. 2014).

A second issue is whether genotype inference, specifically the method to account for PCR 

bias (Appendix 1), might induce error in estimation or hypothesis testing from the SCA. 

Two sorts of error must be considered, false positives (selection is inferred when the SNP is 

unaffected by selection/linkage or gene flow) and false negatives (non-significant tests for 

SNPs exhibiting real allele frequency change). False negatives will always be a difficulty for 

SCA given finite sample sizes and small, but still important, allele frequency changes. The 

most likely effect our updating of heterozygote likelihoods is to increase false negatives 

because it essentially weakens genotype calls. The initial likelihoods from GATK often 

strongly favor one homozygote at intermediate read depths. The updated likelihoods 

invariably still favor that homozygote, but the strength of evidence against the heterozygote 

is reduced. The necessity of this procedure is evident if one attempts to calculate likelihoods 

for parent-offspring combinations using unmodified genotype likelihoods. An abundance of 

“impossible genotypes” result at SNPs where the maternal plant is strongly called as one 

homozygote, but an offspring is strongly called as the alternative homozygote. This is not a 

common event, but it happens with most parent-offspring contrasts somewhere in the 

genome (although at different SNPs for different parent-offspring contrasts).

We also conducted a series of tests to determine if SCA-significant SNPs were associated 

with “low quality” genotype calls. As a measure of confidence, we used the difference in 

likelihood between the most likely genotype at a SNP and the second most likely (highest 

value = 1 when the alternative genotypes have relative likelihoods near zero). We find that 

the average confidence in genotype calls is higher at SNPs significant for viability selection 

and/or qM / qS than at non-significant SNPs, and this is true of both parental (D and S plants) 

and offspring genotypes (Supplemental Table 1). This is expected if the likelihood 

machinery is working properly, power should increase as genotype uncertainty decreases. 

Finally, the inclusion of extrinsic data provides important corroboration. If significance in 

the SCA were due to some unrecognized bias in genotype inference at RAD loci, there is no 

reason for the same SNPs to exhibit elevated divergence among populations (the latter 

inference based on completely different data obtained through Pool-seq).

All that said, PCR bias is an impediment to SCA and future studies should endeavor to 

reduce it as much as possible. Some genotyping methods allow removal of PCR duplicates 

prior to subsequent analyses (Andrews et al. 2014). Technical replicates – multiple 
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independent library preps and amplifications from each sampled individual – should also 

reduce the undercalling of heterozygotes. Technical replicates require a sufficient amount 

input DNA (which was not available from the S and D plants of this study) and there is a 

cost in term of effort and expense. However, the gain in terms of precision may outweigh 

the cost for many experiments.

A third issue is our use of an extrinsic survey of the BR population to estimate overall 

viability in Quarry. If one starts with a random sample of the population, and lets 

survivorship of this random sample determine the number of S and D individuals, then the 

extrinsic survey is unnecessary. We used a structured sampling scheme, anticipating that 

survivorship would be much lower than it turned out to be. Structured sampling is easily 

accommodated by SCA with an independent survey to calibrate survivorship (eqn 6). In our 

study, the independent survey was conducted at a neighboring population. We think overall 

survivorship was similar in Quarry to BR (P. Monnahan, unpublished observation), but it 

may have been slightly lower or higher. To evaluate the consequences of this, we re-ran the 

entire SCA on all SNPs assuming lower (600/1000) and higher (800/1000) survivorship in 

the survey. The results (full output as Supplemental Tables 5–6) are only incrementally 

different. For viability selection (367 significant SNPs with 70% survival), the number 

significant (using same threshold as Figure 4) increases to 401 if survivorship is 60%, but 

declines slightly to 363 if survivorship is 80%. For qM / qS (1733 significant in Figure 4), 

slightly fewer are significant with 60% survival (1718), slightly more with 80% survival 

(1752).

The genetic basis for local adaptation

The geographic range of most species is much greater than the dispersal capabilities of 

individual organisms, allowing local populations to become genetically distinctive. This 

most basic of evolutionary processes – the balance between selection and migration – has 

been a focus of study throughout the history of evolutionary biology, but advances in 

genomic technology now afford an unprecedented view of the dynamic. In a reciprocal 

transplant experiment using synthetic recombinant populations of Boechera stricta, 

Anderson et al. 2014 estimated substantial selection coefficients on marker loci across the 

genome, particularly for viability. Experimental evidence of selection within a generation 

was also noted for stick insect ecotypes upon being transferred to a novel host (Gompert et 

al. 2014). This experiment was extended to observe genome-wide allele frequency 

divergence across generations and how this relates to observed genomic divergence between 

ecotypes (Soria-Carrasco et al. 2014). Parallel to our synthesis of SCA with Poolseq data 

(Figure 6), divergent regions between ecotypes of the stick insect were observed to change 

in the predicted direction when ecotypes were transplanted to a novel host. These studies are 

similar to ours in that local selection has been shown to affect hundreds to thousands of loci 

throughout the genome. Strong LD is present in the transplant studies owing to the nature of 

the starting populations (Recombinant Inbred Lines derived from a cross between divergent 

populations of Boechera, the divergent populations themselves for the stick insects). In 

contrast, Quarry represents a natural experiment in which extensive LD owes to admixture 

and limited recombination since the population was founded.

Monnahan et al. Page 18

Evolution. Author manuscript; available in PMC 2016 July 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4 suggests a highly polygenic basis to local adaptation, but owing to long-range and 

potentially idiosyncratic LD (Figure 3), it is impossible to estimate how many loci are 

involved. Certainly, the many significant SNPs evident in our survey are not likely 

themselves to be effectors of fitness, but instead illustrate the genome-wide effects that 

selection imposes through hitch-hiking within an admixed population. The current selective 

dynamic seems to be maintained via migration of maladaptive alleles from nearby, 

ecologically distant populations. However, gene flow must have originally played a 

beneficial role for the establishment of this population. Given the young age of the 

population (30–40 generations), the alleles under selection are older than the population 

itself indicating that its current locally adapted state is due to the recruitment of standing 

genetic variation. We do not know the ancestral source of the dominant genotype in Figure 

2, or even if the source was a single population. Perennial populations/species within the M. 

guttatus species complex do exhibit phenotypic similarities to Quarry plants, particularly 

larger vegetative size at time of first flower. Regardless of ancestry, it is notable that in less 

than 40 generations, the role of migration has reversed from furnishing the genetic variation 

that allows local adaptation, to continually reintroducing maladapted alleles.
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Appendix 1: A maximum likelihood method to estimate heterozygote 

likelihoods

The initial variant calling for an individual at a SNP yield a likelihood for each possible 

genotype, LRR, LRA and LAA, respectively. We code this as 0 if LRR is maximal, 1 if LRA is 

maximal, and 2 if LAA is maximal and accompany this score with the observed read depth. 

The log-likelihood for a SNP (indexed by i) that is scored in n individuals (indexed by j) is 

, where

zij = qi
2 + qi (1 − qi)(1 − τk) if s = 0

zij = 2qi (1 − qi)τk if s = 1

zij = (1 − qi)2 + qi(1 − qi)(1 − τk) if s = 2

Here, s is the observed score for a particular individual/SNP and k is the associated read 

depth.The overall log-likelihood is the sum of  across all SNPs in the dataset. For a 

given set of τk the maximum likelihood for qi depends only on the data from SNP i (we are 

ignoring linkage disequilibria for this analysis). In contrast, maximizing the likelihood for τk 

requires that we consider all SNPs simultaneously. For this reason, we first maximized τk 

based on an initial set of estimates for qi. Then, using the updated τk, we proceeded through 

all SNPs, one at a time, maximizing  with respect to qi. This process was repeated 

until convergence. Likelihoods were maximized using the BFGS bounded optimization 

routine available in SciPy (http://www,scipy,.org/). The code—written in Python—is 

available upon request.
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Figure 1. 
The fraction of calls where the heterozygote had the highest likelihood (taken directly from 

GATK) is depicted as a function of read depth, distinguishing DNA extracted from Wet 

tissue (blue) and Dry tissue (orange).
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Figure 2. 
The estimated admixture of parental plants is reported as a percentage ancestry of minor 

population within S (blue) and D (orange) plants.
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Figure 3. 
The frequency distribution for r2 between SNPs within chromosomes is presented for 

Quarry parents. Here, we limit contrasts to SNP pairs separated by at least 1000 bp. The 

dotted line is the expected proportion of r2 estimates in the specified range for sites in 

linkage equilibrium (established by permutation). The dotted line is set at 0.0 for r2 = 1 

because it was never observed in the permutated data.
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Figure 4. 
Significance of tests is reported as –Log10(p) for each SNP for viability selection (lower 

panel) and qM / qS (upper panel). The partitions demark chromosomes and color 

distinguishes genome-wide FDR < 0.1 (red/blue) from FDR > 0.1 (black).
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Figure 5. 
The predicted change in allele frequency owing to viability selection as a function of initial 

frequency for significant (red) and non-significant (black) SNPs.
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Figure 6. 
Divergence is measured as the difference in alternative based frequency between Quarry and 

pooled sample of IM and BR. The mean divergence is report for SNPs that are ns (blue) and 

sig (orange) for viability selection (left) and qM/qS right).
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Table 1

Summary of the four SCA models fit.

Model Description Parameter Constraints

0 No viability selection
Male allele frequency constrained

SRR = SRA = SAA

Z terms determined by q and S terms

1 No viability selection
Male allele frequency unconstrained

SRR = SRA = SAA

Z terms not determined by q and S terms

2 Viability selection allowed
Male allele frequency constrained

SRR ≠ SRA ≠ SAA

Z terms determined by q and S terms

3 Viability selection allowed
Male allele frequency unconstrained

SRR ≠ SRA ≠ SAA

Z terms not determined by q and S terms
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Table 2

The predicted differences in allele frequency are reported owing to (A) viability selection or (B) evident in the 

qM / qS test. In (A), SNPs are parsed by significance (sig/ns) for ∆32, while by ∆31 in (B).

n Mean ∆q SE

(A) Viability selection

ns SNPs 15291 −0.003 0.0002

sig SNPs 367 −0.024 0.004

(B) qM / qS test

ns SNPs 13925 0.014 0.001

sig SNPs 1733 0.025 0.007
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