Skip to main content
Studies in Mycology logoLink to Studies in Mycology
. 2015 Nov 18;82:75–136. doi: 10.1016/j.simyco.2015.10.002

Revision of the Massarineae (Pleosporales, Dothideomycetes)

K Tanaka 1,, K Hirayama 2, H Yonezawa 1, G Sato 1, A Toriyabe 1, H Kudo 1, A Hashimoto 1,3, M Matsumura 1, Y Harada 1, Y Kurihara 4, T Shirouzu 5, T Hosoya 5
PMCID: PMC4774272  PMID: 26955201

Abstract

We here taxonomically revise the suborder Massarineae (Pleosporales, Dothideomycetes, Ascomycota). Sequences of SSU and LSU nrDNA and the translation elongation factor 1-alpha gene (tef1) are newly obtained from 106 Massarineae taxa that are phylogenetically analysed along with published sequences of 131 taxa in this suborder retrieved from GenBank. We recognise 12 families and five unknown lineages in the Massarineae. Among the nine families previously known, the monophyletic status of the Dictyosporiaceae, Didymosphaeriaceae, Latoruaceae, Macrodiplodiopsidaceae, Massarinaceae, Morosphaeriaceae, and Trematosphaeriaceae was strongly supported with bootstrap support values above 96 %, while the clades of the Bambusicolaceae and the Lentitheciaceae are moderately supported. Two new families, Parabambusicolaceae and Sulcatisporaceae, are proposed. The Parabambusicolaceae is erected to accommodate Aquastroma and Parabambusicola genera nova, as well as two unnamed Monodictys species. The Parabambusicolaceae is characterised by depressed globose to hemispherical ascomata with or without surrounding stromatic tissue, and multi-septate, clavate to fusiform, hyaline ascospores. The Sulcatisporaceae is established for Magnicamarosporium and Sulcatispora genera nova and Neobambusicola. The Sulcatisporaceae is characterised by subglobose ascomata with a short ostiolar neck, trabeculate pseudoparaphyses, clavate asci, broadly fusiform ascospores, and ellipsoid to subglobose conidia with or without striate ornamentation. The genus Periconia and its relatives are segregated from the Massarinaceae and placed in a resurrected family, the Periconiaceae. We have summarised the morphological and ecological features, and clarified the accepted members of each family. Ten new genera, 22 new species, and seven new combinations are described and illustrated. The complete ITS sequences of nrDNA are also provided for all new taxa for use as barcode markers.

Key words: Coelomycetes, Freshwater ascomycetes, Helminthosporium, Holomorph, Hyphomycetes, Massarina, Periconia, Spegazzinia

Taxonomic novelties: New families: Parabambusicolaceae Kaz. Tanaka & K. Hiray., Sulcatisporaceae Kaz. Tanaka & K. Hiray

New genera: Aquastroma Kaz. Tanaka & K. Hiray., Clypeoloculus Kaz. Tanaka & K. Hiray., Fuscostagonospora Kaz. Tanaka & K. Hiray., Gregarithecium Kaz. Tanaka & K. Hiray., Magnicamarosporium Kaz. Tanaka & K. Hiray., Neoophiosphaerella Kaz. Tanaka & K. Hiray., Parabambusicola Kaz. Tanaka & K. Hiray., Pseudocoleophoma Kaz. Tanaka & K. Hiray., Pseudoxylomyces Kaz. Tanaka & K. Hiray., Sulcatispora Kaz. Tanaka & K. Hiray

New species: Aquastroma magniostiolata Kaz. Tanaka & K. Hiray.; Aquilomyces rebunensis Kaz. Tanaka & K. Hiray.; Clypeoloculus akitaensis Kaz. Tanaka & K. Hiray.; Clypeoloculus hirosakiensis Kaz. Tanaka & K. Hiray.; Clypeoloculus microsporus Kaz. Tanaka & K. Hiray.; Clypeoloculus towadaensis Kaz. Tanaka & K. Hiray.; Dictyosporium pseudomusae Kaz. Tanaka, G. Sato & K. Hiray.; Fuscostagonospora sasae Kaz. Tanaka & K. Hiray.; Gregarithecium curvisporum Kaz. Tanaka & K. Hiray.; Helminthosporium massarinum Kaz. Tanaka, K. Hiray. & Shirouzu; Keissleriella breviasca Kaz. Tanaka & K. Hiray.; Keissleriella quadriseptata Kaz. Tanaka & K. Hiray.; Keissleriella yonaguniensis Kaz. Tanaka & K. Hiray.; Lentithecium pseudoclioninum Kaz. Tanaka & K. Hiray.; Magnicamarosporium iriomotense Kaz. Tanaka & K. Hiray.; Periconia homothallica Kaz. Tanaka & K. Hiray.; Periconia pseudodigitata Kaz. Tanaka & K. Hiray.; Pseudocoleophoma calamagrostidis Kaz. Tanaka & K. Hiray.; Pseudocoleophoma polygonicola Kaz. Tanaka & K. Hiray.; Stagonospora pseudoperfecta Kaz. Tanaka & K. Hiray.; Sulcatispora acerina Kaz. Tanaka & K. Hiray.; Sulcatispora berchemiae Kaz. Tanaka & K. Hiray

New combinations: Lentithecium clioninum (Kaz. Tanaka, Sat. Hatak. & Y. Harada) Kaz. Tanaka & K. Hiray.; Neoophiosphaerella sasicola (Nagas. & Y. Otani) Kaz. Tanaka & K. Hiray.; Parabambusicola bambusina (Teng) Kaz. Tanaka & K. Hiray.; Pseudoxylomyces elegans (Goh, W.H. Ho, K.D. Hyde & K.M. Tsui) Kaz. Tanaka & K. Hiray.; Setoseptoria arundinacea (Sowerby) Kaz. Tanaka & K. Hiray.; Setoseptoria magniarundinacea (Kaz. Tanaka & Y. Harada) Kaz. Tanaka & K. Hiray.; Stagonospora bicolor (D. Hawksw., W.J. Kaiser & Ndimande) Kaz. Tanaka & K. Hiray

Epitypifications (basionyms): Phaeosphaeria arundinacea var. brevispora Nagas. & Y. Otani, Phaeosphaeria sasicola Nagas. & Y. Otani

Introduction

The Pleosporales is the largest order in the Dothideomycetes. Two suborders have been recognised, viz. the Pleosporineae and the Massarineae, containing more than 19 families that presently still lack subordinal assignment (Hyde et al. 2013). One suborder, the Pleosporineae, includes many economically important plant pathogens, Alternaria, Bipolaris, Didymella, Leptosphaeria, Parastagonospora, and Pyrenophora, for example, containing huge species diversity (Manamgoda et al., 2011, Zhang et al., 2012, Woudenberg et al., 2013). In this suborder, the phylogenetic relationships within each family, the morphological circumscriptions including those of asexual morphs, their evolutionary trend as plant pathogens, biogeography, and speciation are well established and documented (Rouxel and Balesdent, 2005, Peever, 2007, Zhang et al., 2009b, Ohm et al., 2012, Grandaubert et al., 2014). In contrast, for the other suborder, the Massarineae, much fundamental information including the taxonomic framework, phylogenetic relationships, biology, and species diversity are poorly understood. The Massarineae was originally established by Barr (1979) to accommodate the Massarinaceae and the Arthopyreniaceae, but this suborder has long been disregarded in the classification of bitunicate ascomycetes (Hawksworth et al., 1983, Hawksworth et al., 1995, Barr, 1987, Eriksson and Winka, 1998, Kirk et al., 2008, Lumbsch and Huhndorf, 2010).

The family Massarinaceae was established by Munk (1956) to encompass four genera, Massarina, Metasphaeria, Pseudotrichia, and Trichometasphaeria. The thin basal peridium and dark tissue (= clypeus) around the ostiole found in the ascomata of these genera were emphasised as familial characters. Although this proposal was accepted by many researchers (Eriksson, 1981, Boise, 1985), the characters emphasised by Munk (1956) for the family also exist in several other groups of bitunicate ascomycetes, such as Didymosphaeria (Didymosphaeriaceae), Salsuginea (Salsugineaceae) and Roussoella (Roussoellaceae). The Massarinaceae, therefore, has been treated as a synonym of the Pleosporaceae (Bose, 1961, Luttrell, 1973, Von Arx and Müller, 1975) or Lophiostomataceae (Barr, 1987, Barr, 1992). Similarly, taxonomic circumscription of the genus Massarina has also been repeatedly revised (see Notes in Massarina), and as a consequence of a clear taxonomic definition of Massarina, the family Massarinaceae has been regarded as a natural lineage. Several related genera, e.g., Aquaticheirospora, Dictyosporium, and Periconia (Tsui et al., 2006, Kodsueb et al., 2007, Schoch et al., 2009), have been assigned to the Massarinaceae as circumscribed by Eriksson & Hawksworth (2003), and the concept of the family has been revised (Hyde et al. 2013).

In a recent molecular study on the Pleosporales (Zhang et al. 2012), the suborder Massarineae was resurrected as a sister to the Pleosporineae, and was emended to include five families, the Lentitheciaceae (Zhang et al. 2009b), Massarinaceae (Munk 1956), Montagnulaceae (Barr 2001; later synonymised under Didymosphaeriaceae, Ariyawansa et al. 2014), Morosphaeriaceae (Suetrong et al. 2009), and Trematosphaeriaceae (Suetrong et al. 2011b). More recently, the Bambusicolaceae (Hyde et al. 2013), Dictyosporiaceae (nom. prov., see Liu et al. 2015), Latoruaceae and Macrodiplodiopsidaceae (Crous et al. 2015a) have been added to the suborder. Most of these families have been recognised from the results of recent molecular studies. Only a few members of each family are currently known, and thus the morphological characteristics and phylogenetic relationships within each family are not fully understood. Consequently, several new genera belonging to the Massarineae, such as Ascorhombispora (Cai & Hyde 2007b), Inflatispora (Zhang et al. 2011), and Noosia (Crous et al. 2011a), have been published but their phylogenetic placements at familial level remain obscure (Zhang et al., 2012, Hyde et al., 2013).

Our aims were to reveal the species diversity within the Massarineae and to establish a taxonomic framework within this suborder for understanding the relationships among the Massarineae. To this end we examined 106 specimens/isolates belonging to this suborder, and analysed their morphology and partial DNA sequences of the small and large subunit nuclear ribosomal DNA (SSU and LSU nrDNA) and the translation elongation factor 1-alpha gene (tef1).

Materials and methods

Morphological studies

Leaf and twig specimens were collected from various plants in Japan, and deposited in the herbarium of Hirosaki University (HHUF). Measurements of all structures except for ascomata/conidiomata were taken from material mounted in distilled water. India ink or Black-Blue ink in distilled water was added to water mounts to detect gelatinous sheaths or appendages around spores. To observe the internal structure of strongly melanised spores, 5 % sodium hypochlorite solution (NaClO) was used for the bleaching of spores as described in Eriksson (1989). The position of the primary septum of spores was noted using the decimal system (Shoemaker 1984), and the numbers of spore septa were recorded as “septa of upper hemisphere + the primary septum + septa of lower hemisphere”. To observe sporocarp structure, ascomata/conidiomata were boiled in water for a few minutes, sectioned using a freezing microtome (HM 400R; MICROM, Germany), and mounted in diluted lactophenol cotton blue. Morphology was observed using differential interference and phase contrast microscopy (Olympus BX53, Japan).

Single spore cultures were obtained following the methods of Tubaki (1978). Ninety-nine cultures on 2 % potato-dextrose agar (PDA) or potato-carrot agar (PCA) were prepared from the collections and were deposited in the Japan Collection of Microorganisms (JCM), the National Institute of Agrobiological Sciences, Japan (MAFF), and the CBS-KNAW Fungal Biodiversity Centre (Centraalbureau voor Schimmelcultures; CBS). An additional seven strains were obtained from the CBS culture collection (Table 1). Growth rate and colony characteristics were recorded from cultures grown on PDA within 2 or 4 wk at 20 °C in the dark. Colours were designated according to Rayner (1970). Induction of sexual/asexual sporulation was attempted by culturing isolates on rice straw agar (RSA; Tanaka & Harada 2003a) and/or incubating small pieces of colony in sterilised water (Scheuer 1991). Nomenclatural novelties were deposited in MycoBank (Crous et al. 2004).

Table 1.

Cultures and GenBank accession numbers of Massarineae obtained in this study.

Taxon Family1 Original no. Culture no. Specimen no.2 GenBank accession no.3
Notes4
SSU LSU tef1 ITS
Aquastroma magniostiolata Par KT 2485 CBS 139680 = JCM 19429 = MAFF 243824 HHUF 30122HT AB797220 AB807510 AB808486 LC014540 A
Aquilomyces rebunensis Mor KT 732-2 CBS 139684 = JCM 19427 = MAFF 243862 HHUF 27556HT AB797252 AB807542 AB808518 AB809630 A
Bactrodesmium cubense IS CBS 680.96 = JCM 14126 AB797218 AB807508 AB808484 LC014541 C
Clypeoloculus akitaensis Mor KT 788 CBS 139681 = JCM 19424 = MAFF 239467 HHUF 27557HT AB797253 AB807543 AB808519 AB809631 A
C. hirosakiensis Mor KT 1283 CBS 139682 = JCM 19425 = MAFF 243864 HHUF 30144HT AB797260 AB807550 AB808526 AB809638 A
C. microsporus Mor KT 1131 CBS 139683 = JCM 19426 = MAFF 243863 HHUF 30143HT AB797245 AB807535 AB808510 AB811451 A
C. towadaensis Mor KT 1340 CBS 139685 = JCM 19428 = MAFF 243865 HHUF 30145HT AB797259 AB807549 AB808525 AB809637 A
Dictyosporium aff. bulbosum Dic KH 375 JCM 19403 = MAFF 243829 HHUF 30127 AB797224 AB807514 AB808490 LC014542 C
D. aff. heptasporum Dic KH 332 JCM 19406 = MAFF 243828 HHUF 30126 AB797223 AB807513 AB808489 LC014543 C
D. bulbosum Dic yone 221 MAFF 243835 HHUF 29990 AB797221 AB807511 AB808487 LC014544 C
D. digitatum Dic KH 401 JCM 19404 = MAFF 243830 HHUF 30128 AB797225 AB807515 AB808491 LC014545 C
D. digitatum Dic KT 2660 JCM 19405 = MAFF 243833 HHUF 30131 AB797228 AB807518 AB808494 LC014546 C
D. digitatum Dic yone 280 MAFF 243837 HHUF 30093 AB797222 AB807512 AB808488 LC014547 C
D. hughesii Dic KT 1847 JCM 19407 = MAFF 243832 HHUF 30130 AB797227 AB807517 AB808493 LC014548 C
D. pseudomusae Dic KH 412 JCM 19408 = MAFF 243831 HHUF 30129PT AB797226 AB807516 AB808492 LC014549 C
D. pseudomusae Dic yone 234 CBS 139686 = JCM 19409 = MAFF 243836 HHUF 30133HT AB797230 AB807520 AB808496 LC014550 C
D. tetrasporum Dic KT 2865 JCM 19410 = MAFF 243834 HHUF 30132 AB797229 AB807519 AB808495 LC014551 C
Fuscostagonospora sasae IS KT 1467 CBS 139687 = JCM 13104 = MAFF 239614 HHUF 29106HT AB797258 AB807548 AB808524 AB809636 A
Gregarithecium curvisporum Dic KT 922 CBS 139688 = JCM 19411 = MAFF 243838 HHUF 30134HT AB797257 AB807547 AB808523 AB809644 A
Helicascus aquaticus Mor KT 1544 JCM 19423 = MAFF 243866 HHUF 30146 AB797242 AB807532 AB808507 AB809627 A
H. elaterascus Mor KT 2673 MAFF 243867 HHUF 30147 AB797243 AB807533 AB808508 AB809626 A
H. elaterascus Mor KT 2682 CBS 139689 HHUF 30451 LC014603 LC014608 LC014613 LC014552 A
H. thalassioideus Mor CBS 110441 = JCM 14147 AB797267 AB807557 AB808533 LC014553 A
H. thalassioideus Mor KH 242 JCM 17526 = NBRC 107811 HHUF 30069 AB797268 AB807558 AB808534 LC014554 A
Helminthosporium dalbergiae Mas H 4628 (= TS 36) MAFF 243853 HHUF 27971 AB797231 AB807521 AB808497 LC014555 C
H. magnisporum Mas H 4627 (= TS 33) MAFF 239278 HHUF 27968HT AB797232 AB807522 AB808498 AB811452 C
H. massarinum Mas KT 838 JCM 13094 = MAFF 239604 HHUF 27573PT AB797233 AB807523 AB808499 AB809628 A
H. massarinum Mas KT 1564 CBS 139690 = JCM 13095 = MAFF 239605 HHUF 29089HT AB797234 AB807524 AB808500 AB809629 A
Helminthosporium sp. Mas H 4743 (= TS 68) MAFF 243856 HHUF 28248 AB797236 AB807526 C
Helminthosporium sp. Mas yone 38 MAFF 243857 HHUF 29740 AB797237 AB807527 AB808502 C
Helminthosporium sp. Mas yone 63 MAFF 243858 HHUF 29741 AB797238 AB807528 AB808503 C
H. velutinum Mas H 4626 (= TS 28) MAFF 243854 HHUF 27966 AB797240 AB807530 AB808505 LC014556 C
H. velutinum Mas H 4739 (= TS 58) MAFF 243855 HHUF 28243 AB797235 AB807525 AB808501 LC014557 C
H. velutinum Mas yone 96 MAFF 243859 HHUF 30140 AB797239 AB807529 AB808504 LC014558 C
Karstenula rhodostoma Did CBS 691.94 UPS (F-141152) 425947 AB797241 AB807531 AB808506 LC014559 A
Katumotoa bambusicola Len KT 1517a JCM 13131 = MAFF 239641 HHUF 28661PT AB5244541 AB5245951 AB5391082 LC014560 A
Keissleriella breviasca Len KT 540 JCM 19413 = MAFF 239476 HHUF 27715PT AB797296 AB807586 AB808565 AB811453 A
K. breviasca Len KT 581 JCM 19414 = MAFF 243843 HHUF 27717PT AB797297 AB807587 AB808566 AB811454 A
K. breviasca Len KT 649 CBS 139691 = JCM 19415 = MAFF 243844 HHUF 27718HT AB797298 AB807588 AB808567 AB811455 A
K. culmifida Len KT 2308 JCM 19416 = MAFF 243848 HHUF 30135 AB797301 AB807591 AB808570 LC014561 A
K. culmifida Len KT 2642 JCM 19417 = MAFF 243849 HHUF 30136 AB797302 AB807592 AB808571 LC014562 A
K. gloeospora Len KT 829 MAFF 239474 HHUF 27704 AB797299 AB807589 AB808568 LC014563 A
K. quadriseptata Len KT 2292 CBS 139692 = JCM 19418 = MAFF 243850 HHUF 30137HT AB797303 AB807593 AB808572 AB811456 A
Keissleriella sp. Len KT 895 JCM 19420 = MAFF 243845 HHUF 27705 AB797300 AB807590 AB808569 A
K. taminensis Len KT 571 MAFF 243846 HHUF 27707 AB797305 AB807595 AB808574 LC014564 A
K. taminensis Len KT 594 MAFF 243847 HHUF 27709 AB797306 AB807596 A
K. taminensis Len KT 678 MAFF 239475 HHUF 27711 AB797307 AB807597 AB808575 LC014565 A
K. yonaguniensis Len KT 2604 CBS 139693 = JCM 19419 = MAFF 243851 HHUF 30138HT AB797304 AB807594 AB808573 AB811457 A
Lentithecium clioninum Len KT 1149A CBS 139694 = JCM 12703 = MAFF 239293 HHUF 28199HT AB797250 AB807540 AB808515 LC014566 A
L. clioninum Len KT 1220 MAFF 243839 HHUF 28213PT AB797251 AB807541 AB808516 LC014567 A
L. pseudoclioninum Len KT 1111 JCM 19421 = MAFF 243840 HHUF 29053PT AB797254 AB807544 AB808520 AB809632 A
L. pseudoclioninum Len KT 1113 CBS 139695 = JCM 19422 = MAFF 243841 HHUF 29055HT AB797255 AB807545 AB808521 AB809633 A
Magnicamarosporium iriomotense Sul KT 2822 CBS 139696 = JCM 19402 = MAFF 243827 HHUF 30125HT AB797219 AB807509 AB808485 AB809640 C
Massarina cisti Mas CBS 266.62 = JCM 14140 ZT (Hütter & Loeffler)HT AB797249 AB807539 AB808514 LC014568 A
M. eburnea Mas H 3953 CBS 139697 = JCM 14422 HHUF 26621 AB5217183 AB5217353 AB808517 LC014569 A
Monodictys capensis IS HR 1 CBS 134928 = VKM F-4506 HHUF 29712 AB797261 AB807551 AB808527 LC014570 C
Monodictys sp. Par JO 10 MAFF 243825 HHUF 30123 AB797262 AB807552 AB808528 C
Monodictys sp. Par KH 331 MAFF 243826 HHUF 30124 AB797263 AB807553 AB808529 C
Morosphaeria ramunculicola Mor KH 220 NBRC 107813 HHUF 30070 AB797264 AB807554 AB808530 A
M. velatispora Mor KH 218 JCM 17529 = NBRC 107814 HHUF 30072 AB797265 AB807555 AB808531 LC014571 A
M. velatispora Mor KH 221 JCM 17530 = NBRC 107812 HHUF 30073 AB797266 AB807556 AB808532 LC014572 A
Neokalmusia brevispora Did KT 1466 CBS 120248 = JCM 13543 = MAFF 239276 HHUF 28229 AB5244591 AB5246001 AB5391121 LC014573 A
N. brevispora Did KT 2313 NBRC 106240 HHUF 30016ET AB5244601 AB5246011 AB5391132 LC014574 A
N. scabrispora Did KT 1023 CBS 120246 = JCM 12851 = MAFF 239517 HHUF 28608 AB5244521 AB5245931 AB5391062 LC014575 A
N. scabrispora Did KT 2202 NBRC 106237 HHUF 30013 AB5244531 AB5245941 AB5391072 LC014576 A
Neoophiosphaerella sasicola Len KT 1706 CBS 120247 = JCM 13134 = MAFF 239644 HHUF 29443ET AB5244581 AB5245991 AB5391112 LC014577 A
Parabambusicola bambusina Par H 4321 MAFF 239462 HHUF 26590 AB797246 AB807536 AB808511 LC014578 A
P. bambusina Par KH 139 MAFF 243823 HHUF 30121 AB797247 AB807537 AB808512 LC014579 A
P. bambusina Par KT 2637 MAFF 243822 HHUF 30120 AB797248 AB807538 AB808513 LC014580 A
Paraphaeosphaeria michotii Did KT 2222 MAFF 243861 HHUF 30142 AB797269 AB807559 AB808535 AB809639 A
Periconia byssoides Per H 4600 (= TS 29) MAFF 243872 HHUF 28238 AB797280 AB807570 AB808546 LC014581 C
P. byssoides Per H 4432 MAFF 243869 AB797279 AB807569 AB808545 LC014582 C
P. byssoides Per H 4853 (= TS 60) MAFF 243873 AB797281 AB807571 AB808547 LC014583 C
P. digitata Per CBS 510.77 AB797271 AB807561 AB808537 LC014584 C
P. homothallica Per KT 916 CBS 139698 = JCM 13100 = MAFF 239610 HHUF 29105HT AB797275 AB807565 AB808541 AB809645 A
P. igniaria Per CBS 379.86 AB797276 AB807566 AB808542 LC014585 C
P. igniaria Per CBS 845.96 = JCM 14142 AB797277 AB807567 AB808543 LC014586 C
P. pseudobyssoides Per H 4151 MAFF 243868 AB797278 AB807568 AB808544 LC014587 C
P. pseudobyssoides Per H 4790 ( = TS 102) MAFF 243874 HHUF 28257 AB797270 AB807560 AB808536 LC014588 C
P. pseudodigitata Per KT 644 JCM 13164 = MAFF 239674 HHUF 27569PT AB797272 AB807562 AB808538 LC014589 A
P. pseudodigitata Per KT 1195A JCM 13165 = MAFF 239675 HHUF 29368PT AB797273 AB807563 AB808539 LC014590 A
P. pseudodigitata Per KT 1395 CBS 139699 = JCM 13166 = MAFF 239676 HHUF 29370HT AB797274 AB807564 AB808540 LC014591 A
Periconia sp. Per KT 1820A MAFF 243870 HHUF 30148 AB797282 AB807572 AB808548 C
Periconia sp. Per KT 1825 MAFF 243871 HHUF 30149 AB797283 AB807573 AB808549 C
Pseudocoleophoma calamagrostidis Dic KT 3284 CBS 139700 HHUF 30450HT LC014604 LC014609 LC014614 LC014592 A
P. polygonicola Dic KT 731 CBS 139701 = JCM 19412 = MAFF 239468 HHUF 27558HT AB797256 AB807546 AB808522 AB809634 A
Setoseptoria arundinacea Len KT 552 MAFF 239460 HHUF 27543 AB797284 AB807574 AB808550 LC014594 A
S. arundinacea Len KT 600 MAFF 243842 HHUF 27544 AB797285 AB807575 AB808551 LC014595 A
S. magniarundinacea Len KT 1174 CBS 139702 = MAFF 239294 HHUF 28293HT AB797286 AB807576 AB808552 LC014596 A
Spegazzinia deightonii Did yone 66 MAFF 243876 HHUF 30150 AB797291 AB807581 AB808557 C
S. deightonii Did yone 212 MAFF 243877 HHUF 30151 AB797292 AB807582 AB808558 C
Spegazzinia sp. Did yone 279 MAFF 243878 HHUF 30152 AB797293 AB807583 AB808559 C
S. tessarthra Did SH 287 MAFF 243875 HHUF 27691 AB797294 AB807584 AB808560 C
Stagonospora perfecta Mas KT 1726A JCM 13099 = MAFF 239609 HHUF 29095 AB797289 AB807579 AB808555 AB809642 A
S. pseudoperfecta Mas KT 889 CBS 120236 = JCM 13097 = MAFF 239607 HHUF 29087HT AB797287 AB807577 AB808553 AB809641 A
Stagonospora sp. Mas KT 903 CBS 120237 = JCM 13098 = MAFF 239608 HHUF 29088 AB797288 AB807578 AB808554 A
S. tainanensis Mas KT 1866 MAFF 243860 HHUF 30141 AB797290 AB807580 AB808556 AB809643 A
Sulcatispora acerina Sul KT 2982 CBS 139703 HHUF 30449HT LC014605 LC014610 LC014615 LC014597 A
S. berchemiae Sul KT 1607 CBS 139704 = JCM 13101 = MAFF 239611 HHUF 29097HT AB797244 AB807534 AB808509 AB809635 A
Tingoldiago graminicola Len KH 68 JCM 16485 = NBRC 106131 HHUF 30009HT AB5217263 AB5217433 AB808561 LC014598 A
T. graminicola Len KH 155 JCM 16486 = NBRC 106132 HHUF 30010PT AB5217283 AB5217453 AB808562 LC014599 A
T. graminicola Len KT 891 MAFF 239472 HHUF 27882PT AB5217273 AB5217443 AB808563 LC014600 A
Trematosphaeria pertusa Tre KT 1496 JCM 19430 = MAFF 243879 HHUF 30153 AB797295 AB807585 AB808564 AB809646 A
T. pertusa Tre KT 3314 CBS 139705 HHUF 30452 LC014606 LC014611 LC014616 LC014601 A
T. pertusa Tre KT 3315 CBS 139706 HHUF 30453 LC014607 LC014612 LC014617 LC014602 A
Pseudoxylomyces elegans IS KT 2887 MAFF 243852 HHUF 30139 AB797308 AB807598 AB808576 LC014593 C
1

Abbreviation of family names: Bam (Bambusicolaceae), Dic (Dictyosporaceae), Did (Didymosphaeriaceae), IS (insertae sedis), Len (Lentitheciaceae), Mas (Massarinaceae), Mor (Morosphaeriaceae), Par (Paramorosphaeriaceae), Per (Periconiaceae), Sul (Sulcatisporaceae), and Tre (Trematosphaeriaceae).

2

Specimen with HT (holotype), PT (paratype), and ET (epitype).

3

Sequences obtained in this study are shown in bold. Sequences with1 from Tanaka et al. (2009),2 from Schoch et al. (2009), and 3 from Hirayama et al. (2010).

4

Origin of isolates: A, single ascospore; C, single conidium.

Molecular phylogenetic analysis

A total of 106 isolates were used for DNA extraction (Table 1). DNA from mycelia was extracted using the ISOPLANT Kit (Nippon Gene, Tokyo, Japan) following the manufacturer’s instructions. Partial SSU and LSU nrDNA, and tef1 were sequenced to elucidate phylogenetic relationships of the isolates for considering familial and generic classifications. The complete internally transcribed spacer (ITS) regions of nrDNA were also obtained for use as DNA barcode markers (Schoch et al. 2012), although the sequences were not used for phylogenetic reconstruction (Table 1). Four primer sets, NS1–NS4 (White et al. 1990), LR0R–LR7 (Rehner & Samuels 1994), EF1-983F–EF1-2218R (Rehner & Buckley 2005), and ITS1–ITS4 (White et al. 1990) were used for the amplification of SSU, LSU, tef1, and ITS, respectively. DNA fragments were amplified and sequenced following the methods described by Tanaka et al. (2009). Newly obtained sequences have been deposited in GenBank (Table 1). These sequences together with those retrieved from GenBank (Table 2) were aligned by MUSCLE included in the program Molecular Evolutionary Genetic Analysis (MEGA) v. 6 (Tamura et al. 2013) and manually adjusted to optimise the alignment. Hysterobrevium mori and Hysterium pulicare, both belonging to the Hysteriales, were designated as outgroup taxa. The alignments used were deposited in TreeBASE (http://www.treebase.org). Phylogenetic analyses were conducted based on maximum likelihood (ML) method. The optimum substitution models for each dataset were estimated by Kakusan4 (Tanabe 2011), based on the Akaike information criterion (AIC; Akaike 1974) for ML analyses. The ML analyses were performed with TreeFinder Mar 2011 (Jobb 2011) based on the models selected by AIC (separate model among genes and proportional model among codons, HKY85+G for SSU, J2+G for LSU, GTR+G for the first codon of tef1, TVM+G for the second codon of tef1, and GTR+G for the third codon of tef1). Bootstrap proportions (BP) were obtained by 1000 bootstrap replications.

Table 2.

Cultures and GenBank accession numbers of Massarineae used for phylogenetic analysis.

Taxon Family1 Culture no.2 GenBank accession no.3
SSU LSU tef1
Alloconiothyrium aptrootii Did CBS 980.95HT NS JX496234 NS
Aquaticheirospora lignicola Dic RK-2006aHT AY736377 AY736378 NS
Aquilomyces patris Mor CBS 135661HT KP184077 KP184041 NS
Asteromassaria pulchra IS CBS 124082 GU296137 GU301800 GU349066
Bambusicola bambusae Bam MFLUCC 11-0614HT JX442039 JX442035 NS
B. irregulispora Bam MFLUCC 11-0437HT JX442040 JX442036 NS
B. loculata Bam MFLUCC 13-0856HT KP761735 KP761729 KP761724
B. massarinia Bam MFLUCC 11-0389HT JX442041 JX442037 NS
B. splendida Bam MFLUCC 11-0439HT JX442042 JX442038 NS
Bambusistroma didymosporum Per MFLUCC 13-0862HT NS KP761730 KP761727
Bimuria novae-zelandiae Did CBS 107.79HT AY016338 AY016356 DQ471087
Byssothecium circinans Mas CBS 675.92 GU205235 AY016357 GU349061
Camarographium koreanum Mac CBS 117159HT NS JQ044451 NS
Corynesporaleucadendri Mas CBS 135133HT NS KF251654 NS
C.olivacea Mas CBS 114450 NS GU301809 GU349014
Cucurbidothis pityophila Did CBS 149.32 U42480 DQ384102 NS
Darksidea alpha Len CBS 135650HT KP184049 KP184019 KP184166
D. beta Len CBS 135637HT KP184074 KP184023 KP184189
D. gamma Len CBS 135634HT KP184073 KP184028 KP184188
D. delta Len CBS 135638HT KP184069 KP184024 KP184184
D. epsilon Len CBS 135658HT KP184070 KP184029 KP184186
D. zeta Len CBS 135640HT KP184071 KP184013 KP184191
Dendryphiella vinosa Dic EU848589 EU848590 NS
Deniquelata barringtoniae Did MFLUCC 110422HT JX254656 JX254655 NS
Dictyosporium alatum Dic ATCC 34953HT DQ018080 DQ018101 NS
D. elegans Dic NBRC 32502 DQ018079 DQ018100 NS
D. inflatum Dic NTOU 3855 JQ267361 JQ267363 NS
D. meiosporum Dic MFLUCC 10-0131HT KP710946 KP710945 NS
D. stellatum Dic CCFC 241241HT NS JF951177 NS
D. strelitziae Dic CBS 123359HT NS FJ839653 NS
D. thailandicum Dic MFLUCC 13-0773HT NS KP716707 NS
D. toruloides Dic CBS 209.65 DQ018081 DQ018104 NS
Didymocrea sadasivanii Did CBS 438.65IT DQ384066 DQ384103 NS
Didymosphaeria rubi-ulmifolii Did MFLUCC 14-0023HT KJ436588 KJ436586 NS
D.spartii Mas CBS 183.58 GU205250 GU205225 NS
Digitodesmium bambusicola Dic CBS 110279HT NS DQ018103 NS
Diplococciumasperum Dic CBS 139.95 EF204511 EF204493 NS
Falciformispora lignatilis Tre BCC 21117 GU371834 GU371826 GU371819
F. senegalensis Tre CBS 196.79HT KF015636 KF015631 KF015687
F. tompkinsii Tre CBS 200.79HT KF015639 KF015625 KF015685
Flavomyces fulophazii Per CBS 135761HT KP184082 KP184040 NS
Halomassarina thalassiae Tre BCC 17054 GQ925842 GQ925849 NS
H. thalassiae Tre JK 5262D NS GU301816 GU349011
Helicascus aegyptiacus Mor FWCC 99HT KC894852 KC894853 NS
H. aquaticus Mor MFLUCC 10-0918HT KC886638 KC886640 NS
H. elaterascus Mor A22-5A = HKUCC 7769 AF053727 AY787934 NS
H. nypae Mor BCC 36751 GU479754 GU479788 GU479854
H. nypae Mor BCC 36752 GU479755 GU479789 GU479855
H. thalassioideus Mor MFLUCC10-0911 KC886637 KC886636 NS
H. unilocularis Mor MJF14020HT NS KP637166 NS
Hysterium pulicare OG CBS 12337 FJ161161 FJ161201 FJ161109
Hysterobrevium mori OG CBS 12356 FJ161155 FJ161196 FJ161104
Inflatispora pseudostromatica IS CBS 123110HT JN231132 JN231131 NS
Kalmusia (Montagnula)” anthostomoides Did CBS 615.86 GU205246 GU205223 NS
K. ebuli Did CBS 123120NT JN851818 JN644073 NS
K. italica Did MFLUCC 13–0066HT KP325442 KP325441 NS
K. spartii Did MFLUCC 14–0560HT KP753953 KP744487 NS
K. variispora Did CBS 121517HT NS JX496143 NS
Karstenula rhodostoma Did CBS 690.94 GU296154 GU301821 GU349067
Keissleriella cladophila Len CBS 104.55 GU296155 GU301822 GU349043
K. genistae Len CBS 113798 GU205242 GU205222 NS
K. linearis Len IFRD 2008 FJ795478 FJ795435 NS
K. poagena Len CBS 136767HT NS KJ869170 NS
K. sparticola Len MFLUCC 14–0196HT NS KP639571 NS
K. trichophoricola Len CBS 136770HT NS KJ869171 NS
Latorua caligans Lat CBS 576.65HT NS KR873266 NS
L. grootfonteinensis Lat CBS 369.72HT NS KR873267 NS
Lentithecium aquaticum Len CBS 123099HT GU296156 GU301823 GU349068
L. fluviatile Len CBS 122367 GU296158 GU301825 GU349074
Leptosphaeria doliolum Lep CBS 505.75 GU296159 GU301827 GU349069
Letendraea eurotioides Did CBS 212.31 NS AY787935 NS
L. helminthicola Did CBS 884.85 AY016345 AY016362 NS
L. padouk Did CBS 485.70 GU296162 AY849951 NS
Lophiostoma arundinis Lop JCM 13550 AB618679 AB618998 LC001737
L. macrostomum Lop JCM 13544 AB618691 AB619010 LC001751
Macrodiplodiopsis desmazieri Mac CBS 140062ET NS KR873272 NS
M. desmazieri Mac CBS 221.37 DQ678013 DQ678065 DQ677908
Massarina eburnea Mas CBS 473.64 GU296170 GU301840 GU349040
Montagnula aloes Did CBS 132531HT NS JX069847 NS
M. graminicola Did MFLUCC 13–0352HT KM658316 KM658315 NS
M. opulenta Did CBS 168.34 AF164370 DQ678086 NS
Morosphaeria ramunculicola Mor BCC 18404 GQ925838 GQ925853 NS
M. velatispora Mor BCC 17059 GQ925841 GQ925852 NS
Multiseptospora thailandica Par MFLUCC 11–0183HT KP753955 KP744490 NS
Munkovalsaria appendiculata Did CBS 109027HT NS AY772016 NS
Murilentithecium clematidis Len MFLUCC 14-0561HT KM408761 KM408759 KM454445
Neobambusicola strelitziae Sul CBS 138869HT NS KP004495 NS
Noosia banksiae Per CBS 129526HT NS JF951167 NS
Palmiascoma gregariascomum Bam MFLUCC 11–0175HT KP753958 KP744495 NS
Paracamarosporium leucandendri Did CBS 123027HT NS EU552106 NS
P. psoraleae Did CBS 136628HT NS KF777199 NS
Paraconiothyrium estuarinum Did CBS 109850HT NS JX496129 NS
P.flavescens Dic CBS 178.93 GU238216 GU238075 NS
P.fuckelii Did CBS 797.95 GU238204 GU237960 NS
P. maculicutis Did CBS 101461HT EU754101 EU754200 NS
P. thysanolaenae Did MFLUCC 10–0550HT KP753959 KP744496 NS
P.tiliae Did CBS 265.94LT EU754040 EU754139 NS
Paraphaeosphaeria michotii Did CBS 652.86 GQ387520 GQ387581 GU456266
P.spartii Did MFLUCC 13–0398HT KP711367 KP711362 NS
Periconia macrospinosa Per CBS 135663 KP184080 KP184038 NS
Phaeodothis winteri Did CBS 182.58 GU296183 GU301857 DQ677917
Phragmocamarosporium hederae Len MFLUCC 13-0552HT KP842918 KP842915 NS
P. platani Len MFLUCC 14-1191HT KP842919 KP842916 NS
Pithomycesvalparadisiacus Mor CBS 113339 NS EU552152 NS
Pleospora herbarum Ple CBS 191.86 DQ247812 DQ247804 DQ471090
Pleurophoma pleurospora Len CBS 130329 LT NS JF740327 NS
Poaceascoma helicoides Len MFLUCC 11-0136HT KP998463 KP998462 KP998461
Polyschema congolensis Lat CBS 542.73HT NS EF204502 NS
P. larviformis Lat CBS 463.88 NS EF204503 NS
P. terricola Lat CBS 301.65HT EF204519 EF204504 NS
Pseudocamarosporium brabeji Did CBS 119219HT NS EU552104 NS
P. cotinae Did MFLUCC 14–0624HT KP753964 KP744505 NS
P. propinquum Did MFLUCC 13-0544ET KJ819949 KJ813280 NS
P. tilicola Did MFLUCC 13-0550HT KJ819950 KJ813281 NS
Pseudochaetosphaeronema larense Mac CBS 640.73HT KF015652 KF015611 KF015684
Pseudodictyosporium elegans Dic CBS 688.93HT DQ018084 DQ018106 NS
P. wauense Dic NBRC 30078 DQ018083 DQ018105 NS
Setoseptoria arundinacea Len CBS 619.86 GU296157 GU301824 NS
S. arundinacea Len CBS 123131 GU456298 GU456320 GU456281
S. phragmitis Len CBS 114802HT NS KF251752 NS
S. phragmitis Len CBS 114966PT NS KF251753 NS
Sporidesmiella fusiformis Did HKUCC 10831 NS DQ408577 NS
Sporidesmiumtengii Per HKUCC 10837 NS DQ408559 NS
Stagonospora duoseptata Mas CBS 135093HT NS KF251758 NS
S.macropycnidia Len CBS 114202 GU296198 GU301873 GU349026
S. paludosa Mas CBS 135088NT NS KF251760 NS
S. (Neottiosporina) paspali Mas CBS 331.37 EU754073 EU754172 GU349079
S. perfecta Mas CBS 135099HT NS KF251761 NS
S. pseudocaricis Mas CBS 135132HT NS KF251763 NS
S. pseudopaludosa Mas CBS 136424HT NS KF777239 NS
S. pseudovitensis Mas S602PT NS KF251765 NS
S. trichophoricola Mas CBS 136764HT NS KJ869168 NS
S. uniseptata Mas CBS 135090HT NS KF251767 NS
Suttonomyces clematidis Mas MFLUCC 14-0240HT KP842920 KP842917 NS
Trematosphaeria grisea Tre CBS 332.50HT KF015641 KF015614 KF015698
T. grisea Tre CBS 135984 KF015632 KF015618 KF015694
T. pertusa Tre CBS 122368ET FJ201991 FJ201990 KF015701
1

Abbreviation of family names: Acr (Acrocalymmataceae), Bam (Bambusicolaceae), Dic (Dictyosporaceae), Did (Didymosphaeriaceae), IS (insertae sedis), Lat (Latoruaceae), Len (Lentitheciaceae), Lep (Leptosphaeriaceae), Lop (Lophiostomataceae), Mac (Macrodiplodiopsidaceae), Mas (Massarinaceae), Mor (Morosphaeriaceae), OG (outgroup), Par (Parabambusicolaceae), Per (Periconiaceae), Ple (Pleosporaceae), Sul (Sulcatisporaceae), and Tre (Trematosphaeriaceae).

2

Isolate ex ET (epitype), HT (holotype), IT (isotype), LT (lectotype), NT (neotype), and PT (paratype).

3

NS: No sequence available in GenBank.

Results

Molecular phylogenetic analysis

Approximately 940–1 750 bp of SSU, 870–1 330 bp of LSU nrDNA, 830–940 bp of tef1, and 500–900 bp of ITS sequences were determined for 106 isolates of fungi within the Massarineae. Analyses of different gene datasets were performed individually, but no topological conflict was observed at familial level with the exception of Lentitheciaceae, which was polyphyletic in the tef1 tree (data not shown). A combined dataset of SSU, LSU, and tef1 sequences was generated after excluding insertions of several species which corresponded to positions 493–1 005 of Monodictys capensis (GenBank AB797261) and positions 1 286–1 651 of Magnicamarosporium iriomotense (GenBank AB797219) in the SSU, and positions 836–892 of Montagnula spartii (GenBank GU205225) and positions 871–924 of Hysterium pulicare (GenBank FJ161201) in the LSU sequences. The combined dataset consisted of 243 taxa and 3 386 characters, of which 28 % were missing and gap characters. The alignment had 82 % representation for SSU, 100 % for LSU and 60 % for tef1. BP support of each familial clade in the LSU tree was generally improved by adding the SSU and tef1 dataset with missing data, e.g., from 82 % to 100 % in the Massarinaceae, and from 90 % to 100 % in the Trematosphaeriaceae.

The ML tree of Massarineae based on the SSU and LSU nrDNA and tef1 regions with the highest log likelihood (−36965.05250) is shown in Fig. 1. A total of 237 taxa of the Massarineae formed a clade (with 98 % BP support) and were scattered in 12 familial clades and five unknown clades. Seven families previously recognised, namely the Dictyosporiaceae (nom. prov., 100 % BP), Didymosphaeriaceae (99 % BP), Latoruaceae (99 % BP), Macrodiplodiopsidaceae (96 % BP), Massarinaceae (100 % BP), Morosphaeriaceae (98 % BP), and Trematosphaeriaceae (100 % BP) were highly supported as independent monophyletic groups. The Bambusicolaceae and Lentitheciaceae received moderate BP support, 87 % and 71 %, respectively. We erected two new families, the Parabambusicolaceae (81 % BP) and Sulcatisporaceae (97 % BP), to accommodate several genera, which cannot be placed in any of the existing families in the Massarineae. Although species in the genus Periconia have been treated as members of the Massarinaceae (Zhang et al., 2012, Hyde et al., 2013), we have placed them in a distinct family, the Periconiaceae (100 % BP), which was established by Nannizzi (1934).

Fig. 1.

Fig. 1

Fig. 1

Fig. 1

Maximum-likelihood tree of Massarineae based on the SSU and LSU nrDNA and tef1 regions. ML bootstrap proportion (BP) greater than 50 % is presented at the nodes. An original isolate designation (or culture collection number) is noted after the species name. Sequences derived from holotype, isotype, neotype, paratype and epitype materials are indicated as HT, IT, NT, PT and ET, respectively. Species used for morphological observation in this study are formatted in bold. New names are marked by five-pointed stars. Families, where known, are indicated with coloured blocks. The tree was rooted to Hysterobrevium mori and Hysterium pulicare in the Hysteriales. The scale bar represents the number of nucleotide substitutions per site.

Taxonomy

As a result of morphological comparisons and phylogenetic analyses of 106 strains, along with sequences from 131 taxa obtained from GenBank, at least 12 families including two new families (the Parabambusicolaceae and Sulcatisporaceae) are recognised. Ten new genera, 22 new species, and seven new combinations are proposed. Taxa are arranged in alphabetical order by family, genus, and species. For the known species a brief description and/or taxonomic notes are provided.

Dictyosporiaceae nom. prov. (see Liu et al. 2015)

Type genus: Dictyosporium Corda.

Dictyosporium Corda, Weitenweber's Beitr. Nat.: 87. 1836.

Type species: Dictyosporium elegans Corda.

Notes: Dictyosporium species have been reported worldwide from dead wood and decaying leaves in terrestrial and freshwater environments. The genus is characterised by pigmented, cheiroid conidia formed on sporodochial colonies. It has been considered that the genus is closely related to the Massarinaceae in the Pleosporales based on phylogenetic analysis using SSU and LSU nrDNA sequences (Tsui et al. 2006). After taxonomic revision of the genus (Goh et al., 1999, Cai et al., 2003), 33 species were accepted as Dictyosporium (Crous et al. 2009a). In addition, 16 species have been further recorded in this genus (Manoharachary et al., 2007, Zhang et al., 2009a, Wongsawas et al., 2009, Hu et al., 2010, McKenzie, 2010, Crous et al., 2011a, Whitton et al., 2012, Kirschner et al., 2013, Liu et al., 2015, Prasher and Verma, 2015).

Dictyosporium bulbosum Tzean & J.L. Chen, Mycol. Res. 92: 500. 1989. Fig. 2A–C.

Fig. 2.

Fig. 2

Dictyosporium spp. A–C. D. bulbosum (A from culture yone 221; B, C from yone 221); D–F. D. aff. bulbosum (culture KH 375); G–I. D. digitatum (G from culture KT 2660; H from culture yone 280; I from culture KH 401); J–L. D. aff. heptasporum (KH 332); M–O. D. hughesii (M, O from KT 1847; N from culture KT 1847); P–V. D. pseudomusae (P from yone 234; Q, T from culture yone 234; R, U from culture KH 412; S, V from KH 412); W–Y. D. tetrasporum (culture KT 2865). A, D, G, J, M, P–R, W. Conidial masses on culture media or natural substrates (A, D, G, Q, R, W from culture; J, M, P from nature); B, C, E, F, H, I, K, L, N, O, S–V, X, Y. Conidia (arrowheads indicate conidial appendages). Scale bars: A, D, G, J, M, P–R, W = 200 μm; B, C, E, F, H, I, K, L, N, O, S–V, X, Y = 10 μm.

Specimen examined: Japan, Okinawa, Isl. Iriomote, near Maryudu-falls, on dead twigs of woody plant, 27 Sep. 2007, H. Yonezawa & K. Tanaka, yone 221 = HHUF 29990, culture MAFF 243835.

Note: This specimen was identified as D. bulbosum and morphological features were described and illustrated by Hirayama et al. (2012).

Dictyosporium aff. bulbosum Fig. 2D–F.

Specimen examined: Japan, Okinawa, Isl. Iriomote, Uehara, near Tropical Biosphere Research Center (Ryukyu Univ.), small stream, on submerged twigs of woody plant, 13 Jul. 2011, K. Hirayama & K. Tanaka, KH 375 = HHUF 30127, culture JCM 19403 = MAFF 243829.

Notes: The above isolate produced an asexual morph in culture, which is similar to that on the natural specimen. Conidia in culture were 36–50 × 26–33 μm (av. 45.7 × 29.1 μm, n = 33), l/w 1.3–1.8 (av. 1.6, n = 33), consisting of 29–47 cells arranged in 5–6 rows, with apical appendages. These features almost agree with the description in the protologue of D. bulbosum (Tzean & Chen 1989), but the ITS sequences of our material (KH 375; GenBank LC014542) differed from those of D. bulbosum (GenBank LC014544 and DQ018086) in ca. 8 % (40/515) positions.

Dictyosporium digitatum J.L. Chen et al., Mycol. Res. 95: 1145. 1991. Fig. 2G–I.

Specimens examined: Japan, Okinawa, Isl. Ishigaki, trail of Mt. Omoto, on dead stems of herbaceous plant, 16 Jul. 2011, K. Hirayama & K. Tanaka, KH 401 = HHUF 30128, culture JCM 19404 = MAFF 243830; Okinawa, Isl. Iriomote, Komi, on dead wood of Castanopsis sieboldii, 15 Sep. 2009, Y. Kurihara, KT 2660 = HHUF 30131, culture JCM 19405 = MAFF 243833; Okinawa, Isl. Iriomote, Kanpire-falls, on dead twigs of woody plant, 21 Nov. 2008, K. Tanaka & K. Hirayama, yone 280 = HHUF 30093, culture MAFF 243837.

Notes: The morphological characters of our specimens are consistent with those of D. digitatum (Chen et al. 1991), as reported by Hirayama et al. (2012). The ITS sequences of this species from our three isolates were highly similar (99.1–99.8 %) but their similarities with a deposited sequence of D. digitatum in GenBank (GenBank DQ018089) were rather low (90.1–90.4 %).

Dictyosporium aff. heptasporum Fig. 2J–L.

Specimen examined: Japan, Okinawa, Isl. Ishigaki, Mt. Banna, near small stream, on dead twigs of woody plant, 14 Jul. 2011, K. Hirayama & K. Tanaka, KH 332 = HHUF 30126, culture JCM 19406 = MAFF 243828.

Notes: The morphological features of the above specimen were as follows; conidia 70–90 × 21–31 μm (av. 79.7 × 23.3 μm, n = 43), cylindrical, l/w 3.1–3.9 (av. 3.4, n = 43), with (5–)7 rows, 16–18-septate, without appendages. This agrees with the details in the description of D. heptasporum (Goh et al. 1999), but the conidia in our material are somewhat larger (vs. 50–80 × 20–30 μm; Goh et al. 1999). A BLAST search using ITS sequences from our culture showed D. heptasporum (GenBank DQ018090) as the closest species, but the similarity was relatively low (493/518 = 95.2 %).

Dictyosporium hughesii McKenzie, Mycotaxon 111: 156. 2010. Fig. 2M–O.

Specimen examined: Japan, Kagoshima, Isl. Yakushima, Shirataniunsuikyo, on dead twigs of Stewartia monadelpha, 18 Oct. 2005, K. Tanaka & T. Hosoya, KT 1847 = HHUF 30130 = TNS-F-12407, culture JCM 19407 = MAFF 243832.

Note: This collection was identified as D. hughesii (McKenzie 2010) based on the conidial morphology; conidia 43–51 × 18–28 μm (av. 46.8 × 24.8 μm, n = 30), l/w 1.6–2.3(–2.6) (av. 1.9, n = 30), consisting of 50–71 cells arranged in 6–7 rows, with or without apical appendages.

Dictyosporium pseudomusae Kaz. Tanaka, G. Sato & K. Hiray., sp. nov. MycoBank MB811297. Fig. 2P–V.

Etymology: After its morphological similarity to Dictyosporium musae.

Sporodochia on natural substrate scattered, punctiform, dark brown to black. Mycelium immersed, 170–490 μm diam. Conidiophores micronematous, not differentiated from vegetative hyphae. Conidiogenous cells holoblastic, cylindrical, 5.5–8 μm wide. Conidia solitary, brown, ellipsoid to cylindrical, cheiroid, not complanate, (58–)61–78(–81) × 19–29(–33) μm (av. 69.9 × 22.9 μm, n = 60), l/w (2.2–)2.5–3.8(–4.0) (av. 3.1, n = 60), consisting of 78–100 cells arranged in (6–)7 rows and basal connecting cell (6–8 × 5.5–8 μm); each row cylindrical, with 13–15 cells. Appendages globose to subglobose, hyaline, 6–11.5 μm diam, bearing from apical cells or side of outer rows. Sexual morph unknown.

Colonies on PDA (after 4 wk) attaining a diam of 3.9–4.4 cm, white to rosy buff; reverse buff to cinnamon; rosy vinaceous pigment produced. In culture asexual morph formed.

Specimens examined: Japan, Okinawa, Isl. Ishigaki, Mt. Banna, near small stream, on dead twigs of Bamboo, 14 Jul. 2011, K. Hirayama & K. Tanaka, KH 412 = HHUF 30129, culture JCM 19408 = MAFF 243831; Okinawa, Isl. Iriomote, Inamori-path, on dead twigs of woody plant, 25 Sep. 2007, H. Yonezawa & K. Tanaka (holotype yone 234 = HHUF 30133, culture ex-type CBS 139686 = JCM 19409 = MAFF 243836).

Notes: Among the described species, D. pseudomusae is most similar to D. musae (Photita et al. 2002) in having large-sized conidia comprised of seven cell rows and with appendages arising from side cells of the outer rows. Conidia of the latter species, however, are smaller (45–65 × 20–27 μm, av. 55.9 × 23.5 μm) and comprised of fewer cells (49–77 cells; Photita et al. 2002). The closest species to D. pseudomusae appear to be D. digitatum [GenBank DQ018089; identities = 504/516 (97.7 %), gaps = 2/516] and D. giganticum [GenBank DQ018095; identities = 497/516 (96.3 %), gaps = 2/516] from a BLAST search using ITS sequences.

Dictyosporium tetrasporum L. Cai & K.D. Hyde, Mycoscience 48: 290. 2007. Fig. 2W–Y.

Specimen examined: Japan, Okinawa, Isl. Ishigaki, Mt. Banna, near small stream, on dead twigs of woody plant, 16 Jul. 2011, K. Tanaka & K. Hirayama, KT 2865 = HHUF 30132, culture JCM 19410 = MAFF 243834.

Notes: The collection matches the original description of D. tetrasporum (Cai & Hyde 2007a). The characters of our specimen are as follows; conidia 22–37 × 15–21 μm (av. 27.5 × 17.5 μm, n = 30), l/w 1.2–2.2 (av. 1.6, n = 30), consisting of 11–28 cells arranged in (3–)4 rows, without apical appendages. In culture, conidia were produced that were identical to those on the natural specimen (24–38 × 16–24 μm; av. 30.3 × 20.1 μm, n = 32).

Gregarithecium Kaz. Tanaka & K. Hiray., gen. nov. MycoBank MB811298.

Etymology: Referring to the gregarious ascomata.

Ascomata grouped, immersed to erumpent, depressed globose to hemispherical with flattened base in section. Ostiolar neck short terete, central, with periphyses, covered by black clypeus. Ascomatal wall composed of thin-walled cells, surrounded by vertically-orientated stromatic tissue. Pseudoparaphyses septate, branched and anastomosed. Asci fissitunicate, cylindrical, short-stalked, with 8 biseriate ascospores. Ascospores broadly fusiform, with a median septum, hyaline, smooth, surrounded by an entire sheath. Asexual morph unknown.

Type species: Gregarithecium curvisporum Kaz. Tanaka & K. Hiray.

Notes: In its depressed globose ascomata with clypeate ostiole, Gregarithecium is reminiscent of species in Massarina s. lat. (Aptroot, 1998, Tanaka and Harada, 2003b), but Gregarithecium can be separated from the latter by the presence of stromatic tissue surrounding the ascomata. Massarina s. lat. is regarded as being polyphyletic and thus has recently been segregated into several new genera. These are scattered in the Lentitheciaceae (Tingoldiago; Hirayama et al. 2010), Morosphaeriaceae (Morosphaeria; Suetrong et al. 2009), Trematosphaeriaceae (Halomassarina; Suetrong et al. 2009), Tetraplosphaeriaceae (Triplosphaeria; Tanaka et al. 2009), and Lindgomycetaceae (Lindgomyces; Hirayama et al. 2010), but are not so far reported in the Dictyosporiaceae.

Gregarithecium curvisporum Kaz. Tanaka & K. Hiray., sp. nov. MycoBank MB811299. Fig. 3.

Fig. 3.

Fig. 3

Gregarithecium curvisporum. A, B. Ascomata on the natural host surface; C. Ascomata in culture (on rice straw); D, E. Ascomata in longitudinal section; F. Ascomatal wall; G. Pseudoparaphyses; H. Ascus; I–K. Ascospores (arrowheads indicate mucilaginous sheath); L. Spermatia. A, B, D–I from KT 922; C, J–L from culture KT 922. Scale bars: A = 2 mm; B, C = 500 μm; D, E = 100 μm; F–L = 10 μm.

Etymology: From the Latin curvi-, in reference to the curved ascospores.

Ascomata grouped in numbers of 3–6, immersed to erumpent, depressed globose to hemispherical with flattened base in section, 140–180 μm high, 290–430 μm diam. Ostiolar neck short terete, central, with an ostiole (25–50 μm diam) and short periphyses, covered by a black clypeus composed of small cells (2.5–7.5 × 1–3 μm). Ascomatal wall in longitudinal section 8–12 μm thick at the sides, composed of thin-walled, flattened, pale brown cells, surrounded by vertically-oriented stromatic tissue composed of rectangular to polygonal cells (5–25 × 5–16 μm) or by compact brown hyphae. Pseudoparaphyses septate, branched and anastomosed, 2–3.5(–5) μm wide. Asci fissitunicate, cylindrical, 73.5–102 × 11–15.5 μm (av. 87.4 × 13.6 μm, n = 50), rounded at the apex, with a shallow ocular chamber (0.5–1 μm high), short-stalked (5–15 μm long; av. 9.6 μm, n = 32), with 8 biseriate ascospores. Ascospores broadly fusiform, mostly curved, 19–31 × 4.5–6.5 μm (av. 24.2 × 5.8 μm, n = 50), l/w (3.3–)3.6–4.9(–5.2) (av. 4.2, n = 50), with a median (0.50) septum and constricted, hyaline, smooth, with an entire sheath; sheath sharply delimited and 1–2 μm wide at first, diffuse and 4–8 μm wide at a later. Senescent ascospores 3-septate, thick-walled, dark brown.

Colonies on PDA (after 4 wk) attaining a diam of 6.2–6.8 cm, buff to smoke grey; reverse pale luteous to sienna; no pigment produced. In culture ascomatal and spermatial morphs observed. Asci 82.5–101.5 × 14.5–17.5 μm. Ascospores 21–31 × 6–8 μm (av. 24.5 × 7.0 μm, n = 31), l/w 3.1–4.2 (av. 3.5, n = 31). Spermatia 2.2–3.5 × 1.4–2.1 μm (av. 3.0 × 1.8 μm, n = 20), subglobose, hyaline.

Specimen examined: Japan, Aomori, Hirosaki, Kozawa, on dead culms of Sasa sp., 25 Oct. 2002, T. Handa (holotype KT 922 = HHUF 30134, culture ex-type CBS 139688 = JCM 19411 = MAFF 243838).

Pseudocoleophoma Kaz. Tanaka & K. Hiray., gen. nov. MycoBank MB811300.

Etymology: Referring to the similarity of the asexual morph with that of Coleophoma.

Ascomata scattered to grouped, immersed to erumpent, globose to subglobose in section. Ostiolar neck central, composed of subglobose dark brown cells. Ascomatal wall composed of polygonal to rectangular cells. Pseudoparaphyses numerous. Asci fissitunicate, cylindrical to clavate, short-stalked, with 8 ascospores. Ascospores fusiform, 1-septate, smooth, with a conspicuous sheath. Conidiomata coleophoma-like, pycnidial, subglobose. Conidiophores absent. Conidiogenous cells phialidic, doliiform to lageniform. Conidia cylindrical, hyaline, smooth.

Type species: Pseudocoleophoma calamagrostidis Kaz. Tanaka & K. Hiray.

Notes: The pycnidial asexual morph of Pseudocoleophoma bears a slight resemblance to that of Coleophoma. The type species of Coleophoma (C. crateriformis), however, has pycnidia possessing paraphyses that are not found in Pseudocoleophoma, and is a member of the Dothideales, rather than the Pleosporales (De Gruyter et al. 2009).

Pseudocoleophoma calamagrostidis Kaz. Tanaka & K. Hiray., sp. nov. MB811301. Fig. 4.

Fig. 4.

Fig. 4

Pseudocoleophoma calamagrostidis. A, B. Ascomata on the natural host surface; C. Ascoma in longitudinal section; D. Ascomatal wall at side; E. Ascomatal wall surface around ostiole; F. Pseudoparaphyses; G, H. Asci; I–K. Ascospores (arrowheads indicate gelatinous sheath; I. in Black-Blue ink); L. Germinating ascospore; M, N. Conidiomata in culture (on rice straw); O. Conidioma in longitudinal section; P. Conidiomatal wall at side; Q. Conidiomatal wall around ostiole; R. Conidiogenous cell; S. Conidia. A–L from KT 3284; M–S from culture KT 3284. Scale bars: A, B, M, N = 500 μm; C, E, O = 50 μm; D, F–L, P–S = 10 μm.

Etymology: Referring to the host plant.

Ascomata scattered, immersed, erumpent at the top, globose to depressed globose, 140–200 μm high, 160–220 μm diam, ostiolate. Ostiolar neck central. Ascomatal wall in longitudinal section 5–10 μm thick at sides, composed of 2–3 layers of thin-walled, polygonal, flattened, 5–12 × 2–5 μm, brown cells; of polygonal to subglobose, 2–5 × 1.5–2.5 μm cells around ostiole. Pseudoparaphyses septate, branched and anastomosed, 2.5–5 μm wide. Asci fissitunicate, cylindrical, 62.5–80 × 7.5–10 μm (av. 69.0 × 8.4 μm, n = 50), rounded at the apex, with a shallow ocular chamber, short-stalked (5–12 μm long), with 8 biseriate ascospores. Ascospores narrowly fusiform, (14.5–)16–19(–21) × 3–4.5 μm (av. 17.4 × 3.8 μm, n = 30), l/w 4.0–5.3 (av. 4.5, n = 30), with a nearly median (0.43–0.54, av. 0.50, n = 26) septum, constricted at the septum, hyaline, smooth, with an entire sheath; sheath sharply delimited, 1–2 μm wide at sides, 4–6 μm long at both ends, staining with Black-Blue ink when in fresh condition.

Colonies on PDA (after 4 wk) attaining a diam of 2.3–3.2 cm, buff to honey; reverse similar; no pigment produced. In culture coelomycetous asexual morph formed. Conidiomata pycnidial, 220–300 μm high, (150–)250–500 μm diam, immersed to erumpent, depressed globose. Ostiolar neck well-developed, 75–100 μm long, 85–100 μm wide, cylindrical, central. Conidiomatal wall in longitudinal section uniformly 7.5–15 μm thick, composed of 3–4 layers of slightly thick-walled, polygonal to subglobose, 6–15 × 2–6.5 μm, pale brown cells; of polygonal to rectangular, 2–6 × 1.5–2.5 μm cells around ostiole. Conidiophores absent. Conidiogenous cells phialidic, 5–9 × 2–4 μm, doliiform to subglobose. Conidia cylindrical, aseptate, hyaline, smooth, 6–10 × 2–2.5 μm (av. 8.6 × 2.2 μm, n = 50), l/w 2.9–4.7 (av. 3.9, n = 50).

Specimen examined: Japan, Aomori, Hirosaki, Mt Iwaki, on dead leaves of Calamagrostis matsumurae, 27 Jul. 2013, K. Tanaka (holotype KT 3284 = HHUF 30450, culture ex-type CBS 139700).

Note: This species is phylogenetically close to P. polygonicola, but the ITS sequence similarity between these two species is relatively low (490/521 = 94.0 %).

Pseudocoleophoma polygonicola Kaz. Tanaka & K. Hiray., sp. nov. MycoBank MB811302. Fig. 5.

Fig. 5.

Fig. 5

Pseudocoleophoma polygonicola. A, B. Ascomata on the natural host surface; C. Ascoma in longitudinal section; D. Ascomatal wall; E. Pseudoparaphyses; F. Ascus; G–J. Ascospores (arrowheads indicate gelatinous sheath; J. in Black-Blue ink); K. Conidiomata in culture; L. Conidioma in longitudinal section; M. Conidiomatal wall; N. Conidiogenous cells; O. Conidia. A–J from KT 731; K–O from culture KT 731. Scale bars: A = 2 mm; B, K = 500 μm; C, L = 50 μm; D–J, M–O = 10 μm.

Etymology: Referring to the host plant.

Ascomata scattered to 2–4 grouped, immersed to erumpent, 230–310 μm high, 280–350 μm diam. Ostiolar neck central, 50–75 μm long, 70–100 μm wide. Ascomatal wall in longitudinal section 7–13 μm thick at sides. Pseudoparaphyses 2–2.5 μm wide. Asci cylindrical to clavate, (67–)74–90(–100) × 9–12.5 μm (av. 81.3 × 10.7 μm, n = 48). Ascospores fusiform, (17.5–)19–23(–25) × 4–6 μm (av. 20.6 × 4.8 μm, n = 50), l/w 3.6–4.8 (av. 4.2, n = 45), with a septum supramedian (0.46–0.50; av. 0.48, n = 40), surrounded by a sheath; sheath 1–2 μm wide at sides, 2–5 μm long at both ends, staining with Black-Blue ink when in fresh condition.

Colonies on PDA (after 4 wk) attaining a diam of 3.4–4.8 cm, white; reverse white to straw; no pigment produced. In culture coelomycetous asexual morph formed. Conidiomata pycnidial, 170–250 μm diam. Conidiomatal wall in longitudinal section 12–15 μm wide at sides. Conidiophores absent. Conidiogenous cells phialidic, 7–17 × 3.5–5 μm, doliiform to lageniform, formed all around the locular cavity. Conidia cylindrical, aseptate, hyaline, smooth, (9–)11.5–18(–21.5) × 3–4.5 μm (av. 14.4 × 3.4 μm, n = 31).

Specimen examined: Japan, Hokkaido, Isl. Rebun, Kafuka, Nairo-river, on dead stems of polygonaceous plant, 30 Aug. 2001, K. Tanaka (holotype KT 731 = HHUF 27558, culture ex-type CBS 139701 = JCM 19412 = MAFF 239468).

Notes: Additional details of this species were reported by Tanaka & Harada (2003b), who misidentified this fungus as Massarina rubi based mostly on the morphology of the sexual morph. However, Pseudocoleophoma is phylogenetically different from M. rubi, which belongs to the Lophiotremataceae (Zhang et al., 2009b, Hirayama and Tanaka, 2011b). This species resembles P. calamagrostidis but has larger ascospores (20.6 × 4.8 μm vs. 17.4 × 3.8 μm) and conidia (14.4 × 3.4 μm vs. 8.6 × 2.2 μm).

Didymosphaeriaceae Munk, Dansk Bot. Ark. 15 (2): 128. 1953.

= Montagnulaceae M.E. Barr, Mycotaxon 77: 194. 2001.

Type genus: Didymosphaeria Fuckel.

Karstenula Speg., Decades Mycologicae Italicae 7–12: no. 94. 1879.

Type species: Karstenula rhodostoma (Alb. & Schwein.) Speg.

Notes: This genus is phylogenetically close to Paraphaeosphaeria, but can be distinguished from the latter by the ascomata surrounded by well-developed subiculum and cylindrical asci with uniseriate ascospores.

Karstenula rhodostoma (Alb. & Schwein.) Speg., Decades Mycologicae Italicae 7–12: no. 94. 1879. Fig. 6.

Fig. 6.

Fig. 6

Karstenula rhodostoma. A. Ascoma in longitudinal section; B. Ascomatal wall; C. Pseudoparaphyses; D. Ascus; E, F. Ascospores. All from UPS (F-141152) 425947. Scale bars: A = 50 μm; B–F = 10 μm.

Basionym: Sphaeria rhodostoma Alb. & Schwein., Consp. Fung. (Leipzig): 43. 1805.

Asci cylindrical, 145–175 × 12.5–14.5 μm (av. 162.2 × 13.4 μm, n = 20), with a short stipe (14–23 μm long). Ascospores cylindrical to ellipsoid, 22–26 × 8–10 μm (av. 23.7 × 9.1 μm, n = 20), l/w 2.3–2.9 (av. 2.6, n = 20), with a submedian primary septum (0.50–0.54; av. 0.52, n = 20), with 3 transverse septa (1+1+1), with or without 1 longitudinal septum.

Specimen examined: Sweden, “Odlingen” field, ca. 250 m S of Jerusalem, on twigs of Frangula alnus, Jan. 1995, K. Holm & L. Holm, UPS (F-141152) 425947, culture CBS 691.94.

Notes: For further description of this species including its asexual morph (Microdiplodia frangulae), see Constantinescu (1993) and Zhang et al. (2012). More than 360 species are recorded as Microdiplodia (MycoBank, http://www.mycobank.org), but the validity of this genus is unknown due to lack of phylogenetic information regarding the lectotype species, M. conigena (Clements & Shear 1931).

Neokalmusia Kaz. Tanaka et al., Fungal Divers. 68: 92. 2014.

Type species: Neokalmusia brevispora (Nagas. & Y. Otani) Kaz. Tanaka et al.

Notes: Neokalmusia is characterised by subglobose to oblong ascomata including several pseudothecia in a row and verrucose ascospores (Ariyawansa et al. 2014). Two bambusicolous species, N. brevispora on Sasa and N. scabrispora on Phyllostachys are known in this genus. Although they share many morphological features, monophyly of Neokalmusia was not supported in this study (Fig. 1). Additional taxa and sequence data of this genus are needed to evaluate validity of Neokalmusia.

Neokalmusia brevispora (Nagas. & Y. Otani) Kaz. Tanaka et al., Fungal Divers. 68: 92. 2014. Fig. 7.

Fig. 7.

Fig. 7

Neokalmusia brevispora. A. Ascomata on the natural host surface; B, C. Ascomata in longitudinal section; D. Ascomatal wall; E. Pseudoparaphyses; F. Ascus; G–I. Ascospores (arrowheads indicate gelatinous sheath; I. in India ink); J. Germinating ascospore. A, F, G, J from KT 2313; B–D, I from KT 1466; E, H from culture KT 1466. Scale bars: A = 1 mm; B, C = 100 μm; D–J = 10 μm.

Basionym: Phaeosphaeria arundinacea var. brevispora Nagas. & Y. Otani, Rep. Tottori Mycol. Inst. 15: 38. 1977.

Specimens examined: Japan, Hokkaido, Sapporo, Moiwa-yama, on culms of Sasa sp., 13 Jun. 1972, E. Nagasawa (holotype of Phaeosphaeria arundinacea var. brevispora TMI 3175); Fukushima, Minamiaizu, Ose pond, on dead twigs of Sasa sp., 30 Aug. 2003, N. Asama, KT 1466 = HHUF 28229, culture CBS 120248 = JCM 13543 = MAFF 239276; Hokkaido, Isl. Rishiri, Afutoromanai-river, on dead twigs of Sasa kurilensis, 29 Jul. 2007, K. Tanaka & G. Sato (epitype designated here KT 2313 = HHUF 30016, MBT202863, culture ex-epitype NBRC 106240).

Notes: For other descriptions of this species, see Nagasawa and Otani, 1977, Shoemaker and Babcock, 1989, Tanaka and Harada, 2004, and Ariyawansa et al. (2014). Although this species was transferred to Kalmusia (Zhang et al. 2009b), subsequent molecular studies (Hyde et al., 2013, Zhang et al., 2014a) did not support this placement, and thus Neokalmusia was established to accommodate N. brevispora as the type species of this genus (Ariyawansa et al. 2014). We here designate an epitype specimen for this species.

Neokalmusia scabrispora (Teng) Kaz. Tanaka et al., Fungal Divers. 68: 92. 2014. Fig. 8.

Fig. 8.

Fig. 8

Neokalmusia scabrispora. A. Ascomata on the natural host surface; B, C. Ascomata in longitudinal section (B. in lactophenol cotton blue); D. Ascomatal wall; E. Pseudoparaphyses; F. Ascus; G, H. Ascospores (arrowheads indicate gelatinous sheath; H. in India ink); I. Germinating ascospores; J. Spermatia. A–D from KT 1023; E–I from KT 2202; J from culture KT 1023. Scale bars: A = 1 mm; B, C = 100 μm; D–J = 10 μm.

Basionym: Leptosphaeria scabrispora Teng, Sinensia, Shanghai 4: 378. 1934.

Specimens examined: Japan, Tochigi, Kanuma, near Ooashi-river, on dead twigs of Phyllostachys bambusoides, 6 Mar. 2003, N. Asama, KT 1023 = HHUF 28608, culture CBS 120246 = JCM 12851 = MAFF 239517; Kagoshima, Kumagegun, Isl. Yakushima, Miyanoura-river, riverbank, on dead twigs of Phyllostachys bambusoides, 17 Mar. 2007, K. Tanaka & H. Yonezawa, KT 2202 = HHUF 30013, culture NBRC 106237.

Notes: For a description of this species, see Tanaka et al. (2005a). This fungus was originally described as a Leptosphaeria (Teng 1934), and later transferred to Massariosphaeria (Shoemaker & Babcock 1989) or Kalmusia (Tanaka et al. 2005a). Molecular studies, however, did not support these placements (Tanaka et al., 2009, Zhang et al., 2014a). This species is currently treated as Neokalmusia (Ariyawansa et al. 2014), but we were not able to confirm the congenericity of N. scabrispora with N. brevispora (type species of Neokalmusia) (Fig. 1).

Paraphaeosphaeria O.E. Erikss., Ark. Bot. 6: 405. 1967.

Type species: Paraphaeosphaeria michotii (Westend.) O.E. Erikss.

Notes: The genus Paraphaeosphaeria was established by Eriksson (1967) as a generic segregate from Leptosphaeria. To date, about 35 taxa have been described as species within Paraphaeosphaeria (http://www.indexfungorum.org, Aug. 2015), of which nine species have been transferred to Neophaeosphaeria (Coniothyriaceae or Leptosphaeriaceae) or Phaeosphaeriopsis (Phaeosphaeriaceae) based on ascospore and conidial morphology, as well as sequence data from SSU and ITS nrDNA (Câmara et al., 2001, Câmara et al., 2003), and 10 asexual species with coniothyrium-like morphology have been added to this genus based on molecular evidence (Trakunyingcharoen et al., 2014, Verkley et al., 2014, Liu et al., 2015).

Paraphaeosphaeria michotii (Westend.) O.E. Erikss., Arkiv Bot. 6: 405. 1967. Fig. 9.

Fig. 9.

Fig. 9

Paraphaeosphaeria michotii. A. Ascomata on the natural host surface; B. Ascoma in longitudinal section; C. Ascomatal wall; D. Ascus; E–H. Ascospores (arrowheads indicate gelatinous sheath; H. in India ink); I. Conidioma in culture (on rice straw); J. Conidioma in longitudinal section; K, L. Conidia. A–C from KT 2222; D–L from culture KT 2222. Scale bars: A, I = 500 μm; B, J = 50 μm; C–H, K, L = 10 μm.

Basionym: Sphaeria michotii Westend., Bull. Acad. R. Sci. Belg., Cl. Sci., sér. 2, 7: 87. 1859.

In culture, both sexual and asexual morphs were observed. Asci 77–90 × 13–14.5 μm. Ascospores ellipsoid, 18–24 × 5–7 μm (av. 21.3 × 6.2 μm, n = 30), l/w 2.8–3.8 (av. 3.5, n = 30), with a submedian primary septum (0.56–0.67; av. 0.61, n = 30), 2-septate (1+1+0). Conidia broadly fusiform to ellipsoid, 8–14.5 × 4–7 μm (av. 10.8 × 5.3 μm, n = 50), l/w 1.6–2.9 (av. 2.0, n = 50), echinulate.

Specimen examined: Japan, Tochigi, Utsunomiya, Ootanikannon, on dead leaves of Typha latifolia, 29 Mar. 2007, K. Tanaka & Y. Harada, KT 2222 = HHUF 30142, culture MAFF 243861.

Notes: Morphological features of the sexual morph in our material agree well with the description of P. michotii reported by several authors (Eriksson, 1967, Shoemaker and Eriksson, 1967, Shoemaker and Babcock, 1985, Ariyawansa et al., 2014). The conidia we observed are somewhat larger than those reported by Webster (1955; 6–10 × 3–5 μm) and Câmara et al. (2001; 4–8 × 2.4–4.4 μm), but match those reported by Sivanesan (1984; 5–13.5 × 3–5 μm). A BLAST search using ITS sequences showed 99.8 % similarity to sequences from the ex-epitype of P. michotii (GenBank KJ939279; 519/520) deposited in GenBank by Ariyawansa et al. (2014).

Spegazzinia Sacc., Michelia 2 (6): 37. 1880.

Type species: Spegazzinia ornata Sacc.

Notes: Based on the morphological features of basauxic conidiogenesis, Hyde et al. (1998) considered Spegazzinia to be a possible member of the Apiosporaceae (Sordariomycetes), although this was not fully resolved by molecular evidence (Hyde et al., 2011, Crous and Groenewald, 2013). We have assigned this genus to the Didymosphaeriaceae (Fig. 1).

Spegazzinia deightonii (S. Hughes) Subram., J. Indian Bot. Soc. 35: 78. 1956. Fig. 10.

Fig. 10.

Fig. 10

Spegazzinia deightonii. A, B. Sporodochia on the natural host surface; C, D. Conidiophores and conidiogenous cells (arrowheads indicate basauxic conidiogenesis); E. Conidia (arrowheads indicate a type conidia, arrows indicate b type conidia). A from yone 66; B–E from culture yone 66. Scale bars: A, B = 500 μm; C–E = 10 μm.

Basionym: Spegazzinia tessarthra var. deightonii S. Hughes, Mycol. Pap. 50: 65. 1953.

Specimens examined: Japan, Kagoshima, Isl. Yakushima, Kurio, on dead leaves of Arundo donax, 14 Mar. 2007, K. Tanaka & H. Yonezawa, yone 66 = HHUF 30150, culture MAFF 243876; Okinawa, Isl. Iriomote, Inamori path, on dead stems of herbaceous plant, 25 Sep. 2007, H. Yonezawa & K. Tanaka, yone 212 = HHUF 30151, culture MAFF 243877.

Note: The above collections match the original description and illustration of S. tessarthra var. deightonii provided by Hughes (1953b).

Spegazzinia tessarthra (Berk. & M.A. Curtis) Sacc., Syll. Fung. 4: 758. 1886. Fig. 11.

Fig. 11.

Fig. 11

Spegazzinia tessarthra. A. Sporodochia on the natural host surface; B, C. Conidiophores and conidiogenous cells (arrowheads indicate basauxic conidiogenesis); D. Conidia (arrowheads indicate a type conidia, arrows indicate b type conidia). All from SH 287. Scale bars: A = 500 μm; B–D = 10 μm.

Basionym: Sporidesmium tessarthrum Berk. & M.A. Curtis, J. Linn. Soc., Bot. 10: 355. 1868 (1869).

Specimen examined: Japan, Aomori, Towada, Sanbongi, Yagami, on balsa wood, 9 Nov. 2002, S. Hatakeyama, SH 287 = HHUF 27691, culture MAFF 243875.

Notes: The features of the collection match the description of S. tessarthra (Ellis 1971). The ITS sequences from the above isolate were identical to those of S. tessarthra in GenBank (GenBank JQ673429).

Lentitheciaceae Y. Zhang ter et al., Stud. Mycol. 64: 93. 2009.

Type genus: Lentithecium K.D. Hyde et al.

Katumotoa Kaz. Tanaka & Y. Harada, Mycoscience 46: 313. 2005.

Type species: Katumotoa bambusicola Kaz. Tanaka & Y. Harada.

Notes: Two bambusicolous genera, Katumotoa (Tanaka & Harada 2005) and Neoophiosphaerella, formed a clade as reported in previous molecular studies (Schoch et al., 2009, Tanaka et al., 2009, Zhang et al., 2012), but these have ascospores with distinct features, i.e., apiosporous in Katumotoa and multi-septate scolecosporous in Neoophiosphaerella. Furthermore, sequence similarity between the type species of both genera was 82.7 % (417/504) in their ITS regions, suggesting that they are not congeneric. Although a correlation between phylogenetic relationships and host preferences has been noted in these bambusicolous fungi (Zhang et al. 2012), discovery of additional species in both monotypic genera will be needed to confirm this.

Katumotoa bambusicola Kaz. Tanaka & Y. Harada, Mycoscience 46: 313. 2005. Fig. 12.

Fig. 12.

Fig. 12

Katumotoa bambusicola. A. Ascomata on the natural host surface; B, C. Ascomata in longitudinal section; D. Ascomatal wall (in lactophenol cotton blue); E. Pseudoparaphyses; F. Ascus; G. Ascospore (arrowheads indicate gelatinous sheath). A–D from KT 1517; E–G from culture KT 1517. Scale bars: A = 1 mm; B, C = 100 μm; D–G = 10 μm.

Specimen examined: Japan, Iwate, Nishine, Hirakasa, near Yakebashiri, Mt. Iwate, on Sasa kurilensis, 19 Oct. 2003, K. Tanaka (paratype KT 1517a = HHUF 28661, culture ex-paratype JCM 13131 = MAFF 239641).

Keissleriella Höhn., Sber. Akad. Wiss. Wien, Math.-naturw. Kl., Abt. 1 128: 582. 1919.

Type species: Keissleriella aesculi (Höhn.) Höhn.

Notes: Keissleriella is characterised by an ostiolar neck covered by short dark setae. Munk (1953) introduced Trichometasphaeria, which can be separated from Keissleriella by their host preferences and the morphological features of hamathecium and ascospores. Trichometasphaeria occurs on herbaceous plants and has cellular pseudoparaphyses and septate ascospores, while Keissleriella occurs on woody plants and has trabecular pseudoparaphyses and 1-septate ascospores (Munk, 1957, Barr, 1990a, Barr, 1992). However, Bose (1961) treated Trichometasphaeria as a synonym of Keissleriella, and this opinion was accepted by several authors (e.g., Eriksson, 1967, Dennis, 1978, Sivanesan, 1984). We also regard these two genera as congeneric as species with the features of Trichometasphaeria (e.g., K. gloeospora, the type species of Trichometasphaeria) and Keissleriella (e.g., K. cladophila; Corbaz, 1956, Bose, 1961) form a clade (Fig. 1), although the type of the latter genus (K. sambucina) is not included in our analysis.

Keissleriella breviasca Kaz. Tanaka & K. Hiray., sp. nov. MycoBank MB811304. Fig. 13.

Fig. 13.

Fig. 13

Keissleriella breviasca. A, B. Ascomata on the natural host surface; C. Ascoma in longitudinal section; D. Apical setae of ascoma; E. Ascomatal wall; F. Pseudoparaphyses; G. Ascus; H–K. Ascospores (arrowheads indicate gelatinous sheath); L, M. Ascomata and conidiomata in culture (on rice straw); N. Ascoma produced in culture; O. Conidioma produced in culture; P. Conidia. A–C, E, I from KT 649; D, G, H from KT 540; F, J from KT 581; K from culture KT 581; L–O from culture KT 649; P from culture KT 540. Scale bars: A, L = 2 mm; B, M = 500 μm; C, N, O = 20 μm; D–K, P = 10 μm.

Etymology: From the Latin brevi- meaning short, in reference to the ascus length.

Ascomata scattered, erumpent, 95–115 μm high, 130–165 μm diam. Ostiolar neck papillate, 18–23(–50) μm long, covered with 1-celled, thick-walled, dark brown to almost black setae. Ascomatal wall 7.5–11.5 μm thick at sides, composed of 3–4 layers of polygonal to subglobose cells of 2.5–10 × 2.5–5 μm. Pseudoparaphyses cellular, septate, branched and anastomosed, 2–3.5 μm wide. Asci fissitunicate, clavate to cylindrical, 51–66 × 7–11 μm (av. 59.0 × 8.7 μm, n = 39), rounded at the apex and with a shallow ocular chamber, short-stalked (5–12 μm long), with 4 biseriate ascospores. Ascospores narrowly fusiform, 17.5–24.5 × 3.5–5 μm (av. 21.1 × 4.3 μm, n = 64), l/w (3.7–)4.0–5.7(–6.3) (av. 4.9, n = 64), with a nearly median primary septum (0.44–0.53; av. 0.49, n = 48), 3-septate (1+1+1), slightly constricted at the septa, hyaline, smooth, with an entire sheath; sheath gelatinous and 8–11 μm wide when fresh, delimited and 1–2 μm wide when dry.

Colonies on PDA (after 4 wk) attaining a diam of 1.0–1.3 cm, coral with white margin; reverse red to flesh; sienna pigment produced. In culture coelomycetous asexual morph formed. Conidiomata pycnidial, 70–90 μm high, 120–200 μm diam, subglobose to hemispherical in section. Conidiomatal wall 7–15 μm thick at sides, composed of thin-walled, flattened cells. Conidiogenous cells cylindrical to doliiform, 8–13 × 2.5–3.5 μm, holoblastic. Conidia cylindrical to bone-shaped, 0–3-septate, hyaline, smooth, 11–20 × 3–4 μm (av. 15.2 × 3.7 μm, n = 20), l/w 3.7–5.0 (av. 4.1, n = 20), without sheath. Sometimes, sexual morph formed. Ascospores 19–23 × 3.5–4.5 μm.

Specimens examined: Japan, Aomori, Hirosaki, Campus of Hirosaki Univ., on dead culms of Dactylis glomerata, 13 Jun. 2001, K. Tanaka, KT 540 = HHUF 27715, culture JCM 19413 = MAFF 239476; ibid., 20 Jul. 2001, KT 581 = HHUF 27717, culture JCM 19414 = MAFF 243843; Aomori, Hirakawa, Hirakawa-river, riverbank, on dead culms of Dactylis glomerata, 5 Aug. 2001, K. Tanaka (holotype KT 649 = HHUF 27718, culture ex-type CBS 139691 = JCM 19415 = MAFF 243844).

Notes: To date, 50 species have been described as Keissleriella (or Trichometasphaeria; MycoBank, http://www.mycobank.org, April 2015), but K. breviasca can be distinguished from all known species by its short asci with consistently four ascospores (Fig. 13G). The asexual morph of K. breviasca is similar to that of K. gallica reported as “Ascochyta sp.” (Sivanesan 1984), but the conidia of K. breviasca have 0–3 septa (vs. 0–1 septa in K. gallica). A collection of K. culmifida with 4-spored asci has sometimes been reported (Dennis, 1978, Ridley, 1988), which is most probably conspecific with K. breviasca.

Keissleriella culmifida (P. Karst.) S.K. Bose, Phytopath. Z. 41: 188. 1961. Fig. 14.

Fig. 14.

Fig. 14

Keissleriella culmifida. A. Ascomata on the natural host surface; B. Ascomata in culture (on rice straw); C. Ascoma in longitudinal section; D. Apical setae of ascoma; E. Ascomatal wall; F. Pseudoparaphyses; G. Ascus; H–J. Ascospores (arrowheads indicate gelatinous sheath); K. Germinating ascospore. A, C, E, K from KT 2642; B, D, F, G, I, J from culture KT 2308; H from KT 2308. Scale bars: A, B = 500 μm; C, D, K = 20 μm; E–J = 10 μm.

Basionym: Leptosphaeria culmifida P. Karst., Bidr. Känn. Finl. Nat. Folk 23: 103. 1873.

Ascomata 120–145 μm high, 120–150 μm diam, with dark brown setae of 30–58 × 3–5 μm around the ostiole. Asci 8-spored, 70.5–84 × 10.5–13 μm. Ascospores fusiform, 17.5–22 × 4–5.5 μm (av. 19.4 × 4.9 μm, n = 36), l/w 3.5–5.0 (av. 3.9, n = 36), with nearly median primary septum (0.47–0.53; av. 0.51, n = 35), 3-septate (1+1+1), surrounded by an entire gelatinous sheath, 3–9 μm wide.

In culture sexual morph formed. Asci 90–127.5 × 10.5–15 μm (av. 102.9 × 13.0 μm, n = 40). Ascospores fusiform, 19–26 × 5–7 μm (av. 22.5 × 5.9 μm, n = 60), l/w 3.3–4.5 (av. 3.8, n = 60), with a nearly median primary septum (0.46–0.55; av. 0.50, n = 60). Asexual morph not observed.

Specimens examined: Japan, Hokkaido, Isl. Rishiri, Forest park, on dead stems of Agrostis flaccida, 29 Jul. 2007, K. Tanaka & G. Sato, KT 2308 = HHUF 30135, culture JCM 19416 = MAFF 243848; Iwate, Hachimantai, Top of Aspite line, on dead leaves of Festuca sp. 25 Jul. 2009, K. Tanaka & Y. Harada, KT 2642 = HHUF 30136, culture JCM 19417 = MAFF 243849.

Notes: We identified these specimens as K. culmifida, based on the description (Karsten, 1873, Holm, 1957, Bose, 1961) and illustration (Berlese, 1894, Eriksson, 1967) of this species. However, ITS sequences from the above materials completely matched with those from the ex-type of K. poagena (GenBank KJ869112), a species recently published by Crous et al. (2014a). Keissleriella poagena is morphologically close to K. culmifida, and thus taxonomic reassessment of these two species will be needed.

Keissleriella gloeospora (Berk. & Curr.) S.K. Bose, Phytopath. Z. 41: 190. 1961. Fig. 15.

Fig. 15.

Fig. 15

Keissleriella gloeospora. A, B. Ascomata on the natural host surface; C. Ascoma in longitudinal section; D. Apical setae of ascoma; E. Ascomatal wall; F. Pseudoparaphyses; G. Ascus; H–J. Ascospores (arrowheads indicate gelatinous sheath); K. Spermatia. A–J from KT 829; K from culture KT 829. Scale bars: A = 1 mm; B = 500 μm; C = 50 μm; D–K = 10 μm.

Basionym: Sphaeria gloeospora Berk. & Curr., Ann. Mag. Nat. Hist., Ser. 3 7: 454. 1861.

Ascomata 130–230 μm high, 350–480 μm diam, with dark brown setae (up to 60 μm long) around the ostiole. Asci clavate, 80–118 × 14–19 μm (av. 97.2 × 16.8 μm, n = 20), short-stalked (10–25 μm long). Ascospores fusiform to clavate, 21.5–33 × 6–9 μm (av. 28.0 × 7.3 μm, n = 50), l/w 3.3–4.9 (av. 3.8, n = 50), with a supramedian primary septum (0.39–0.48; av. 0.43, n = 50), 4–6-septate (1+1+2, 1+1+3, 2+1+2, 2+1+3), sometimes with a vertical septum in central cells, surrounded by an entire sheath (6–10 μm wide when fresh, 2–3 μm wide when dry).

In culture spermatial morph formed. Spermatia 3.3–4.9 × 1.2–1.8 μm (av. 4.1 × 1.5 μm, n = 20), hyaline, cylindrical.

Specimen examined: Japan, Aomori, Hirosaki, Campus of Hirosaki Univ., on dead culms of Setaria faberii, 4 Nov. 2001, K. Tanaka, KT 829 = HHUF 27704, culture MAFF 239474.

Note: The above material matches well the descriptions of K. gloeospora provided by Bose (1961) and Shearer et al. (1993).

Keissleriella quadriseptata Kaz. Tanaka & K. Hiray., sp. nov. MycoBank MB811305. Fig. 16.

Fig. 16.

Fig. 16

Keissleriella quadriseptata. A, B. Ascomata on the natural host surface; C, D. Ascomata in longitudinal section; E. Apical setae of ascoma; F. Ascomatal wall; G. Pseudoparaphyses; H. Ascus; I–K. Ascospores (arrowheads indicate gelatinous sheath); L. Germinating ascospore; M. Conidiomata in culture (on rice straw); N. Conidioma in longitudinal section; O. Conidiomatal wall; P. Conidium; Q. Senescent conidium. A–L from KT 2292; M–Q from culture KT 2292. Scale bars: A, M = 500 μm; B = 200 μm; C, D, N = 50 μm; E–L, O–Q = 10 μm.

Etymology: Referring to the 4-septate ascospores.

Ascomata scattered to 2–4 grouped, immersed to erumpent, globose in section, 210–320 μm high, 170–310 μm diam. Ostiolar neck central, papillate, 35–50 μm long, 55–62 μm diam, with setae; setae bluntly pointed, aseptate, slightly waved, dark brown to black, 37–93 μm long, 2.5–4 μm wide at the base. Ascomatal wall in longitudinal section uniformly 15–20 μm thick, composed of 5–6 layers of polygonal, slightly thick-walled, 4.5–16.5 × 3–7.5 μm, brown cells. Pseudoparaphyses cellular, septate, branched and anastomosed, 2–2.5 μm wide. Asci fissitunicate, clavate, 78.5–107.5 × 12–14.5 μm (av. 92.8 × 13.1 μm, n = 30), rounded at the apex and with a shallow ocular chamber, short-stalked (5–24 μm long; av. 13.1 μm, n = 26), with 8 biseriate ascospores. Ascospores clavate, 19–24.5 × 5–7 μm (av. 21.5 × 5.8 μm, n = 50), l/w 3.3–4.4 (av. 3.7, n = 50), with a supramedian primary septum (0.38–0.45; av. 0.42, n = 50), 4-septate (1+1+2), slightly constricted at the primary septum, hyaline, smooth, with an entire gelatinous sheath of 4–6 μm wide.

Colonies on PDA (after 2 wk) attaining a diam of 1.7–2.2 cm, pale luteous; reverse rust; no pigment produced. In culture asexual morph formed. Conidiomata pycnidial, 200–380 μm high, 160–310 μm diam, globose in section. Ostiolar neck papillate, 60–90 μm long, 50–75 μm wide. Conidiomatal wall 13–25 μm thick, composed of 4–6 layers of polygonal cells (5–17 × 2.5–6.5 μm). Conidiophores absent. Conidiogenous cells lageniform, holoblastic. Conidia cylindrical, rounded at the apex, slightly truncate at the base, straight, aseptate, hyaline, smooth, 25–32 × 6–8.5 μm (av. 28.4 × 7.2 μm, n = 30), l/w 3.3–4.8 (av. 3.9, n = 30), without sheath; senescent spores brown, 0–1-septate.

Specimen examined: Japan, Hokkaido, Isl. Rishiri, Beach near Ryuzinnoiwa, on dead culms of Dactylis glomerata, 28 Jul. 2007, K. Tanaka & G. Sato (holotype KT 2292 = HHUF 30137, culture ex-type CBS 139692 = JCM 19418 = MAFF 243850).

Notes: This species is characterised by its consistently 4-septate ascospores (1+1+2). Phylogenetically, it is closest to K. gloeospora (97.8 %; 904/924 in tef1), but the latter has larger ascospores (21.5–33 × 6–9 μm) with 4–6 septa (1+1+2, 1+1+3, 2+1+2, 2+1+3). In culture, K. quadriseptata produced an asexual morph with cylindrical, aseptate, hyaline conidia, but only a spermatial morph was found in K. gloeospora.

Keissleriella taminensis (H. Wegelin) S.K. Bose, Phytopath. Z. 41: 190. 1961. Fig. 17.

Fig. 17.

Fig. 17

Keissleriella taminensis. A, B. Ascomata on the natural host surface; C. Ascoma in longitudinal section; D. Apical setae of ascoma; E. Ascomatal wall; F. Pseudoparaphyses; G. Ascus; H–J. Ascospores (arrowheads indicate gelatinous sheath); K. Spermatia. A–E, G, I from KT 594; F, H from KT 571; J from KT 678; K from culture KT 594. Scale bars: A = 2 mm; B = 500 μm; C = 50 μm; D–K = 10 μm.

Basionym: Leptosphaeria taminensis H. Wegelin, Mitt. Thürgau. Naturf. Ges. 12: 173. 1896.

Ascomata 190–280 μm high, 180–300 μm diam. Asci clavate, 70–106 × 11.5–16 μm (av. 84.3 × 13.3 μm, n = 53), short-stalked (8–25 μm long; av. 15.5 μm, n = 27). Ascospores fusiform, 19–25 × 4–7 μm (av. 21.9 × 5.9 μm, n = 103), l/w 3.0–4.5(–5.0) (av. 3.7, n = 103), with a supramedian primary septum (0.43–0.51; av. 0.47, n = 100), 4–5-septate (1+1+2, 2+1+2), surrounded by an entire sheath (3–10 μm wide when fresh, 1–2 μm wide when dry).

In culture spermatial morph formed. Spermatia cylindrical, hyaline, 3.5–8.8 × 1.3–2.3 μm (av. 5.5 × 1.8 μm, n = 60). Sometimes sexual morph observed.

Specimens examined: Japan, Aomori, Hirosaki, Sanpinai, on dead stems of herbaceous plant, 17 Jul. 2001, K. Tanaka, KT 571 = HHUF 27707, culture MAFF 243846; Aomori, Hirosaki, Kadoke, Oowasawa-river, riverbank, on dead stems of herbaceous plant, 29 Jul. 2001, K. Tanaka, KT 594 = HHUF 27709, culture MAFF 243847; ibid., 14 Aug. 2001, K. Tanaka, KT 678 = HHUF 27711, culture MAFF 239475.

Note: These materials agree well with the description of K. taminensis except for the slightly wider ascospores in our collections (4–7 μm vs. 4.5–5 μm; Bose 1961).

Keissleriella yonaguniensis Kaz. Tanaka & K. Hiray., sp. nov. MycoBank MB811307. Fig. 18.

Fig. 18.

Fig. 18

Keissleriella yonaguniensis. A, B. Ascomata on the natural host surface; C. Ascoma in longitudinal section; D. Apical setae of ascoma; E. Ascomatal wall; F. Pseudoparaphyses; G. Asci; H–K. Ascospores (arrowheads indicate gelatinous sheath; K. in India ink). All from KT 2604. Scale bars: A = 2 mm; B = 500 μm; C = 50 μm; D–K = 10 μm.

Etymology: Referring to the collection site.

Ascomata scattered, immersed to erumpent, globose in section, 100–170 μm high, 100–180 μm diam. Ostiolar neck central, papillate to terete, 37–45 μm long, 32–35 μm diam, with setae; setae bluntly pointed, aseptate, straight, dark brown to black, 20–30 μm long, 3–4.5 μm wide at the base. Ascomatal wall in longitudinal section uniformly 7.5–10 μm thick, composed of 3–5 layers of polygonal, thin-walled, flattened, 3.5–7.5 × 1.5–2.5 μm, brown cells. Pseudoparaphyses cellular, septate, branched and anastomosed, 1.5–2.5 μm wide (3–4.5 μm wide at below). Asci fissitunicate, cylindrical, 65–99.5(–112.5) × 10.5–14.5 μm (av. 80.1 × 12.1 μm, n = 35), rounded at apex and with a shallow ocular chamber, with a short stipe of 5–13 μm long, 8-spored. Ascospores cylindrical with rounded ends, 15–20 × 4.5–6.5 μm (av. 18.1 × 5.3 μm, n = 50), l/w 3.0–3.9 (av. 3.5, n = 50), with a nearly median primary septum (0.47–0.53; av. 0.50, n = 50), 5-septate (2+1+2), yellow, smooth, with an entire gelatinous sheath of 3–5 μm wide (later diffuse up to 10 μm wide).

Colonies on PDA (after 4 wk) attaining a diam of 5.2–5.7 cm, white to pale luteous; reverse similar; no pigment produced. In culture sexual morph identical to that formed on the natural host produced.

Specimen examined: Japan, Okinawa, Isl. Yonaguni, Kubura pond, on dead leaves of Typha latifolia, 23 Nov. 2008, K. Tanaka & K. Hirayama (holotype KT 2604 = HHUF 30138, culture ex-type CBS 139693 = JCM 19419 = MAFF 243851).

Notes: Among the 50 described species in Keissleriella (or Trichometasphaeria), six are known to have 5-septate ascospores like K. yonaguniensis. These are K. abruptipapilla, K. gloeospora, T. papillisetosa, K. pindaundeensis, T. populi and K. taminensis. Among these, K. gloeospora, T. populi and K. taminensis differ from K. yonaguniensis in having asymmetrically-septate ascospores (Bose, 1961, Barr, 1992). Keissleriella pindaundeensis (Kobayasi 1971) and T. papillisetosa (Yuan & Barr 1994) are distinguished from K. yonaguniensis by larger ascospores that are more than 20 μm long. Keissleriella abruptipapilla (Barr 1990a) is similar but its ascospores are verruculose. In our phylogenetic tree (Fig. 1), K. yonaguniensis grouped with K. linearis (= Lentithecium lineare; Zhang et al. 2009c), Murilentithecium with muriform ascospores and conidia (Wanasinghe et al. 2014), and Phragmocamarosporium spp. with phragmosporous conidia (Wijayawardene et al. 2015), although this clade received no support. We include this species as Keissleriella based on the morphology of its sexual morph pending further studies of related taxa.

Lentithecium K.D. Hyde et al., Fungal Divers. 38: 234. 2009.

Type species: Lentithecium fluviatile (Aptroot & Van Ryck.) K.D. Hyde et al.

Notes: Lentithecium was established by Zhang et al. (2009c) using L. fluviatile as the type species. This genus was characterised by the lenticular ascomata, but reexamination based on the holotype of L. fluviatile revealed that the species has globose ascomata (Hyde et al. 2013).

Lentithecium clioninum (Kaz. Tanaka et al.) Kaz. Tanaka & K. Hiray., comb. nov. MycoBank MB811308. Fig. 19.

Fig. 19.

Fig. 19

Lentithecium clioninum. A, B. Ascomata on the natural host surface; C. Ascoma in longitudinal section; D. Ascomatal wall; E. Pseudoparaphyses; F. Ascus; G–I. Ascospores (arrowheads indicate gelatinous sheath; H, I. in Black-Blue ink). A–D from KT 1149A; E–G from KT 1220; H, I from culture KT 1149A. Scale bars: A = 1 mm; B = 500 μm; C = 50 μm; D–I = 10 μm.

Basionym: Massarina clionina Kaz. Tanaka et al., Mycoscience 46: 288. 2005.

Ascomata 210–280 μm high, 330–430 μm diam. Ostiolar neck 50–75 μm long, 75–125 μm wide. Ascomatal wall 15–23 μm thick at sides. Pseudoparaphyses 2 μm wide. Asci clavate, (81.5–)86–118(–128) × 15–19(–21) μm (av. 100.1 × 17.2 μm, n = 70), short-stalked (5–23 μm long). Ascospores fusiform, (26–)27.5–34.5(–37) × 7–10(–11) μm (av. 31.0 × 8.7 μm, n = 70), l/w 3.2–4.1 (av. 3.6, n = 70), with a septum mostly median (0.48–0.52; av. 0.50, n = 64), with a wing-like sheath staining with Black-Blue ink when fresh.

In culture ascomatal morph formed. Ascospores 27–35 × 8–11 μm (av. 31.0 × 9.3 μm, n = 50). No asexual morph observed.

Specimens examined: Japan, Hokkaido, Akkeshi, Bekanbeushi-river (near Bekanbeushi bridge), on submerged twigs of woody plant, 2 Jun. 2003, K. Tanaka & S. Hatakeyama (holotype KT 1149A = HHUF 28199, culture ex-type CBS 139694 = JCM 12703 = MAFF 239293); Hokkaido, Akkeshi, Toraibetsu-river, on submerged twigs of woody plant, 3 Jun. 2003, K. Tanaka & S. Hatakeyama (paratype KT 1220 = HHUF 28213, culture ex-paratype MAFF 243839).

Notes: This species was previously described as Massarina (Tanaka et al. 2005b), but we here transfer it to Lentithecium, because it has morphological similarities with L. fluviatile, the type species of the genus (see Fig. 43 in Zhang et al. 2012). Both have globose ascomata composed of small polygonal peridial cells, short pedicellate asci, and fusiform ascospores with obtuse ends. In our phylogenetic tree (Fig. 1), this species and L. pseudoclioninum nested on a well-supported branch (100 %) with L. fluviatile.

Lentithecium pseudoclioninum Kaz. Tanaka & K. Hiray., sp. nov. MycoBank MB811309. Fig. 20.

Fig. 20.

Fig. 20

Lentithecium pseudoclioninum. A, B. Ascomata on the natural host surface; C. Ascoma in longitudinal section; D. Ascomatal wall; E. Pseudoparaphyses; F. Ascus; G–I. Ascospores (arrowheads indicate gelatinous sheath; all in Black-Blue ink); J. Germinating ascospore. All from KT 1113. Scale bars: A = 1 mm; B = 500 μm; C = 50 μm; D–J = 10 μm.

Etymology: Referring to its resemblance to Lentithecium clioninum.

Ascomata scattered to 2–3 grouped, immersed to erumpent, globose in section, 200–220 μm diam, with sparse brown hyphae around ascomata. Ostiolar neck central, papillate, 40–50 μm long, 30 μm diam, with periphyses. Ascomatal wall in longitudinal section uniformly 17.5–20 μm thick, composed of 5–6 layers of polygonal to subglobose, 5–12.5 × 2 μm, brown cells. Pseudoparaphyses septate, branched and anastomosed, 2–3 μm wide. Asci fissitunicate, clavate, 62.5–116 × 14–25 μm (av. 92.0 × 18.4 μm, n = 95), rounded at the apex and with a shallow ocular chamber, short-stalked (5–17.5 μm long; av. 9.9 μm, n = 67), with 8 biseriate ascospores. Ascospores clavate to broadly fusiform, slightly curved, 22–39 × 6.5–11.5 μm (av. 29.2 × 8.5 μm, n = 77), l/w (2.4–)2.8–4.1(–4.6) (av. 3.5, n = 77), with a supramedian septum (0.43–0.50; av. 0.48, n = 73), constricted at the septum, hyaline, smooth, with an amorphous gelatinous sheath (1–4 μm wide) staining with Black-Blue ink when in fresh condition.

Colonies on PDA (after 4 wk) attaining a diam of 2.7–3.0 cm, smoke grey; reverse vinaceous buff to citrine; no pigment produced. In culture sexual morph identical to that formed on the natural host produced.

Specimens examined: Japan, Aomori, Hirosaki, Aoki, Mohei pond, on submerged twigs of woody plant, 3 May 2003, K. Tanaka & N. Asama, KT 1111 = HHUF 29053, culture JCM 19421 = MAFF 243840; ibid. (holotype KT 1113 = HHUF 29055, culture ex-type CBS 139695 = JCM 19422 = MAFF 243841).

Notes: Morphologically, this species is close to L. clioninum, but is clearly separated from it on the basis of its smaller ascospores with a supramedian septum. The wing-like sheath of ascospores found in L. clioninum was not observed in L. pseudoclioninum.

Neoophiosphaerella Kaz. Tanaka & K. Hiray., gen. nov. MycoBank MB811310.

Etymology: After its morphological similarity to Ophiosphaerella.

Ascomata scattered to grouped, erumpent, subglobose to hemispherical with flattened base. Ostiolar neck central, terete, flush, covered by black clypeus. Ascomatal wall at sides composed of several layers of thin-walled brown cells. Pseudoparaphyses numerous, cellular, branched. Asci fissitunicate, cylindrical, short-stalked, with 8 parallel or twisted ascospores. Ascospores filiform, multiseptate, hyaline to pale yellowish brown, smooth, surrounded by a sheath. Asexual morph unknown.

Type species: Neoophiosphaerella sasicola (Nagas. & Y. Otani) Kaz. Tanaka & K. Hiray.

Notes: Neoophiosphaerella sasicola, the type species of this genus, was originally described as a species of Phaeosphaeria (Nagasawa & Otani 1977) and later transferred to Ophiosphaerella (Shoemaker & Babcock 1989). These two genera, however, belong to the Phaeosphaeriaceae in the Pleosporineae (Câmara et al., 2000, Schoch et al., 2009, Phookamsak et al., 2014), a family distantly related to the Lentitheciaceae. We therefore propose a new genus, Neoophiosphaerella, to accommodate this species. Ophiosphaerella has globose to subglobose ascomata with a papillate ostiolar neck (Phookamsak et al. 2014), while Neoophiosphaerella is characterised by hemispherical ascomata without papilla but being covered by clypei.

Neoophiosphaerella sasicola (Nagas. & Y. Otani) Kaz. Tanaka & K. Hiray., comb. nov. MycoBank MB811312. Fig. 21.

Fig. 21.

Fig. 21

Neoophiosphaerella sasicola. A, B. Ascomata on the natural host surface; C. Ascoma in longitudinal section; D. Ascomatal wall; E. Pseudoparaphyses; F. Ascus; G. Ascospore (arrowheads indicate gelatinous sheath; in India ink). All from KT 1706. Scale bars: A = 1 mm; B = 500 μm; C = 100 μm; D–G = 10 μm.

Basionym: Phaeosphaeria sasicola Nagas. & Y. Otani, Rep. Tottori Mycol. Inst. 15: 39. 1977.

Specimens examined: Japan, Hokkaido, Ebestu, Nopporo, on Sasa senanensis, 15 May 1972, E. Nagasawa (holotype of Phaeosphaeria sasicola TMI 3176); Hokkaido, Isl. Rebun, Funadomari, Akaiwa, on dead culms of Sasa kurilensis, 5 Jun. 2004, K. Tanaka (epitype designated here KT 1706 = HHUF 29443, MBT202864, culture ex-epitype CBS 120247 = JCM 13134 = MAFF 239644).

Note: The collection HHUF 29443 is designated as epitype for N. sasicola, the type species of Neoophiosphaerella.

Setoseptoria Quaedvl. et al., Stud. Mycol. 75: 382, 2013.

Type species: Setoseptoria phragmitis Quaedvl. et al.

Notes: Quaedvlieg et al. (2013) established the genus Setoseptoria typified by S. phragmitis on Phragmites. The sexual morph of this coelomycetous genus is presently unknown.

Setoseptoria arundinacea (Sowerby) Kaz. Tanaka & K. Hiray., comb. nov. MycoBank MB811313. Fig. 22.

Fig. 22.

Fig. 22

Setoseptoria arundinacea. A. Surface view of ascomata; B, C. Ascomata in longitudinal section; D. Ascomatal wall; E. Pseudoparaphyses; F. Ascus; G, H. Ascospores (arrowheads indicate gelatinous sheath). All from KT 600. Scale bars: A = 500 μm; B = 100 μm; C = 50 μm; D–H = 10 μm.

Basionym: Sphaeria arundinacea Sowerby, Col. Fig. Engl. Fung. 3: 139, t. 336. 1803.

Specimens examined: Japan, Aomori, Hirosaki, Sanpinai, on dead culms of Phragmites australis, 1 Jul. 2001, K. Tanaka, KT 552 = HHUF 27543, culture MAFF 239460; Aomori, Hirosaki, Kadoke, Oowasawa-river, on dead culms of Phragmites australis, 29 Jul. 2001, K. Tanaka, KT 600 = HHUF 27544, culture MAFF 243842.

Notes: This species has been placed in various pleosporalean genera, such as Leptosphaeria (see Crane & Shearer 1991), Lophiostoma (Hyde et al. 2002), Massarina (Leuchtmann 1984), Metasphaeria (Vasilyeva 1998), and Phaeosphaeria (Hedjaroude 1968). Most recently, it has been transferred to Lentithecium based on the results of phylogenetic analyses using SSU + LSU nrDNA and rpb2 (Zhang et al. 2009c). However, later molecular studies (Schoch et al., 2009, Shearer et al., 2009, Zhang et al., 2009b, Zhang et al., 2012, Liu et al., 2011), as well as our own work (Fig. 1), do not support this placement. This species and its phenotypically and phylogenetically close relative Massarina magniarundinacea (Tanaka et al. 2004) do not belong to any genera previously suggested. They should, therefore, be transferred to another genus. One candidate genus to accommodate these species would be Setoseptoria. The monotypic genus Setoseptoria typified by S. phragmitis was introduced for a stagonospora-like pycnidial coelomycete with (1–)3-septate, subcylindrical, hyaline conidia (Quaedvlieg et al. 2013). The sexual morph of Setoseptoria is unknown. In contrast, two massarina-like species, M. arundinacea and M. magniarundinacea, have been reported to produce only sexual morphs in culture (Lucas, 1968, Leuchtmann, 1984, Tanaka and Harada, 2003b, Tanaka et al., 2004). Although there is no example of production of stagonospora-like asexual morphs from the massarina-like sexual morphs in culture, congeneric relationships have been suggested several times between Stagonospora elegans (Aptroot, 1998, Eriksson and Hawksworth, 2003) or S. vexata (Grove 1935) and M. arundinacea, based on their close association on the same host tissue. Furthermore, two stagonospora-like species (Setoseptoria phragmitis and “Stagonosporamacropycnidia) and two massarina-like species (M. arundinacea and M. magniarundinacea) form a strongly supported clade (Fig. 1) and sequence similarities between these species in the LSU region are considerably higher (826/834 = 99.0 %). We therefore tentatively assign the two massarina-like species to the genus Setosphaeria, although asexual morphs of these species are presently unknown. A species with both sexual and asexual morphs will be required to confirm the validity of our generic treatment.

The two isolates of S. arundinacea that we examined did not form a clade with S. arundinacea from GenBank (Fig. 1). This species has been reported many times as a common species on Phragmites culms (Aptroot, 1998, Tanaka and Harada, 2003b), but S. arundinacea may consist of several cryptic species with close morphological resemblance.

Setoseptoria magniarundinacea (Kaz. Tanaka & Y. Harada) Kaz. Tanaka & K. Hiray., comb. nov. MycoBank MB811314. Fig. 23.

Fig. 23.

Fig. 23

Setoseptoria magniarundinacea. A, B. Surface view of ascomata; C. Ascoma in longitudinal section (in lactophenol cotton blue); D. Ascomatal wall (in lactophenol cotton blue); E. Pseudoparaphyses; F. Ascus; G, H. Ascospores (arrowheads indicate gelatinous sheath); I. Germinating ascospore. A, B, E–H from culture KT 1174; C, D, I from KT 1174. Scale bars: A = 1 mm; B = 500 μm; C = 50 μm; D–I = 10 μm.

Basionym: Massarina magniarundinacea Kaz. Tanaka & Y. Harada, Mycotaxon 90: 349. 2004.

Ascomata subglobose to hemispherical with flattened base, 150–280 μm high, 310–410 μm diam. Ostiolar neck central, short papillate. Ascomatal wall 12.5–20 μm thick at sides. Pseudoparaphyses cellular, 1.5–3.5 μm wide. Asci (119–)125–182.5(–200) × 25–35(–47.5) μm (av.151.5 × 30.2 μm, n = 37). Ascospores 67–82 × 6.5–9 μm (av. 74.0 × 7.7, n = 50), l/w 8.4–11.0 (av. 9.6, n = 50), with a submedian primary septum (0.52–0.57; av. 0.54, n = 50).

In culture the ascomatal morph is similar to that observed on the natural host.

Specimen examined: Japan, Hokkaido, Akkeshi, Ariake, small stream, on submerged stems of herbaceous plant, 3 Jun. 2003, K. Tanaka & S. Hatakeyama (holotype KT 1174 = HHUF 28293, culture ex-type CBS 139702 = MAFF 239294).

Note: The ascospores of S. magniarundinacea are most similar in shape and colour to those of S. arundinacea, but are considerably larger (67–82 × 6.5–9 μm vs. 23–40 × 3.5–6 μm, Tanaka et al. 2004).

Tingoldiago K. Hiray. & Kaz. Tanaka, Mycologia 102: 740. 2010.

Type species: Tingoldiago graminicola K. Hiray. & Kaz. Tanaka.

Notes: Tingoldiago, found in freshwater environments, is characterised by lens-shaped ascomata and narrowly fusiform ascospores, each of which has an elongated sheath (Hirayama et al. 2010; Fig. 27). This genus, however, was regarded as a synonym of Lentithecium, despite the fact that the Lentithecium clade that included Tingoldiago was not well-supported (21 %; Zhang et al. 2012). When Lentithecium was established, the lenticular ascomata with simple peridial structure and hyaline 1-septate ascospores were emphasised as important characters to define the genus (Zhang et al. 2009c), but this generic circumscription is incorrect (see Notes in Lentithecium).

Fig. 27.

Fig. 27

Stagonospora perfecta. A, B. Ascomata on the natural host surface; C. Ascoma in longitudinal section; D. Ascomatal wall in surface view; E. Ascomatal wall at side; F. Pseudoparaphyses; G. Asci; H. Apex of ascus; I–K. Ascospores (arrowheads indicate gelatinous sheath; I. in Black-Blue ink; K. in India ink); L, M. Conidiomata in culture (on rice straw); N, O. Conidiogenous cells (arrowheads indicate annellations); P. Conidioma in longitudinal section; Q. Conidia. A–K from KT 1726; L–Q from culture KT 1726. Scale bars: A, L = 1 mm; B, M = 200 μm; C, P = 20 μm; D–K, N, O, Q = 10 μm.

Tingoldiago graminicola K. Hiray. & Kaz. Tanaka, Mycologia 102: 740. 2010. Fig. 24.

Fig. 24.

Fig. 24

Tingoldiago graminicola. A, B. Ascomata on the natural host surface; C. Ascoma in longitudinal section; D. Ascomatal wall; E. Pseudoparaphyses; F. Ascus; G. Ascospore (arrowheads indicate gelatinous sheath; in India ink). A–D, F, G from KH 68; E from culture KT 891. Scale bars: A = 1 mm; B = 500 μm; C = 100 μm; D–G = 10 μm.

Specimens examined: Japan, Hokkaido, Isl. Rishiri, Himenuma (pond), on submerged culms of Phragmites australis, 27 Jul. 2007, K. Hirayama & K. Tanaka (holotype KH 68 = HHUF 30009, culture ex-type JCM 16485 = NBRC 106131); ibid., 25 Jul. 2008, K. Hirayama & K. Tanaka (paratype KH 155 = HHUF 30010, culture ex-paratype JCM 16486 = NBRC 106132); Aomori, Hirosaki, Kadoke, Oowasawa-river, on submerged culms of Phragmites japonica, 28 Sep. 2002, K. Tanaka (paratype KT 891 = HHUF 27882, culture ex-paratype MAFF 239472).

Notes: The morphological features of this species have been described by Hirayama et al. (2010). Tingoldiago graminicola and Setoseptoria arundinacea, formerly treated as Lentithecium by Zhang et al., 2009c, Zhang et al., 2012, have lens-shaped ascomata, but are not in the clade of Lentithecium s. str. (Fig. 1). Instead, Lentithecium is restricted to species with globose ascomata (Fig. 19, Fig. 20).

Massarinaceae Munk, Friesia 5: 305. 1956.

Type genus: Massarina Sacc.

Helminthosporium Link, Mag. Gesell. naturf. Freunde, Berlin 3(1–2): 10. 1809.

Type species: Helminthosporium velutinum Link.

Notes: Although more than 700 taxa have been described as species within Helminthosporium (http://www.indexfungorum.org, Aug. 2015), the genus has been quite heterogeneous. Several unrelated pathogens of the Poaceae were segregated from Helminthosporium to other genera, i.e., Bipolaris (= Cochliobolus), Curvularia (= Pseudocochliobolus), Exserohilum (= Setosphaeria), and Pyrenophora (= Drechslera), all of which belong to the Pleosporaceae (Sivanesan, 1987, Hyde et al., 2013). Further distantly related species (e.g., H. asterinum) in the Leotiomycetes were excluded from Helminthosporium, and this genus was restricted to species having phylogenetic affinity with the Massarinaceae (Olivier et al., 2000, Kodsueb et al., 2007, Hyde et al., 2013).

Little is known about the sexual morphs of Helminthosporium s. str. Hughes (1953a) reported that an ascospore isolate of a Massaria species found on Quercus produced a Helminthosporium asexual morph. Subramanian & Sekar (1987) described Splanchnonema kalakadense as the sexual morph of H. velutinum based on cultural study. However, the validity of the generic classification based on the sexual morphs of these two examples remains unknown. The sexual morph of H. massarinum differs from those of Massaria (Massariaceae; Voglmayr & Jaklitsch 2011) and Splanchnonema (Pleomassariaceae; Hyde et al. 2013) in its ellipsoidal hyaline ascospores, and is rather similar to that of Massarina, although M. eburnea (the type species of Massarina) does not have a hyphomycetous asexual morph like that of Helminthosporium.

Helminthosporium massarinum Kaz. Tanaka, K. Hiray. & Shirouzu, sp. nov. MycoBank MB811315. Fig. 25.

Fig. 25.

Fig. 25

Helminthosporium massarinum. A, B. Ascomata on the natural host surface; C, D. Ascomata in longitudinal section (in lactophenol cotton blue); E. Ascomatal wall (in lactophenol cotton blue); F. Pseudoparaphyses; G. Ascus; H–J. Ascospores (arrowheads indicate gelatinous sheath; J. in Black-Blue ink); K. Germinating ascospore; L–O. Conidiophores; P. Conidiogenous cells (arrows indicate tretic pores); Q–S. Conidia; T. Spermogonium; U. Spermatia. A–I, K from KT 1564; J from KT 838; L–U from culture KT 838. Scale bars: A = 2 mm; B, L, M, T = 200 μm; C, D, N, O = 50 μm; E–K, P–S, U = 10 μm.

Etymology: Referring to the similarity of the sexual morph with that of the genus Massarina.

Ascomata numerous, scattered to 2–4 grouped, immersed below the host epidermis, hemispherical to subglobose with somewhat flattened base, 315–390 μm high, 300–430 μm diam. Ostiolar neck central, cylindrical to papillate, 125–165 μm long, 75–125 μm wide, composed of subglobose, 3–5 μm diam, brown cells, surrounded by dark brown clypeus-like structure, without periphyses. Ascomatal wall surface of textura prismatica, in a longitudinal section 12–18 μm wide at sides and base, composed of 5–7 layers of polygonal to rectangular, 5–15 × 2.5–6.5 μm, brown cells. Pseudoparaphyses cellular, 1.5–3 μm wide, septate at 7–16 μm long intervals, branched, anastomosed. Asci fissitunicate, clavate, 82–135 × 13–16 μm (av. 111.0 × 14.8 μm, n = 90), rounded at the apex, with a narrow apical chamber and faint ring, short-stalked (7–24 μm long; av. 16.7 μm, n = 35), with 8 ascospores biseriate above and uniseriate below. Ascospores ellipsoidal with rounded ends, mostly straight, 20–25(–27) × 5–8 μm (av. 22.6 × 7.0 μm, n = 100), l/w 2.7–3.9 (av. 3.2, n = 100), with a submedian septum (0.50–0.58; av. 0.54, n = 100), constricted at the septum, asymmetric, with wider upper cell, hyaline, guttulate, smooth, with a conspicuous gelatinous sheath of 2–3 μm wide in fresh condition (with a delimited firm sheath of 1 μm wide in dry condition).

Colonies on PDA (after 4 wk) attaining a diam of 5.5–7.1 cm, white to olivaceous grey; reverse smoke grey to buff; no pigment produced. In culture hyphomycetous asexual morph and spermatial morph formed. Conidiophores macronematous, mononematous, 380–810 μm long (av. 587 μm, n = 20), 7–9 μm wide at the apex, 13.5–21 μm wide at the base, arising singly or in groups of 4–5 from the stromata, straight or slightly curved, dark brown, guttulate, 15–25-septate at 8–45 μm long intervals, with small (ca. 1–2 μm diam) pores at the apex and beneath of septa, with thick wall of 1–4 μm wide. Conidia tretic, solitary or in short chains (5–6), 1–8-septate, 17–56.5 × 5–9 μm (av. 37.9 × 7.4 μm, n = 95), l/w 2.9–7.5 (av. 5.1, n = 95) [but mostly 4–6-septate, 27–53 × 6–9 μm (av. 38.7 × 7.4 μm, n = 64), l/w 4.1–6.8 (av. 5.3, n = 64)], obclavate, rostrate, pale brown, smooth, with or without guttules. Conidia germinating from both end cells. Spermogonia pycnidial, produced under the conidiophores, solitary or gregarious, 100–150(–300) μm diam, subglobose, uniloculate to multiloculate. Spermatiogenous cells cylindrical, up to 5 μm long, appearing phialidic. Spermatia 3–4(–5) × 2–2.5 μm (av. 3.5 × 2.2 μm, n = 26), globose to subglobose, hyaline, smooth.

Specimens examined: Japan, Aomori, Towada, Sanbongi, Yagami, on vines of Berchemia racemosa, 15 Dec. 2001, S. Hatakeyama, KT 838 = HHUF 27573, culture JCM 13094 = MAFF 239604; ibid., 23 Nov. 2003, S. Hatakeyama (holotype KT 1564 = HHUF 29089, culture ex-type CBS 139690 = JCM 13095 = MAFF 239605); ibid., KT 1565 = HHUF 29090; ibid., KT 1566 = HHUF 29091; ibid., 2 Dec. 2003, K. Tanaka, S. Hatakeyama & N. Nakagawara, KT 1613–1615 = HHUF 29092–29094.

Note: This species is somewhat similar to H. hypselodelphyos in having solitary or catenate conidia but the latter has smaller conidia (15–28 × 6.5–8 μm, av. 25 × 7.1 μm) (Ellis 1961).

Massarina Sacc., Syll. Fung. 2: 153. 1883.

Type species: Massarina eburnea (Tul. & C. Tul.) Sacc.

Notes: Since establishment of the genus (Saccardo 1883), more than 176 taxa have been described within Massarina (Index Fungorum; http://www.indexfungorum.org, Aug. 2015), but the heterogeneity of the genus has been continuously suggested. Several taxonomic reassessments of many species within Massarina have been attempted based on morphology (Bose, 1961, Barr, 1992, Hyde, 1995, Aptroot, 1998, Hyde et al., 2002, Tanaka and Harada, 2003b). It has more recently been revealed that the genus is highly polyphyletic based on molecular data (Liew et al. 2002), and most species in Massarina except for the type (M. eburnea) have been excluded from the genus. The genera segregated from Massarina s. lat. are phylogenetically diverse groups in the Pleosporales; Halomassarina (Trematosphaeriaceae; Suetrong et al. 2009), Lentithecium and Tingoldiago (Lentitheciaceae; Zhang et al., 2009c, Hirayama et al., 2010), Lindgomyces (Lindgomycetaceae; Hirayama et al. 2010), Morosphaeria (Morosphaeriaceae; Suetrong et al. 2009), and Triplosphaeria (Tetraplosphaeriaceae; Tanaka et al. 2009).

Massarina eburnea (Tul. & C. Tul.) Sacc., Syll. Fung. 2: 153. 1883. Fig. 26.

Fig. 26.

Fig. 26

Massarina eburnea. A, B. Ascomata on the natural host surface; C. Side view of ascoma; D. Ascoma in longitudinal section; E. Ascomatal wall; F. Pseudoparaphyses; G. Ascus; H–J. Ascospores (arrowheads indicate gelatinous sheath); K. Spermogonia in culture; L. Spermatia. A–J from H 3953; K, L from culture H 3953. Scale bars: A = 1 mm; B, C, K = 500 μm; D = 100 μm; E–J, L = 10 μm.

Basionym: Massaria eburnea Tul. & C. Tul., Select. Fung. Carpol. 2: 239. 1863.

Ascomata scattered to 2–4 grouped, immersed, hemispherical with flattened base or depressed globose, 300–420 μm high, 570–680 μm diam. Ostiolar neck short papillate, 60–90 μm long, central, with black clypeus (250–400 μm wide). Ascomatal wall 12–18 μm thick at sides, composed of 3–5 layers of thin-walled prismatic cells (5–12.5 × 2–4 μm). Pseudoparaphyses numerous, cellular, 2–3(–4.5) μm wide. Asci fissitunicate, clavate, (110–)120–180 × 21.5–30 μm (av. 141.6 × 25.6 μm, n = 50), with a stipe of 12.5–25 μm long (av. 18.6 μm, n = 38). Ascospores broadly fusiform with rounded ends, 34–40 × 12–15(–16) μm (av. 37.2 × 13.9 μm, n = 50; including firm sheath of 1–2 μm thick), l/w 2.5–2.9 (av. 2.7, n = 50), 3-septate (primary septum submedian: 0.51–0.55, av. 0.53, n = 50), hyaline, smooth, with a sharply delimited firm sheath of 1–2 μm thick (but up to 6 μm thick when fresh).

Specimen examined: UK, Wales, Swansea, dead twigs of Fagus sylvatica, Apr. 2001, H 3953 = HHUF 26621, culture CBS 139697 = JCM 14422.

Notes: The morphological characteristics of the above specimen fit well with those in the description of M. eburnea (Hyde 1995). A pycnidial morph of M. eburnea reported as Ceratophoma sp. (Bose, 1961, Sivanesan, 1984) was observed in our isolate, but the “conidia” did not germinate on several agar media (e.g., water agar, PDA, CMA, and MEA) over 7 d. The Ceratophoma morph is therefore considered to be spermatial in function.

Stagonospora (Sacc.) Sacc., Syll. Fung. 3: 445. 1884.

Type species: Stagonospora paludosa (Sacc. & Speg.) Sacc.

Notes: Stagonospora has been defined morphologically based on a broad generic concept (Sutton 1980) and has been believed to have phylogenetic affinities with the Phaeosphaeriaceae (Zhang et al. 2012). However, in a comprehensive phylogenetic study on Stagonospora and morphologically similar genera, Quaedvlieg et al. (2013) revealed that Stagonospora is polyphyletic and Stagonospora s. str. (based on S. paludosa) belongs to the Massarinaceae. Several new genera, such as Neostagonospora and Parastagonospora, have been established to accommodate unrelated stagonospora-like species in the Phaeosphaeriaceae (Quaedvlieg et al. 2013).

Neottiosporina, typified by N. apoda (Subramanian 1961) may have phylogenetic relationships with Stagonospora, although phylogenetic placement of the type species has not been clarified. At least N. paspali, transferred from Stagonospora to Neottiosporina (Sutton & Alcorn 1974), should be regarded within Stagonospora, because this taxon has close morphological and phylogenetic affinity to Stagonospora species (Fig. 1).

Stagonospora bicolor (D. Hawksw. et al.) Kaz. Tanaka & K. Hiray., comb. nov. MycoBank MB811316.

Basionym: Leptosphaeria bicolor D. Hawksw. et al., Mycologia 71: 483. 1979.

Saccharicola bicolor (D. Hawksw. et al.) D. Hawksw. & O.E. Erikss., Mycologia 95: 431. 2003.

Notes: Although we did not observe any material of this species, the illustration in the original description of Leptosphaeria bicolor (Kaiser et al. 1979), as well as SSU (GenBank U04202) and ITS (GenBank U04203) sequences derived from the type culture (ATCC 42652) of this species clearly indicates that it is a member of Stagonospora, as recently circumscribed by Quaedvlieg et al. (2013). Based on L. bicolor, Eriksson & Hawksworth (2003) erected Saccharicola for leptosphaeria-like species on sugarcane, but Saccharicola should be regarded as a synonym of Stagonospora. The sexual morph of Stagonospora s. str. has been referred to as didymella-like (Quaedvlieg et al. 2013), and some species of Didymella with a stagonospora-like asexual morph (e.g., D. proximella on Carex; Corlett & Smith 1978) may have phylogenetic affinity with Stagonospora s. str. based on their morphologies.

Stagonospora perfecta Quaedvlieg et al., Stud. Mycol. 75: 378. 2013. Fig. 27.

Ascomata scattered, immersed, globose to subglobose in section, 160–220 μm high, 140–250 μm diam. Ostiolar neck central, papillate to short cylindrical, 37–50 μm long, 52–75(–100) μm wide. Ascomatal wall in longitudinal section uniformly 12–20 μm thick, composed of 4–6 layers of polygonal to subglobose, brown cells of 5–20 × 3.5–10 μm. Pseudoparaphyses cellular, septate, branched and anastomosed, 2.5–4 μm wide. Asci fissitunicate, cylindrical, 75–115 × 15–20.5 μm (av. 89.8 × 17.5 μm, n = 30), rounded at the apex and with a shallow ocular chamber, short-stalked (7–14.5 μm long), with 8 biseriate ascospores. Ascospores broadly fusiform, 20–28 × 6.5–11 μm (av. 23.4 × 8.3 μm, n = 50), l/w 2.3–3.3 (av. 2.8, n = 50), with a submedian septum (0.54–0.59; av. 0.56, n = 50), constricted at the septum, hyaline, smooth, with an entire sheath; sheath gelatinous, 2–7 μm, staining with Black-Blue ink when in fresh condition, delimited and 1–3 μm wide when in dry condition.

In culture both sexual and asexual morphs formed. Conidiomata pycnidial, 80–100 μm high, 100–120 μm diam, scattered, globose in section. Conidiomatal wall in longitudinal section uniformly 6–13 μm wide, composed of 3–4 layers of polygonal, thin-walled, 7–17 × 2.5–6 μm, pale brown cells. Conidiophores absent. Conidiogenous cells annellidic, cylindrical to subglobose, 8–17 × 5–9 μm. Conidia cylindrical, 3(–5)-septate, hyaline, smooth, (25–)27–37(–48) × 8–11 μm (av. 32.9 × 9.5 μm, n = 60), l/w 2.7–4.1(–5.1) (av. 3.5, n = 60), without sheath. Ascospores in culture slightly larger than those on the natural host, 27–33 × 10–12 μm.

Specimen examined: Japan, Hokkaido, Isl. Rebun, Funadomari, Kusyuko (pond), on dead leaves of Carex sp., 3 Jun. 2004, K. Tanaka, KT 1726A = HHUF 29095, culture JCM 13099 = MAFF 239609.

Notes: The characteristics of the above material match those in the original description of S. perfecta described from Carex acutiformis in the Netherlands (Quaedvlieg et al. 2013), except that the conidia in our material were wider (8–11 μm vs. 6–8 μm). LSU and ITS sequences obtained from our material and those from the ex-type of S. perfecta (GenBank LSU: KF251761, ITS: KF251258) were identical. The sexual morph of this species has been referred to as didymella-like (Quaedvlieg et al. 2013), and fits well with the generic concept of Saccharicola (Eriksson & Hawksworth 2003), but this genus should be synonymised under the older genus Stagonospora (Saccardo 1884).

Stagonospora pseudoperfecta Kaz. Tanaka & K. Hiray., sp. nov. MycoBank MB811317. Fig. 28.

Fig. 28.

Fig. 28

Stagonospora pseudoperfecta. A, B. Ascomata on the natural host surface; C. Ascoma in longitudinal section; D. Ascomatal wall; E. Pseudoparaphyses; F. Ascus; G–I. Ascospores (arrowheads indicate gelatinous sheath); J. Conidia. A–I from KT 889; J from culture KT 889. Scale bars: A = 2 mm; B = 500 μm; C = 20 μm; D–J = 10 μm.

Etymology: After its morphological similarity to Stagonospora perfecta.

Ascomata scattered, immersed, globose in section, 200–250 μm high, 210–260 μm diam. Ostiolar neck central, papillate, 35–63 μm long, 63 μm wide. Ascomatal wall in longitudinal section uniformly 10–15 μm thick, composed of 3–5 layers of polygonal to subglobose, brown cells of 6–16.5 × 3.5–11.5 μm. Pseudoparaphyses cellular, numerous, 3–6 μm wide, septate, branched, anastomosed. Asci fissitunicate, clavate, 66–100 × 13.5–17.5 μm (av. 86.3 × 15.4 μm, n = 20), rounded at apex and with a shallow apical chamber, short-stalked (7–17.5 μm long), with 8 irregularly biseriate to triseriate ascospores. Ascospores narrowly fusiform, straight or slightly curved, 21–30.5 × 5–7 μm (av. 26.0 × 5.7 μm, n = 40), l/w 3.3–5.9 (av. 4.6, n = 40), with submedian septum (0.50–0.57, av. 5.4, n = 40), slightly constricted at the septum, hyaline, with or without guttules, smooth, with an entire sheath; sheath gelatinous, 0.5–2 μm wide at side.

Colonies on PDA (after 2 wk) attaining a diam of 4.9–5.5 cm, white; reverse sepia to fuscous black; no pigment produced. In culture asexual morph formed. Conidiomata pycnidial. Conidia cylindrical, aseptate, hyaline, 21.5–26 × 4–5.5 μm (av. 24.1 × 4.9 μm, n = 10), l/w 4.6–5.8 (av. 5.0, n = 10).

Specimens examined: Japan, Aomori, Hirosaki, Kadoke, Oowasawa-river, riverbank (Horikoshi-bridge), on dead leaves of Typha latifolia, 8 Sep. 2002, K. Tanaka (holotype KT 889 = HHUF 29087, culture ex-type CBS 120236 = JCM 13097 = MAFF 239607); ibid., KT 888 = HHUF 29086.

Notes: Eight species are currently accepted in Stagonospora s. str. based on molecular evidence (Crous et al., 2013b, Crous et al., 2014b, Quaedvlieg et al., 2013). Stagonospora pseudoperfecta is similar to S. perfecta, but has slightly longer and more slender ascospores (l/w 4.6 vs. 2.8). In terms of overall morphology and host preference, S. pseudoperfecta superficially resembles “Massarinalacustris sensu Leuchtmann (1984) (non Wettsteinina lacustris sensu Shoemaker & Babcock 1989, or Khashnobish & Shearer 1993) reported from Typha and Schoenoplectus. However, molecular data (SSU, rpb2, tef1) obtained from a strain studied by Leuchtmann (CBS 618.86) suggests that the latter fungus is a member of the Lentitheciaceae (Schoch et al. 2009). In ITS analysis with other Stagonospora species (data not shown), S. pseudoperfecta positioned as a sister taxon to S. duoseptata, but similarity between the two taxa in this region was 95.2 % (452/475) with 1.3 % (6/475) gaps.

In culture, pycnidial conidiomata with cylindrical hyaline conidia were observed only once, but this may have been an immature condition because the conidia were aseptate and smaller (Fig. 28J). Unfortunately, the asexual morph in culture failed to be observed again, despite several attempts.

Stagonospora tainanensis W.H. Hsieh, Mycologia 71: 893. 1979. Fig. 29.

Fig. 29.

Fig. 29

Stagonospora tainanensis. A, B. Ascomata on the natural host surface; C. Ascomata and conidiomata in culture (on rice straw); D. Ascoma in longitudinal section; E. Ascomatal wall; F. Pseudoparaphyses; G. Ascus; H–J. Ascospores (arrowheads indicate gelatinous sheath); K. Conidia. A, B, D, E, G, H from KT 1866; C, F, I–K from culture KT 1866. Scale bars: A, C = 2 mm; B = 500 μm; D = 20 μm; E–K = 10 μm.

Asci ovoid to cylindrical, 102–122.5 × 26.5–32.5 μm, 8-spored. Ascospores fusiform, 36–44 × 8.5–12 μm, l/w 3.6–4.7, with a submedian septum (0.53–0.56), hyaline, smooth, with an entire sheath (2–5 μm wide when fresh, 1–2 μm wide when dry).

In culture, both sexual and asexual morphs formed. Ascospores 32–40 × 10.5–13 μm, l/w 2.8–3.2, with a submedian septum (0.54–0.56). Conidia ellipsoid, 37–48(–55) × 12–13(–15) μm, l/w 3.0–3.8, 3-septate, hyaline.

Specimen examined: Japan, Kagoshima, Isl. Yakushima, Nunobikinotaki park, on dead leaves of herbaceous plant, 19 Oct. 2005, K. Tanaka & T. Hosoya, KT 1866 = HHUF 30141, culture MAFF 243860.

Notes: The ITS sequence from this material is identical with the sequence (GenBank AF439464) of Stagonospora taiwanensis obtained from the ex-type culture (ATCC 38204; Hsieh 1979), and two ITS sequences (GenBank AF439462, AF439463) of Saccharicola taiwanensis on Saccharum. An unnamed “Saccharicola” on Miscanthus (O'Neill & Farr 1996), a grass genus related to Saccharum, is also considered to be conspecific, because these have identical ITS sequences (GenBank AF439467; Câmara et al. 2002) and morphological similarities (O'Neill & Farr 1996). Morphologically, our specimen agrees with the previous description of this species (as Leptosphaeria taiwanensis; Hsieh, 1979, Sivanesan, 1984, Sivanesan and Waller, 1986), but the large ascospores reported by Shoemaker & Babcock (1989) were not observed.

Morosphaeriaceae Suetrong et al., Stud. Mycol. 64: 161. 2009.

Type genus: Morosphaeria Suetrong et al.

Aquilomyces D.G. Knapp et al., Persoonia 35: 93. 2015.

Type species: Aquilomyces patris D.G. Knapp et al.

Notes: Aquilomyces was erected by Knapp et al. (2015) to accommodate A. patris, a root endophyte of white poplar. There was no morphological information of this genus, because no fructifications were observed for A. patris.

Aquilomyces rebunensis Kaz. Tanaka & K. Hiray., sp. nov. MycoBank MB811322. Fig. 30.

Fig. 30.

Fig. 30

Aquilomyces rebunensis. A, B. Ascomata on the natural host surface; C. Ascoma in longitudinal section (in lactophenol cotton blue); D. Ascomatal wall; E. Pseudoparaphyses; F. Ascus; G–K. Ascospores (arrowheads indicate gelatinous sheath); L. Spermatia. A–D, F–I from KT 732; E, J–L from culture KT 732. Scale bars: A = 1 mm; B = 500 μm; C = 100 μm; D–L = 10 μm.

Etymology: After the locality where this fungus was collected.

Ascomata subglobose, 350–550 μm high, (430–)600–700 μm diam, covered with numerous brown hyphae of 2–3 μm thick. Ostiolar neck terete, central, 85–130 μm long, 75–130 μm wide, clypeate, with periphyses, composed of carbonaceous polygonal cells of 5–10 × 3–5 μm. Ascomatal wall at side wedge-shaped, up to 125 μm thick, composed of vertically orientated angular brown cells (5–8 × 2–5 μm); wall at the base 25–50 μm thick, composed of 3–8 μm diam, subglobose, brown cells. Pseudoparaphyses branched and anastomosed, septate, 1.5–2 μm wide. Asci fissitunicate, cylindrical to clavate, 97.5–147.5 × 15–21 μm (av. 121.3 × 18.3 μm, n = 45), with a short stipe of 7.5–25(–37.5) μm (av. 18.0 μm, n = 34). Ascospores fusiform, slightly curved, 30–38.5 × 6.5–11.5 μm (av. 35.1 × 8.6 μm, n = 50), l/w 3.3–5.0(–5.6) (av. 4.2, n = 50), with a supramedian septum (0.44–0.50; av. 0.47, n = 57), hyaline, smooth, with a sheath of 1–2 μm wide.

Colonies on PDA (after 4 wk) attaining a diam of 4.3–4.6 cm, pale olivaceous grey with white margin; reverse black to olivaceous grey; no pigment produced. In culture spermatial and ascomatal morphs formed. Spermatia 2–3 × 1.5–1.8 μm, subglobose to oblong. Ascospores slightly larger than those found on nature, 35–48 × 8–11 μm (av. 39.7 × 9.3 μm, n = 25).

Specimen examined: Japan, Hokkaido, Isl. Rebun, Kafuka, Nairo-river, on submerged twigs of woody plant, 30 Aug. 2001, K. Tanaka (holotype KT 732-2 = HHUF 27556, culture ex-type CBS 139684 = JCM 19427 = MAFF 243862).

Notes: We tentatively describe this aquatic fungus as Aquilomyces based on our molecular results. Phylogenetic analysis showed that A. patris, the type species of Aquilomyces, and A. rebunensis clustered into a distinct and moderately-supported clade (85 %, Fig. 1). Sequence similarities between these two taxa were 97.7 % (858/878) with 2.3 % gaps (20/878) in LSU and 95.4 % (576/604) with 0.7 % gaps (4/604) in ITS, suggesting that they are congeneric.

Clypeoloculus Kaz. Tanaka & K. Hiray., gen. nov. MycoBank MB811318.

Etymology: Referring to the morphology of the ascomata covered by clypeus.

Ascomata scattered to 2–3 grouped, immersed to erumpent, subglobose or hemispherical with flattened base in section, covered with numerous brown hyphae around ascomata. Ostiolar neck terete to papillate, central, clypeate, composed of carbonaceous cells. Ascomatal wall wedge-shaped or “rim-like” at sides. Pseudoparaphyses septate, branched and anastomosed. Asci fissitunicate, clavate, with a short stipe, 8-spored. Ascospores narrowly fusiform, slightly curved, with a primary septum median to supramedian, constricted at the septum, hyaline, smooth, surrounded by an entire gelatinous sheath. Asexual morph unknown.

Type species: Clypeoloculus akitaensis Kaz. Tanaka & K. Hiray.

Notes: A new genus, Clypeoloculus, is proposed here for freshwater species having globose to subglobose ascomata with prominent clypeus, clavate asci, and 1-septate, hyaline ascospores with an entire sheath. These morphological characters fit with the broad generic concept of Massarina (Aptroot, 1998, Tanaka and Harada, 2003b), but Clypeoloculus can be distinguished from Massarina s. str. by the ascomata with wedge-shaped or “rim-like” ascomatal wall and narrowly fusiform ascospores. Furthermore, species in Clypeoloculus are located in the Morosphaeriaceae clade and are distantly related to M. eburnea, the type species of Massarina (Massarinaceae; Fig. 1).

Clypeoloculus akitaensis Kaz. Tanaka & K. Hiray., sp. nov. MycoBank MB811319. Fig. 31.

Fig. 31.

Fig. 31

Clypeoloculus akitaensis. A, B. Ascomata on the natural host surface; C. Ascoma in longitudinal section; D. Ascomatal wall; E. Pseudoparaphyses; F. Ascus; G–I. Ascospores (arrowheads indicate gelatinous sheath); J. Spermogonium in culture (on rice straw); K. Spermogonium in longitudinal section (in lactophenol cotton blue); L. Spermatia. A–I from KT 788; J–L from culture KT 788. Scale bars: A = 2 μm; B, J = 500 μm; C, K = 100 μm; D–I, L = 10 μm.

Etymology: Referring to the location where the specimen was collected.

Ascomata scattered to 2–3 grouped, immersed to erumpent, globose to subglobose in section, 400–550 μm high, 580–720 μm diam, covered with numerous brown hyphae around ascomata. Ostiolar neck terete, central, clypeate, composed of carbonaceous cells. Ascomatal wall in longitudinal section 37–100 μm wide at sides and base, composed of subglobose to globose, thick-walled, 2.5–10 μm diam, brown cells. Pseudoparaphyses septate, branched and anastomosed, 2–2.5 μm wide. Asci fissitunicate, clavate, (95–)110–155 × 17.5–27.5 μm (av. 125.1 × 20.9 μm, n = 30 μm), with a short stipe of (7.5–)12–27.5(–30) μm (av. 19.4 μm, n = 26) long, with 8 biseriate ascospores. Ascospores narrowly fusiform, slightly curved, 33.5–43 × 7–10 μm (av. 38.7 × 8.6 μm, n = 50), l/w 3.8–5.2 (av. 4.5, n = 50), with a primary septum supramedian (0.44–0.50; av. 0.48, n = 47), constricted at the septum, hyaline, smooth, surrounded by an entire gelatinous sheath, 1.5–3 μm wide.

Colonies on PDA (after 4 wk) attaining a diam of 2.0–2.2 cm, greenish grey; reverse black to smoke grey; no pigment produced. Spermatial morph observed in culture. Spermatia oblong, hyaline, 2.8–4 × 1.3–1.9 μm (av. 3.3 × 1.7 μm, n = 30).

Specimen examined: Japan, Akita, Kisakata, Akagawa-river, riverbank, on submerged twigs of woody plant, 23 Sep. 2001, K. Tanaka (holotype KT 788 = HHUF 27557, culture ex-type CBS 139681 = JCM 19424 = MAFF 239467).

Notes: In ascospore dimensions, C. akitaensis (av. 38.7 × 8.6 μm) is most similar to C. towadaensis (av. 38.7 × 8.7 μm), but the latter species has hemispherical ascomata with flattened bases and longer asci [(112–)120–170 μm long]. In the ITS sequences of these two species, there were differences at 29 positions.

Tanaka & Harada (2003b) reported this fungus as Massarina peerallyi (Hyde & Aptroot 1998). However, our re-examination of M. peerallyi based on its holotype [HKU (M) 2409] revealed that they are distinct species, because M. peerallyi has broader asci (80–127.5 × 25–35 μm) and larger ascospores (37–45 × 9–12 μm) with a supramedian septum (0.43–0.50 av. 0.48, n = 32). The morphological features of M. peerallyi are generally in accordance with the generic concept of Clypeoloculus, but phylogenetic reassessment using molecular sequences will be necessary before a new combination is proposed for this species.

Clypeoloculus hirosakiensis Kaz. Tanaka & K. Hiray., sp. nov. MycoBank MB811320. Fig. 32.

Fig. 32.

Fig. 32

Clypeoloculus hirosakiensis. A, B. Ascomata on the natural host surface; C. Ascoma in longitudinal section; D. Ascomatal wall; E. Pseudoparaphyses; F. Ascus; G–I. Ascospores (arrowheads indicate gelatinous sheath; I. in India ink); J. Germinating ascospore; K. Spermogonia in culture (on rice straw); L. Spermatia. A–J from KT 1283; K, L from culture KT 1283. Scale bars: A = 1 mm; B, K = 500 μm; C = 100 μm; D–J, L = 10 μm.

Etymology: Referring to the collection site.

Ascomata scattered, immersed to erumpent, globose to subglobose in section, 350–520 μm high, 340–550 μm diam, covered with numerous brown hyphae around ascomata. Ostiolar neck terete, central, 75–100 μm long, 40–170 μm wide, clypeate, composed of carbonaceous cells. Ascomatal wall in longitudinal section at sides, 50–60 μm wide, composed of parallel rows of rectangular to polygonal, brown to dark brown cells of 7.5–12.5 × 3.5–9.5 μm; wall at the base 17–25 μm wide, composed of subglobose to polygonal, slightly thick-walled, 3–10 × 3.5–6.5 μm, brown cells. Pseudoparaphyses septate, branched and anastomosed, 1.5–3 μm wide. Asci fissitunicate, clavate, 100–147.5 × (13.5–)15–20 μm (av. 118.6 × 16.5 μm, n = 50 μm), with a short stipe of (7.5–)10–25(–30) μm (av. 16.5 μm, n = 50) long, with 8 biseriate ascospores. Ascospores narrowly fusiform, slightly curved, (24–)29–36 × 7–9.5 μm (av. 33.0 × 8.0 μm, n = 50), l/w 3.7–4.7 (av. 4.1, n = 50), with a primary septum nearly median (0.47–0.52; av. 0.50, n = 50), constricted at the septum, hyaline, smooth, surrounded by an entire gelatinous sheath, 3–7 μm wide.

Colonies on PDA (after 4 wk) attaining a diam of 2.7–3.0 cm, greenish grey to lavender grey; reverse chestnut; ochreous pigment produced. In culture spermatial morph formed. Spermatia oblong, hyaline, 2.6–3.5 × 1.2–1.5.

Specimen examined: Japan, Aomori, Hirosaki, Zatoishi (river), on submerged twigs of woody plant, 19 Jul. 2003, K. Tanaka & N. Asama (holotype KT 1283 = HHUF 30144, culture ex-type CBS 139682 = JCM 19425 = MAFF 243864).

Note: The ascospores of C. hirosakiensis (av. 33.0 × 8.0 μm) are larger than those of C. microsporus (av. 29.9 × 7.0 μm) but smaller than those of C. akitaensis (av. 38.7 × 8.6 μm) and C. towadaensis (av. 38.7 × 8.7 μm).

Clypeoloculus microsporus Kaz. Tanaka & K. Hiray., sp. nov. MycoBank MB811321. Fig. 33.

Fig. 33.

Fig. 33

Clypeoloculus microsporus. A, B. Ascomata on the natural host surface; C. Ascoma in longitudinal section; D. Ascomatal wall; E. Pseudoparaphyses; F. Ascus; G–J. Ascospores (arrowheads indicate gelatinous sheath); K. Spermogonium in culture (on rice straw); L. Spermatia. A–J from KT 1131; K, L from culture KT 1131. Scale bars: A = 1 mm; B, K = 500 μm; C = 100 μm; D–J, L = 10 μm.

Etymology: Referring to the small ascospores.

Ascomata scattered to 2–3 grouped, immersed to erumpent, globose to subglobose in section, 290–310 μm high, 280–350 μm diam, covered with sparse brown hyphae around ascomata. Ostiolar neck central, papillate, 70–90 μm long, 100–120 μm wide, clypeate, composed of carbonaceous cells. Ascomatal wall in longitudinal section 25–38 μm wide at sides and 25–30 μm wide at the base, composed of subglobose brown cells (2.5–10 μm diam). Pseudoparaphyses branched and anastomosed, septate, 2–3 μm wide. Asci fissitunicate, cylindrical to clavate, 80–145 × 13.5–22.5 μm (av. 115.5 × 17.5 μm, n = 33), with a short stipe of (5–)7.5–15(–29.5) μm (av. 13.9 μm, n = 30) long, with 8 biseriate to triseriate ascospores. Ascospores narrowly fusiform, slightly curved, 25.5–34.5 × 6–8(–9) μm (av. 29.9 × 7.0 μm, n = 56), l/w 3.4–5.2(–5.5) (av. 4.3, n = 56), with a primary septum nearly median (0.47–0.52; av. 0.50, n = 56), constricted at the septum, hyaline, smooth, surrounded by an entire gelatinous sheath of 2–4 μm wide.

Colonies on PDA (after 4 wk) attaining a diam of 3.1–3.3 cm, olivaceous grey; reverse umber to chestnut; amber pigment produced. In culture spermatial morph formed. Spermatia oblong, hyaline, 2.5–3.2 × 1.2–1.6 μm.

Specimen examined: Japan, Aomori, Kuroishi, Lake Nizinoko, on submerged twigs of woody plant, 3 May 2003, K. Tanaka & N. Asama (holotype KT 1131 = HHUF 30143, culture ex-type CBS 139683 = JCM 19426 = MAFF 243863).

Note: This species is distinguished from other species of Clypeoloculus by having the smallest ascospores known in the genus.

Clypeoloculus towadaensis Kaz. Tanaka & K. Hiray., sp. nov. MycoBank MB811323. Fig. 34.

Fig. 34.

Fig. 34

Clypeoloculus towadaensis. A, B. Ascomata on the natural host surface; C. Ascoma in longitudinal section; D. Ascomatal wall; E. Pseudoparaphyses; F. Ascus; G–J. Ascospores (arrowheads indicate gelatinous sheath; J. senescent ascospore); K. Spermogonia in culture; L. Spermatia. A–J from KT 1340; K, L from culture KT 1340. Scale bars: A = 1 mm; B, K = 500 μm; C = 100 μm; D–J, L = 10 μm.

Etymology: Referring to the collection site.

Ascomata scattered to 2–3 grouped, immersed to erumpent, hemispherical with flattened base in section, 260–360 μm high, 550–700 μm diam. Ostiolar neck central, terete, 65–135 μm long, 75–88 μm wide, clypeate, composed of carbonaceous cells. Ascomatal wall at sides 95–150 μm wide and “rim-like”, composed of vertically orientated, rectangular to subglobose, hyaline to pale brown cells of 6–10 × 3–6 μm; at the base 15–25 μm wide or poorly developed. Pseudoparaphyses septate, branched and anastomosed, 1–2 μm wide. Asci fissitunicate, cylindrical, (112–)120–170 × 17.5–25 μm (av. 136.7 × 21.3 μm, n = 35), with a short stipe of (7.5–)12.5–25 μm (av. 17.2 μm, n = 35) long, with 8 biseriate ascospores. Ascospores narrowly fusiform, slightly curved, 34–43 × 7–10 μm (av. 38.7 × 8.7 μm, n = 50), l/w 3.9–5.3 (av. 4.5, n = 50), with a primary septum nearly median (0.47–0.53; av. 0.50, n = 50), constricted at the septum, hyaline, smooth, surrounded by an entire gelatinous sheath of 1–5 μm wide. Senescent ascospores becoming brown, 1–3(–5)-septate.

Colonies on PDA (after 4 wk) attaining a diam of 1.9–2.2 cm, greenish grey; reverse buff to sepia; ochreous pigment produced. In culture spermatial morph formed. Spermatia oblong to subglobose, hyaline, 3–4 × 1.4–1.8 μm.

Specimen examined: Japan, Akita, Kazuno, Kosaka, Lake Towada, on submerged twigs of woody plant, 26 Jul. 2003, K. Tanaka & N. Asama (holotype KT 1340 = HHUF 30145, culture ex-type CBS 139685 = JCM 19428 = MAFF 243865).

Notes: The most distinctive feature of C. towadaensis is its hemispherical ascomata with “rim-like” ascomatal walls. The asci of this species are longer than those of other species in Clypeoloculus.

Helicascus Kohlm., Canad. J. Bot. 47: 1471. 1969.

Type species: Helicascus kanaloanus Kohlm.

Notes: Helicascus was revised by Zhang et al. (2013) who accepted six species: two marine (H. kanaloanus and H. nypae) and four freshwater species (H. aegyptiacus, H. aquaticus, H. elaterascus and H. thalassioideus). Recently, two additional species in freshwater habitat (H. gallicus and H. unilocularis) were described in the genus (Zhang et al., 2014b, Zhang et al., 2015).

Helicascus aquaticus H. Zhang & K.D. Hyde, Sydowia 65: 155. 2013. Fig. 35.

Fig. 35.

Fig. 35

Helicascus aquaticus. A, B. Ascomata on the natural host surface; C–E. Ascomata in longitudinal section; F. Ostiolar neck of ascoma; G. Ascomatal wall; H. Pseudoparaphyses; I. Ascus; J–L. Ascospores; M. Germinating ascospore; N. Spermogonium in culture (on rice straw); O. Spermatia. A–M from KT 1544; N, O from culture KT 1544. Scale bars: A = 1 mm; B, N = 500 μm; C–E = 100 μm; F, M = 20 μm; G–L, O = 10 μm.

Ascomata scattered to 2–3 grouped, immersed, hemispherical in section, 170–300 μm high (excluding the long ostiolar neck), 230–530 μm diam. Ostiolar neck cylindrical, oblique to central, 230–340 μm long, 110–160 μm wide, composed of polygonal to subglobose, thick-walled, 2.5–7.5 × 2–4 μm, brown to dark brown cells, with dense periphyses. Ascomatal wall in longitudinal section, 40–110 μm thick at sides, “rim-like”, composed of parallel rows of rectangular to polygonal, brown cells of 3.5–20 × 2.5–10 μm; at base poorly developed, 7–15 μm thick, composed of thin-walled flattened cells. Pseudoparaphyses septate, branched and anastomosed, 1.5–2(–3.5) μm wide, associated with gelatinous material. Asci fissitunicate, cylindrical to clavate, 80–122.5 × 15–19.5 μm (av. 102.8 × 17.5 μm, n = 20), with a stipe of 17.5–32.5 μm long (av. 24.7 μm long, n = 20), 8-spored. Ascospores broadly fusiform, slightly curved, 21.5–29 × 8–10.5 μm (av. 24.4 × 9.1 μm, n = 50), l/w 2.2–3.3 (av. 2.7, n = 50), with a submedian septum (0.51–0.60; av. 0.57, n = 50), constricted at the septum, pale greenish brown to brown, smooth, without sheath.

In culture spermatial morph formed. Spermatia oblong, hyaline, 2.4–4 × 1.5–2 μm.

Specimen examined: Japan, Aomori, Hirosaki, Aoki, Mohei-pond, on submerged twigs of woody plant, 25 Oct. 2003, K. Tanaka & N. Asama, KT 1544 = HHUF 30146, culture JCM 19423 = MAFF 243866.

Notes: The ITS sequence from the above isolate showed 100 % identity with that from the ex-type of H. aquaticus (GenBank KC886639), an aquatic species formerly known only from the type specimen collected on submerged wood in Thailand (Zhang et al. 2013). Our collection has a longer ascomatal neck (vs. 130–200 μm) and shorter asci [vs. 90–140(–185) μm] than described in the original publication. The ascospores possessing three septa were noted as the most distinctive feature of H. aquaticus (Zhang et al. 2013), but these were consistently 1-septate in our material.

Helicascus elaterascus (Shearer) H. Zhang & K.D. Hyde, Sydowia 65: 158. 2013. Fig. 36.

Fig. 36.

Fig. 36

Helicascus elaterascus. A. Ascomata on the natural host surface; B. Ascomata in culture (on rice straw); C–E. Ascomata in longitudinal section; F. Ostiolar neck of ascoma; G. Ascomatal wall; H. Pseudoparaphyses; I. Ascus; J–L. Ascospores (arrowheads indicate gelatinous sheath); M. Germinating ascospore. A, C–G, I, M from KT 2673; B, H, J–L from culture KT 2673. Scale bars: A, B = 500 μm; C–E = 100 μm; F, M = 20 μm; G–L = 10 μm.

Basionym: Kirschsteiniothelia elaterascus Shearer, Mycologia 85: 963. 1994 (1993).

Ascomata scattered, immersed, depressed globose in section, 250–300 μm high (excluding the long ostiolar neck), 600–910 μm diam. Ostiolar neck 200–230 μm long, 110–160 μm wide, with dense periphyses. Pseudoparaphyses branched and anastomosed, septate, associated with gelatinous material. Asci fissitunicate, clavate, ca. 140 × 19 μm, with a long stipe, 8-spored. Ascospores broadly fusiform, slightly curved, 26.5–31.5 × 9–12.5 μm (av. 29.0 × 10.6 μm, n = 30), l/w 2.4–3.1 (av. 2.8, n = 30), with a submedian septum (0.50–0.58; av. 0.54, n = 30), slightly constricted at the septum, pale greenish brown to brown, with an entire sheath slightly enlarged below. In culture only sexual morph observed.

Specimens examined: Japan, Okinawa, Isl. Ishigaki, Mt. Omoto (river), on submerged twigs of woody plant, 2 Dec. 2009, Y. Kurihara, KT 2673 = HHUF 30147, culture MAFF 243867; Okinawa, Isl. Iriomote, Aira-river, on submerged twigs of woody plant, 8, Dec. 2009, Y. Kurihara & A. Ooba, KT 2682 = HHUF 30451, culture CBS 139689.

Notes: The morphological features of the examined material matched well with those in the original description of this species (Shearer 1993, as Kirschsteiniothelia elaterascus) and the LSU sequences were identical with that of the species deposited in GenBank (GenBank AY787934; Kodsueb et al. 2006). This species has been reported frequently from submerged wood in temperate and tropical freshwater habitats (Shearer and Raja, 2010, Raja et al., 2011) including Japan (Tsui et al. 2003).

Helicascus thalassioideus (K.D. Hyde & Aptroot) H. Zhang & K.D. Hyde, Sydowia 65: 159. 2013. Fig. 37.

Fig. 37.

Fig. 37

Helicascus thalassioideus. A, B. Ascomata on the natural host surface; C. Ascomata in longitudinal section; D. Ascomatal wall; E. Pseudoparaphyses; F. Ascus; G. Ascospore. All from KH 242. Scale bars: A = 1 mm; B = 500 μm; C = 100 μm; D–G = 10 μm.

Basionym: Massarina thalassioidea K.D. Hyde & Aptroot, Nova Hedwigia: 498. 1998.

Asci clavate, 80–120 × 15–17.5 μm (av. 100.2 × 16.7 μm, n = 30), with a stipe of 15–32.5 μm long (av. 23.0 μm, n = 30). Ascospores 25–31 × 8–10 μm (av. 27.5 × 8.6 μm, n = 30), l/w 2.8–3.5 (av. 3.2, n = 30), with a median septum. Asexual morph unknown.

Specimens examined: Japan, Okinawa, Isl. Iriomote, Geta-river, on submerged twigs of woody plant, 22 Nov. 2008, K. Hirayama & K. Tanaka, KH 242 = HHUF 30069, culture JCM 17526 = NBRC 107811. China, Hong Kong, Lam Tsuen river, N.T. on submerged wood, culture CBS 110441 = JCM 14147.

Notes: A more detailed description of this species was provided by Hirayama & Tanaka (2011a). This species was originally described as Massarina (Hyde & Aptroot 1998) and has commonly been reported from submerged wood in freshwater habitats throughout the world including Australia, Brunei, China (Yunnan), French West Indies, Hong Kong, the Philippines, and Thailand (Zhang et al., 2013, Zhang et al., 2015). Zhang et al. (2014b) suspected that helicascus-like taxa with a worldwide distribution might be a species-complex. However, ITS sequences obtained from the above two isolates were identical and differed by only one position (517/518) from that of H. thalassioideus collected in French West Indies (GenBank KP637162, Zhang et al. 2015).

Morosphaeria Suetrong et al., Stud. Mycol. 64: 161. 2009.

Type species: Morosphaeria velatispora (K.D. Hyde & Borse) Suetrong et al.

Notes: The genus Morosphaeria currently comprises two marine species, M. ramunculicola and M. velatispora (Suetrong et al. 2009). A freshwater fungus, Kirschsteiniothelia elaterascus, was transferred to Morosphaeria (Boonmee et al. 2012), but it is presently placed in Helicascus (Zhang et al. 2013).

Morosphaeria ramunculicola (K.D. Hyde) Suetrong et al., Stud. Mycol. 64: 162. 2009. Fig. 38.

Fig. 38.

Fig. 38

Morosphaeria ramunculicola. A, B. Ascomata on the natural host surface; C. Ascoma in longitudinal section; D. Ascomatal wall; E. Pseudoparaphyses; F. Ascus; G. Ascospore (arrowheads indicate gelatinous sheath). All from KH 220. Scale bars: A = 1 mm; B = 500 μm; C = 100 μm; D–G = 10 μm.

Basionym: Massarina ramunculicola K.D. Hyde, Mycologia 83: 839. 1992 (1991).

Asci cylindrical to clavate, 121–187.5 × 22–32.5 μm, stalked (20–42.5 μm long). Ascospores 33–41 × 11–15 μm (av. 36.5 × 12.6 μm, n = 30), l/w 2.4–3.4 (av. 2.9, n = 30), with a submedian primary septum (0.50–0.56; av. 0.52, n = 30). Asexual morph unknown.

Specimen examined: Japan, Okinawa, Isl. Iriomote, Oomijya-river, on twigs of Rhizophora mucronata, 22 Nov. 2008, K. Hirayama & K. Tanaka, KH 220 = HHUF 30070, culture NBRC 107813.

Notes: The morphological features of the specimen cited here were identical to those of M. ramunculicola (Hyde 1991). There were only 1–2 bp differences between the LSU sequences (ca. 1 280 bp) of our material and those of M. ramunculicola deposited in GenBank (GenBank GQ925853, GQ925854).

Morosphaeria velatispora (K.D. Hyde & Borse) Suetrong et al., Stud. Mycol. 64: 161. 2009. Fig. 39.

Fig. 39.

Fig. 39

Morosphaeria velatispora. A, B. Ascomata on the natural host surface; C. Ascoma in longitudinal section; D. Ascomatal wall; E. Pseudoparaphyses; F. Ascus; G. Ascospore (arrowheads indicate gelatinous sheath). A, D from KH 218; B, C, E–G from KH 221. Scale bars: A = 1 mm; B = 500 μm; C = 100 μm; D–G = 10 μm.

Basionym: Massarina velatispora K.D. Hyde & Borse, Mycotaxon 27: 161. 1986.

Asci clavate, (135–)165–245(–280) × 25–38 μm (av. 212.2 × 32.8 μm, n = 30), with a stipe of 25–55 μm long (av. 37.0 μm, n = 26). Ascospores 42–52 × 14–18 μm (av. 47.1 × 16.1 μm, n = 40), l/w 2.6–3.4 (av. 2.9, n = 40), 1–3-septate, with a median primary septum (0.49–0.53; av. 0.50, n = 40). Asexual morph unknown.

Specimens examined: Japan, Okinawa, Isl. Iriomote, Oomijya-river, on twigs of Rhizophora mucronata, 22 Nov. 2008, K. Hirayama & K. Tanaka, KH 218 = HHUF 30072, culture JCM 17529 = NBRC 107814; Okinawa, Isl. Iriomote, Geda river, on twigs of Rhizophora mucronata, 20 Nov. 2008, K. Hirayama & K. Tanaka, KH 221 = HHUF 30073, culture JCM 17530 = NBRC 107812.

Note: Hirayama & Tanaka (2011a) provided a more precise description based on the above specimens.

Parabambusicolaceae Kaz. Tanaka & K. Hiray., fam. nov. MycoBank MB811324.

Etymology: Referring to the name of the type genus.

Ascomata scattered to grouped, immersed to erumpent, globose to subglobose in surface view, depressed globose to hemispherical in section. Ostiolar neck or short papillate, central, sometimes compressed, composed of heavily melanised cells. Ascomatal wall composed of pale brown cells, with or without “rim-like” stromatic region. Pseudoparaphyses septate, branched and anastomosed. Asci fissitunicate, clavate to broadly cylindrical, stipitate, with 8 ascospores. Ascospores clavate to fusiform, with a supramedian primary septum, multiseptate, slightly constricted at septa, hyaline, smooth, with an entire sheath. Asexual morph where known sporodochial, monodictys-like hyphomycetes.

Type genus: Parabambusicola Kaz. Tanaka & K. Hiray.

Notes: This family superficially resembles Bambusicola, but can be distinguished from the latter by the ascomata surrounded by stromatic tissue (Parabambusicola) or compressed necks with wide ostioles (Aquastroma), and the multiseptate, clavate to fusiform, hyaline ascospores.

Aquastroma Kaz. Tanaka & K. Hiray., gen. nov. MycoBank MB811325.

Etymology: From the Latin aqua meaning water and stroma.

Ascomata scattered to grouped, immersed to erumpent, globose in surface view, depressed globose in section. Ostiolar neck central, compressed, composed of thick-walled, heavily melanised, subglobose cells, with a wide ostiole. Ascomatal wall composed of pale brown, thin-walled cells. Pseudoparaphyses septate, branched and anastomosed. Asci fissitunicate, clavate, stipitate, with 8 ascospores. Ascospores clavate to fusiform, slightly curved, with a supramedian primary septum, multiseptate, slightly constricted at septa, hyaline, smooth, with an entire sheath. Asexual morph unknown.

Type species: Aquastroma magniostiolata Kaz. Tanaka & K. Hiray.

Notes: Aquastroma is superficially similar to Quintaria in having multiseptate ascospores and aquatic habitat. However, the type species of Quintaria, Q. lignatilis known from marine habitats, has long-necked ascomata with black incrustations surrounding the sides of the ostiolar canal (Zhang et al. 2012), and is phylogenetically close to members of the family Amniculicolaceae (Shearer et al. 2009) or the Testudinaceae/Platystomaceae (Suetrong et al., 2009, Zhang et al., 2012). Quintaria is regarded as a polyphyletic genus, because Q. submersa known from freshwater habitats does not cluster with Q. lignatilis and forms a sister clade to the Lindgomycetaceae (Zhang et al. 2012). An asexual morph was not observed for Aquastroma in culture, but this genus forms a clade with two hyphomycetes, Monodictys species, and their relationship is highly supported (100 %; Fig. 1). Monodictys, however, is not monophyletic and species in this genus are phylogenetically distributed in three ascomycete classes, Dothideomycetes, Leotiomycetes, and Sordariomycetes (see Notes in Monodictys). Aquastroma should be retained as a distinct genus, until sequence data of the type species of Monodictys (M. putredinis) become available to clarify the phylogenetic placement of Monodictys s. str.

Aquastroma magniostiolata Kaz. Tanaka & K. Hiray., sp. nov. MycoBank MB811326. Fig. 40.

Fig. 40.

Fig. 40

Aquastroma magniostiolata. A, B. Ascomata on the natural host surface; C. Ascoma in longitudinal section; D. Ascomatal wall; E. Pseudoparaphyses; F, G. Asci; H–M. Ascospores (arrowheads indicate gelatinous sheath; J. in Black-Blue ink; K–M. in India ink); N. Germinating ascospore. A–E, G–J, N from KT 2485; F, K–M from culture KT 2485. Scale bars: A = 1 mm; B = 500 μm; C = 100 μm; D–N = 10 μm.

Etymology: From the Latin mangi-, meaning large, and ostiolatus, meaning ostiolate.

Ascomata scattered to 3–4 grouped, immersed to erumpent, globose in surface view, depressed globose in section, 180–250 μm high, 260–340 μm diam. Ostiolar neck central, compressed, 60–750 μm long, 75–130 μm wide, composed of thick-walled, heavily melanised, subglobose cells (2–3 μm diam), with a wide ostiole. Ascomatal wall in longitudinal section 25–30 μm thick at sides, composed of 5–7 layers of polygonal, thin-walled, 6–17 × 2.5–7.5 μm, pale brown cells; wall at the base 10–18 μm thick or poorly developed, composed of thin-walled flattened cells. Pseudoparaphyses septate, branched and anastomosed, 2–3 μm wide. Asci fissitunicate, clavate, 112.5–137.5 × 25–29.5 μm, with a stipe of 22–28 μm long, with 8 biseriate to triseriate ascospores. Ascospores clavate to fusiform, slightly curved, 30–44 × 9–13.5 μm (av. 36.5 × 10.3 μm, n = 39), l/w 2.8–4.5 (av. 3.6, n = 39), with a supramedian primary septum (0.40–0.47; av. 0.43, n = 39), 6–8-septate (2+1+3, 2+1+4, 3+1+3, 3+1+4), slightly constricted at septa, hyaline, smooth, with an entire sheath; sheath delimited and 2–3 μm wide at first, diffuse and up to 10 μm wide at a later.

Colonies on PDA (after 4 wk) attaining a diam of 3.2–3.4 cm, greenish grey; reverse almost black; no pigment produced. In culture sexual morph formed. Asci and ascospores larger than those on the natural host. Asci 130–170 × 22.5–37.5 μm (av. 148.9 × 29.9 μm, n = 30). Ascospores 39–47.5 × 11–16 μm (av. 43.5 × 13.5 μm, n = 50), l/w 2.8–3.8 (av. 3.2, n = 50).

Specimen examined: Japan, Mie, Tsu, Kamihama, Hyourtan pond, on submerged twigs of woody plant, 1 Jun. 2008, K. Tanaka & H. Yonezawa (holotype KT 2485 = HHUF 30122, culture ex-type CBS 139680 = JCM 19429 = MAFF 243824).

Notes: Aquastroma magniostiolata is shown to be morphologically distinct from Quintaria aquatica by its ascospores with 6–8 septa [vs. (10–)11–13(–14) septa in Q. aquatica; Hyde & Goh 1999]. It is also different from Q. microspora in its larger ascospores (vs. 26–31 × 5–5.5 μm in Q. microspora; Zhang et al. 2008a).

Parabambusicola Kaz. Tanaka & K. Hiray., gen. nov. MycoBank MB811327.

Etymology: After its phylogenetic similarity to Bambusicola.

Ascomata mostly grouped, immersed to erumpent, subglobose in surface view, hemispherical with flattened base in section. Ostiolar neck short papillate, central. Ascomatal wall at the sides composed of pale brown, flattened cells; at the rim, composed of parallel rows of rectangular to polygonal cells. Pseudoparaphyses numerous. Asci broadly cylindrical to clavate, short-stalked, 8-spored. Ascospores fusiform, multiseptate, primary septum mostly supramedian, hyaline, smooth, with an entire sheath. Asexual morph unknown.

Type species: Parabambusicola bambusina (Teng) Kaz. Tanaka & K. Hiray.

Notes: A new genus Parabambusicola is established to accommodate P. bambusina formerly classified in Massarina (Teng, 1936, Aptroot, 1998, Tanaka and Harada, 2003b). Parabambusicola differs from Massarina in its hemispherical to depressed globose ascomata surrounded by stromatic tissue and without prominent clypeus, broadly cylindrical asci, and fusiform ascospores with several septa. It is distantly related to Massarina (Fig. 1).

Parabambusicola bambusina (Teng) Kaz. Tanaka & K. Hiray., comb. nov. MycoBank MB811392. Fig. 41.

Fig. 41.

Fig. 41

Parabambusicola bambusina. A, B. Ascomata on the natural host surface; C. Ascomata in culture (on rice straw); D, E. Ascomata in longitudinal section; F. Ascomatal wall; G. Pseudoparaphyses; H. Ascus; I, J. Ascospores (arrowheads indicate gelatinous sheath); K. Spermatia. A, B from KH 139; C, G–J from culture KH 139; D–F from KT 2637; K from culture KT 2637. Scale bars: A = 1 mm; B, C = 500 μm; D, E = 100 μm; F–K = 10 μm.

Basionym: Massarina bambusina Teng, Sinensia 7: 512. 1936.

Specimens examined: Japan, Hokkaido, Chitose, Shikotsuko, on dead twigs of Sasa kurilensis, 5 Sep. 2001, Y. Harada, H 4321 = HHUF 26590, culture MAFF 239462; Iwate, Hachimantai, Aspite line, on dead twigs of Sasa kurilensis, 25 Jul. 2009, K. Tanaka & Y. Harada, KT 2637 = HHUF 30120, culture MAFF 243822; Aomori, Hirosaki, Tokiwano, Kuromori, Top of Mt. Iwaki, on dead twigs of Sasa sp., 21 Jun. 2008, K. Hirayama & K. Tanaka, KH 139 = HHUF 30121, culture MAFF 243823.

Note: For further information on this species, see Teng (1936) and Tanaka & Harada (2003b).

Periconiaceae (Sacc.) Nann., Repert. mic. uomo 4: 482. 1934. emend.

= Periconieae Sacc., Syll. Fung. 4: 235. 1886.

Ascomata scattered to grouped, immersed to erumpent, globose. Ostiolar neck central, papillate, with hyaline periphyses. Ascomatal wall in longitudinal section composed of several layers of thin-walled, pale brown to brown cells. Pseudoparaphyses cellular, branched, anastomosed. Asci fissitunicate, oblong to cylindrical, 8-spored. Ascospores broadly fusiform, 1-septate, hyaline, smooth, with an entire sheath. Conidiomata periconia- or noosia-like. Conidiophores macronematous, mononematous, sometimes lacking. Branches pale brown to brown, smooth to slightly echinulate. Conidial heads spherical. Conidiogenous cells monoblastic to polyblastic, discrete on stipe and branches. Conidia globose to ellipsoidal, aseptate, catenate, brown, verruculose to echinulate.

Type genus: Periconia Tode.

Note: Although Periconiaceae (Nannizzi 1934) has long been ignored in modern fungal systematics, it should be regarded as a natural taxon in the suborder Massarineae.

Periconia Tode, Fung. mecklenb. sel. (Lüneburg) 2: 2. 1791.

Type species: Periconia lichenoides Tode.

Notes: Among more than 185 taxa described as Periconia (http://www.indexfungorum.org, Aug. 2015), only two species have been reported to have sexual morphs. They are P. igniaria (the sexual morph was referred to as Didymosphaeria or Massarina in the Dothideomycetes; Booth, 1968, Aptroot, 1998) and P. prolifica (Remispora or Okeanomyces in the Sordariomycetes; Kohlmeyer, 1969, Pang et al., 2004), and therefore it is obvious that the genus Periconia is not monophyletic. DNA sequence data of the type species of this genus, P. lichenoides, are currently unavailable, but we judged that the lineage of Periconia in the Dothideomycetes, including typical members of Periconia, such as P. byssoides, P. cookei, P. igniaria, and P. digitata, corresponds to Periconia s. str., based on their morphological similarities with P. lichenoides (Mason & Ellis 1953). In contrast, P. prolifica, a marine fungus in the Sordariomycetes, does not have macronematous conidiophores (Anastasiou, 1963, Kohlmeyer, 1969), and is not regarded as Periconia s. str.

Periconia homothallica Kaz. Tanaka & K. Hiray., sp. nov. MycoBank MB811328. Fig. 42.

Fig. 42.

Fig. 42

Periconia homothallica. A, B. Ascomata on the natural host surface; C. Ascoma in culture (on rice straw); D. Ascoma in longitudinal section (in lactophenol cotton blue); E. Ascomatal wall; F. Pseudoparaphyses; G. Ascus; H–J. Ascospores (arrowheads indicate gelatinous sheath; J. in India ink); K. Germinating ascospores. A, B, D–H, K from KT 916; C, I, J from culture KT 916. Scale bars: A = 2 mm; B, C = 500 μm; D = 50 μm; E–K = 10 μm.

Etymology: Referring to its homothallism.

Ascomata scattered, immersed to erumpent, globose, 140–190 μm high, 160–180 μm diam, with an ostiole. Ostiolar neck central, papillate, 24–40 μm long, 37–62 μm wide, with hyaline periphyses. Ascomatal wall in longitudinal section uniformly 11–15 μm thick, composed of 4–6 layers of polygonal, thin-walled, 3–15 × 2–5 μm, pale brown cells. Pseudoparaphyses cellular, 2–2.5 μm wide at the apex, up to 5 μm wide at the base, branched, anastomosed. Asci fissitunicate, cylindrical to lageniform, 85–119.5 × 13–17.5 μm (av. 96.5 × 15.3 μm, n = 20), with a shallow ocular chamber, short-stalked (3.5–6 μm long), with 8 biseriate ascospores. Ascospores broadly fusiform, 22–31 × 7–10 μm (av. 26.3 × 8.7 μm, n = 60), l/w 2.6–3.7 (av. 3.0, n = 60), with a nearly median septum (0.48–0.53; av. 0.51, n = 38), hyaline, smooth, with an entire sheath; sheath gelatinous, up to 10 μm wide when fresh, later 1–2 μm wide.

Colonies on PDA (after 2 wk) attaining a diam of 4.3–5.6 cm, straw; reverse similar; no pigment produced. In culture sexual morph formed. Ascospores slightly smaller than those on the natural host, 20–28 × 6–9 μm (av. 24.0 × 7.8 μm, n = 45), l/w 2.7–3.5 (av. 3.1, n = 45).

Specimen examined: Japan, Yamagata, Mogamigun, Sakekawa, Magarikawa-river, riverbank, on dead leaves of Phragmites japonica, 13 Oct. 2002, Y. Ooki & Y. Harada (holotype KT 916 = HHUF 29105, culture ex-type CBS 139698 = JCM 13100 = MAFF 239610).

Notes: Although we were not able to observe a typical periconia-like asexual morph from our specimen and isolate, we introduce this as a new species of Periconia based on the morphology of the sexual morph. The above material shares many characteristics with sexual species in Periconia s. str. (i.e., P. igniaria and P. pseudodigitata), such as those with immersed globose ascomata with papillate necks, a peridium composed of thin-walled polygonal cells, cylindrical asci, and broadly fusiform hyaline ascospores with nearly median septum. Periconia homothallica, however, has shorter but wider asci than those of P. igniaria (85–119.5 × 13–17.5 μm vs. 150–165 × 8–12 μm, Booth 1968) and has wider ascospores than those of P. pseudodigitata [22–31 × 7–10 μm vs. 19.5–27(–32) × 5–7 μm].

In our phylogenetic tree (Fig. 1), P. homothallica formed an unsupported clade with P. igniaria, as well as species in other hyphomycetous genera, such as “Sporidesmiumtengii that have macronematous conidiophores and multiseptate conidia (Wu & Zhuang 2005), and Noosia banksiae, a species that lacks conspicuous conidiophores (Crous et al. 2011a). The presence of these genera in this lineage may indicate that Periconia should be subdivided into several morphologically similar genera or that the taxonomic status of these Noosia/Sporidesmium isolates should be re-evaluated.

Periconia pseudodigitata Kaz. Tanaka & K. Hiray., sp. nov. MycoBank MB811329. Fig. 43.

Fig. 43.

Fig. 43

Periconia pseudodigitata. A, B. Ascomata on the natural host surface; C. Ascomata in longitudinal section (in lactophenol cotton blue); D. Ascomatal wall; E. Pseudoparaphyses; F. Ascus; G–I. Ascospores (arrowheads indicate gelatinous sheath; H. in Black-Blue ink); J. Germinating ascospore; K. Conidiomata in culture (on rice straw); L–O. Conidial heads and conidiophores; P, Q. Conidia. A, B, E, G–J from KT 1395; C, D, F from KT 644; K–M from culture KT 1195; N from culture KT 644; O–Q from culture KT 1395. Scale bars: A = 1 mm; B, K = 500 μm; C = 100 μm; D–J, P, Q = 10 μm; L–O = 20 μm.

Etymology: After its morphological and phylogenetic similarity to Periconia digitata.

Ascomata numerous, scattered or 2–3 grouped, immersed to erumpent, globose, 160–200 μm high, 130–250 μm diam. Ostiolar neck central, papillate, 45–55 μm long, 45–65 μm wide, with hyaline periphyses, surrounded by clypeus-like structure composed of subglobose to polygonal, slightly thickened, 5–7 × 3–4 μm, dark brown cells. Ascomatal wall in longitudinal section 8–13 μm thick at side, 5–8 μm thick at the base, composed of 3–5 layers of thin-walled, 6–13 × 2–5 μm, brown cells. Pseudoparaphyses cellular, numerous, 2–2.5 μm wide at the apex, 4–6 μm wide at the base, septate, branched, anastomosed, guttulate, associated with gelatinous material. Asci fissitunicate, cylindrical, 70–110 × 10.5–15.5 μm (av. 88.4 × 12.2 μm, n = 33), rounded at the apex and with an apical chamber, short-stalked (5–15 μm long), with 8 irregularly biseriate ascospores. Ascospores broadly fusiform with rounded ends, straight or slightly curved, 19.5–27(–32) × 5–7 μm (av. 22.5 × 6.1 μm, n = 134), l/w 2.9–4.5 (av. 3.7, n = 134), with almost median septum (0.48–0.55, av. 5.1, n = 36), slightly constricted at the septum, hyaline, with or without guttules, smooth, with an entire sheath; sheath gelatinous, 1–2 μm wide at side and 2–4 μm wide at both ends in fresh, becoming delimited sheath in dry condition. Senescent spores brown, echinulate, 1-septate. Ascospores germinating from one or both ends.

Colonies on PDA (after 4 wk) attaining a diam of 3.2–4.6 cm, straw to amber with white margin; reverse pale luteous; no pigment produced. In culture conidial and spermatial morphs formed. Conidiophores macronematous, mononematous, single or rarely 2–3 together on stromata, 250–450 μm long, mostly 8.5–15 μm wide (16–24 μm wide at basal stromatic portion), 4–7-septate at 35–90 μm long intervals, with several branches. Branches 10–50 μm long, septate, pale brown to brown, slightly echinulate. Conidial heads spherical, ca. 60–120(–150) μm diam. Conidiogenous cells monoblastic, discrete on stipe and branches. Conidia catenate, globose, brown, verruculose to shortly echinulate, 7–9.5 μm (av. 8.3 μm, n = 90). Spermogonia globose to subglobose, single to gregarious, uniloculate to multiloculate, 140–340 μm diam. Spermatia subglobose, hyaline, smooth, 3–5 × 1.5–2 μm (av. 3.7 × 1.7 μm, n = 30).

Specimens examined: Japan, Aomori, Hirakawa, Hirakawa-river, riverbank, on dead culms of Phragmites australis, 5 Aug. 2001, K. Tanaka, KT 644 = HHUF 27569, culture JCM 13164 = MAFF 239674; Aomori, Hirosaki, Kawai, Hirakawa-river, riverbank, 18 Aug. 2001, K. Tanaka, KT 680 = HHUF 27570; Aomori, Hirosaki, Shimizumori, Oowasawa-river, riverbank, 14 Aug 2001, K. Tanaka, KT 673 = HHUF 27571; Hokkaido, Akkeshi, Toraibetsu-river, on submerged stems of herbaceous plant, 3 Jun. 2003, K. Tanaka & S. Hatakeyama, KT 1195A = HHUF 29368, culture JCM 13165 = MAFF 239675; ibid., on dead culms of Phragmites australis, 7 Sep. 2003, K. Tanaka & S. Hatakeyama (holotype KT 1395 = HHUF 29370, culture ex-type CBS 139699 = JCM 13166 = MAFF 239676); ibid., KT 1396–1398 = HHUF 29371–29373.

Notes: Periconia pseudodigitata is phylogenetically and morphologically closest to P. digitata, but the conidial dimensions of P. pseudodigitata (7–9.5 μm) are slightly smaller than those reported for P. digitata by Ellis (1971; 7–11 μm). Sequence similarity between these two taxa in the ITS region was 95.8 % (503/525) with 0.8 % (4/525) gaps. Periconia pseudodigitata superficially resembles P. igniaria (= Massarina igniaria), which also has an ascomatal morph. The sexual morph of P. pseudodigitata, however, differs from that of P. igniaria (Booth 1968) by its narrower ascospores (5–7 μm vs. 8–9 μm) surrounded by a mucilaginous sheath, and shorter but wider asci (70–110 × 10.5–15.5 μm vs. 150–165 × 8–12 μm) with biseriate ascospores. The asexual morph of P. pseudodigitata has verruculose to shortly echinulate conidia, while that of P. igniaria has conidia with conspicuous spines about 1 μm long (Mason and Ellis, 1953, Ellis, 1971, Matsushima, 1971, Bunning and Griffiths, 1984).

Sulcatisporaceae Kaz. Tanaka & K. Hiray., fam. nov. MycoBank MB814431.

Etymology: Referring to the name of the type genus.

Ascomata scattered to grouped, immersed to erumpent, globose in surface view, subglobose to hemispherical in section. Ostiolar neck short papillate, central, with periphyses. Ascomatal wall composed of several layers of compressed cells, poorly developed at the base. Pseudoparaphyses trabeculate, branched and anastomosed. Asci clavate, short-stalked, 8-spored. Ascospores broadly fusiform, 1-septate, hyaline, with an entire sheath. Conidiomata pycnidial, globose. Conidiogenous cells cylindrical to doliiform, annellidic or phialidic. Conidia ellipsoid to subglobose, hyaline to dark brown, 1- to multi-septate (occasionally muriform), with or without striate ornamentation.

Type genus: Sulcatispora Kaz. Tanaka & K. Hiray.

Note: A new family, Sulcatisporaceae is established here for Magnicamarosporium and Sulcatispora genera nova and Neobambusicola (Crous et al. 2014b).

Magnicamarosporium Kaz. Tanaka & K. Hiray., gen. nov. MycoBank MB811292.

Etymology: After its morphological similarity to Camarosporium and its large-sized conidiomata.

Conidiomata pycnidial, scattered, immersed, depressed globose in section. Ostiolar neck central, papillate to short cylindrical. Paraphyses filamentous, sometimes branched, associated with gelatinous material. Conidiophores absent. Conidiogenous cells holoblastic, cylindrical to doliiform. Conidia subglobose to obovoid, sometimes obpyriform, muriform, dark brown. Sexual morph unknown.

Type species: Magnicamarosporium iriomotense Kaz. Tanaka & K. Hiray.

Notes: Several coelomycetous genera are known to have dictyosporous pigmented conidia and their taxonomic revision has been reported (e.g., Van Warmelo and Sutton, 1981, Nag Raj, 1989, Verkley et al., 2005, Crous et al., 2015b). Amarenographium is characterised by longer and branched conidiophores and conidia with cap-like gelatinous appendages (Eriksson 1982). Species in this genus are reported from marine environments (Kohlmeyer & Volkmann-Kohlmeyer 1991) or palms (Taylor & Hyde 2003), and may be genetically close to the Trematosphaeriaceae (Hodhod et al. 2012). Camarosporellum and Camarographium have distoseptate conidia (Sutton, 1980, Verkley et al., 2005) rather than euseptate conidia like Magnicamarosporium. Camarographium is heterogenous, and C. koreanum belongs to Unknown Clade III of the Massarineae (Fig. 1), while C. carpini may have affinity with the Sporormiaceae based on a BLAST search using LSU and ITS nrDNA sequences (Crous et al. 2011b). Camarosporium, to some degree resembles our new genus, but Magnicamarosporium has larger conidiomata with a conspicuous projecting ostiole composed of thick-walled cells, long paraphyses with a gelatinous coating, and larger dark brown conidia than Camarosporium. In addition, Camarosporium does not have phylogenetic affinity with Magnicamarosporium, because the type species of Camarosporium (C. quaternatum) is a member of the Pleosporineae, based on molecular data (Crous et al., 2006, Wijayawardene et al., 2014a, Wijayawardene et al., 2014b, Wijayawardene et al., 2014d, Crous et al., 2015b).

The phylogenetic tree generated in this study indicated that Magnicamarosporium and Neobambusicola cluster together with 74 % BP (Fig. 1). However, the conidial morphology of Neobambusicola (fusoid-ellipsoid and 1-septate; Crous et al. 2014b) is quite distinct from that of Magnicamarosporium.

Magnicamarosporium iriomotense Kaz. Tanaka & K. Hiray., sp. nov. MycoBank MB811293. Fig. 44.

Fig. 44.

Fig. 44

Magnicamarosporium iriomotense. A. Immersed conidiomata and discharged conidia lying on the natural host surface; B. Conidiomata produced in culture (on rice straw); C, D. Conidiomata in longitudinal section (C. on nature; D. in culture); E. Conidiomatal wall; F. Paraphyses; G. Conidiogenous cell (in trypan blue); H–L. Conidia; M. Immature conidium; N. Germinating conidium. A, C, E, H–J, N from KT 2822; B, D, F, G, K–M from culture KT 2822. Scale bars: A, B = 500 μm; C, D = 50 μm; E–N = 10 μm.

Etymology: Referring to the location where the specimen was collected.

Conidiomata pycnidial, scattered, deeply immersed, depressed globose in section, 330–440 μm high, 700–760 μm diam. Ostiolar neck central, papillate to short cylindrical, 120–150 μm long, 80–100 μm wide, composed of polygonal to rectangular, thick-walled, dark brown cells of 2–5 μm diam. Conidiomatal wall in longitudinal section uniformly 10–20 μm thick, composed of 3–6 layers of polygonal to subglobose, thin-walled, pale brown cells of 2–7.5 × 2–5 μm. Paraphyses sometimes branched, 20–50(–80) μm long, 1.5–2.5 μm wide, associated with gelatinous material. Conidiophores absent. Conidiogenous cells holoblastic, 7–11 × 4.5–6 μm, cylindrical to doliiform. Conidia subglobose to obovoid, sometimes obpyriform, 29–40.5(–42.5) × 19.5–25(–27) μm (av. 34.7 × 22.2 μm, n = 100), l/w 1.2–2.0 (av. 1.6, n = 100), with 4–6 trans- and 1–2 vertical-septa, frequently with oblique septa, dark brown, smooth, without sheath.

Colonies on PDA (after 4 wk) attaining a diam of 1.1–1.5 cm, olivaceous black with buff margin; reverse buff to honey; no pigment produced. In culture asexual morph formed. Conidiomata pycnidial, 130–170 μm diam, scattered to 2–3 grouped, globose to subglobose. Conidia 29.5–43 × 18–23 μm (av. 35.3 × 20.3 μm, n = 31), l/w 1.5–2.1 (av. 1.7, n = 31). Sexual morph unknown.

Specimen examined: Japan, Okinawa, Isl. Iriomote, Tropical botanic garden, on dead twigs of Diplospora dubia, 13 Jul. 2011, K. Tanaka & K. Hirayama (holotype KT 2822 = HHUF 30125, culture ex-type CBS 139696 = JCM 19402 = MAFF 243827).

Notes: There are more than 500 names in Camarosporium (http://www.indexfungorum.org, Aug. 2015). Many of these taxa have been described on the basis of their host associations (Sutton, 1980, Marincowitz et al., 2008), but there is no record of Camarosporium from host plants within the Rubiales, which includes Diplospora dubia, the host of M. iriomotense.

Sulcatispora Kaz. Tanaka & K. Hiray., gen. nov. MycoBank MB811294.

Etymology: From the Latin sulcatus meaning “furrowed” and spora meaning “spore”, referring to the striate ornamentation of the conidia.

Ascomata scattered to grouped, immersed to erumpent, globose in surface view, subglobose to hemispherical in section. Ostiolar neck short papillate, central, with periphyses. Ascomatal wall composed of several layers of compressed cells, poorly developed at the base. Pseudoparaphyses trabeculate, branched and anastomosed. Asci fissitunicate, clavate, short-stalked. Ascospores broadly fusiform, 1-septate, hyaline, with an entire sheath. Conidiomata pycnidial, globose. Conidiogenous cells cylindrical, annellidic. Conidia ellipsoid, yellowish brown, multiseptate, with striate ornamentation.

Type species: Sulcatispora acerina Kaz. Tanaka & K. Hiray.

Notes: Ascomatal features of Sulcatispora are most similar to those of Massarina s. str. (Massarinaceae) but the ascomata lack a prominent clypeus, in contrast to species within Massarina s. str. The most distinctive feature of Sulcatispora is the striated conidia. Some species in Phaeophleospora (e.g., P. striae; Taylor & Hyde 2003) are known to have such conidia, but Phaeophleospora (type species: P. eugeniae) is phylogenetically placed in the Mycosphaerellaceae of the Capnodiales (Crous et al., 2007, Crous et al., 2009b). Sclerostagonospora also has species with conidia with striate ornamentation (e.g., S. opuntiae; Huhndorf 1992), but species of Sclerostagonospora have phylogenetic affinities with members of the Phaeosphaeriaceae, such as “Phomacaloplacae and “Phomafoliaceiphila (Crous et al., 2011a, Lawrey et al., 2012), and may have phaeosphaeria-like sexual morphs (Quaedvlieg et al. 2013). Sulcatispora is phylogenetically related to Bambusicola, which also has a similar asexual morph. Bambusicola, however, has conical ascomata with flattened bases, narrower asci (up to 14 μm wide), and narrowly fusiform ascospores (Dai et al. 2012).

Sulcatispora acerina Kaz. Tanaka & K. Hiray., sp. nov. MycoBank MB811295. Fig. 45.

Fig. 45.

Fig. 45

Sulcatispora acerina. A, B. Ascomata on the natural host surface; C. Ascoma in longitudinal section; D. Ascomatal wall; E. Pseudoparaphyses; F. Ascus; G–K. Ascospores (arrowheads indicate mucilaginous sheath); L. Germinating ascospore; M, N. Conidiomata in culture (on rice straw); O. Conidioma in longitudinal section; P. Conidiomatal wall; Q. Conidiogenous cells (arrowheads indicate annellations); R–W. Conidia. A–L from KT 2982; M–W from culture KT 2982. Scale bars: A = 1 mm; B, M, N = 500 μm; C, O = 50 μm; D–L, P–W = 10 μm.

Etymology: Referring to the generic name of the host.

Ascomata scattered, immersed to erumpent, globose in surface view, depressed globose to hemispherical in section, 200–250 μm high, 260–450 μm diam. Ostiolar neck inconspicuous short papillate, 60–85 μm diam, central, with periphyses. Ascomatal wall in longitudinal section 12–25 μm thick at sides, composed of polygonal, 5–8 × 2–3 μm, compressed cells, surrounded by short, brown hyphae (2.5–3.5 μm thick), poorly developed at the base. Pseudoparaphyses trabeculate, 1.5–2 μm wide, branched and anastomosed, associated with gelatinous material. Asci fissitunicate, clavate, 87–113 × 15–20 μm (av. 98.4 × 17.1 μm, n = 17), rounded at the apex, with an apical chamber and faint ring, short-stalked (15–22 μm long). Ascospores broadly fusiform, slightly acute at the apex, (23–)26–32 × 7–9 μm (av. 28.5 × 7.7 μm, n = 50), l/w 3.2–4.2 (av. 3.7, n = 50), with a submedian primary septum (0.50–0.57; av. 0.53, n = 50), hyaline, surrounded by an entire sheath; sheath 2–3 μm wide at first, later diffuse, 4–5 μm wide.

Colonies on PDA (after 4 wk) attaining a diam of 2.1–2.4 cm, grey olivaceous to honey; reverse olivaceous to black; no pigment produced. In culture asexual morph formed. Conidiomata pycnidial, 180–270 μm high, 160–240 μm diam, immersed, scattered, globose, ostiolate. Ostiolar neck short papillate, 25–45 μm long, 35–45 μm diam. Conidiomatal wall uniformly 10–20 μm thick, composed of 4–7 layers of polygonal, 6–10 × 2–3 μm, dark brown cells. Conidiophores absent. Conidiogenous cells cylindrical to lageniform, 10–20 μm long, 2 μm wide at the apex, 3.5–5.5 μm wide at the base, annellidic. Conidia ellipsoid, rounded at the apex, truncate at the base, yellowish brown, 20–28(–30) × 6.5–8 μm (av. 25.9 × 7.2 μm, n = 50), l/w 3.1–4.2 (av. 3.6, n = 50), 3(–5)-septate (1+1+1, rarely 2+1+2), with striate ornamentation.

Specimen examined: Japan, Fukuoka, Kasuya, Hisayama, Yamada, Mt. Tachibanayama, on dead twigs of Acer palmatum, 31 Mar. 2012, K. Tanaka (holotype KT 2982 = HHUF 30449, culture ex-type CBS 139703).

Note: The conidia of S. acerina are very similar to those of S. berchemiae, but S. acerina can be distinguished from the latter by its larger ascospores [(23–)26–32 × 7–9 μm vs. 22–29 × 5.5–7 μm].

Sulcatispora berchemiae Kaz. Tanaka & K. Hiray., sp. nov. MycoBank MB811296. Fig. 46.

Fig. 46.

Fig. 46

Sulcatispora berchemiae. A, B. Ascomata on the natural host surface; C, D. Ascomata in longitudinal section; E. Ascomatal wall; F. Pseudoparaphyses; G. Ascus; H–J. Ascospores (arrowheads indicate mucilaginous sheath); K. Germinating ascospore; L. Conidiomata in culture (on rice straw); M. Conidioma in longitudinal section; N. Conidiomatal wall; O. Conidiogenous cells (arrowheads indicate annellations); P–S. Conidia. A–K from KT 1607; L–S from culture KT 1607. Scale bars: A = 1 mm; B, L = 500 μm; C, D = 100 μm; E–K, M–S = 10 μm.

Etymology: Referring to the generic name of the host.

Ascomata scattered to 2–4 grouped, immersed to erumpent, globose in surface view, subglobose to hemispherical in section, 150–280 μm high, 350–530 μm diam. Ostiolar neck short papillate, ca. 60 μm diam, central, with periphyses. Ascomatal wall in longitudinal section 10–18 μm thick at sides, composed of 3–6 layers of 7–18 × 2 μm compressed cells, poorly developed at the base. Pseudoparaphyses trabeculate, 1.5–2.5 μm wide, branched and anastomosed, associated with gelatinous material. Asci fissitunicate, clavate, 77.5–100 × 13.5–18 μm (av. 90.1 × 15.2 μm, n = 20), rounded at the apex, with an apical chamber and faint ring, short-stalked (13–15 μm long). Ascospores broadly fusiform, 22–29 × 5.5–7 μm (av. 26.0 × 6.4 μm, n = 50), l/w 3.5–4.4(–4.7) (av. 4.1, n = 50), with a submedian primary septum (0.50–0.57; av. 0.53, n = 49), hyaline, surrounded by an entire sheath; sheath delimited, 2 μm wide at first, later diffuse, up to 6 μm wide.

Colonies on PDA (after 4 wk) attaining a diam of 2.7–2.8 cm, white to buff; reverse buff to greyish sepia; no pigment produced. In culture asexual morph formed. Conidiomata pycnidial, 90–130 μm high, 90–150 μm diam, immersed, scattered, globose to subglobose, ostiolate. Ostiolar neck short papillate. Conidiomatal wall uniformly 12–17.5 μm thick, composed of flattened, thin-walled, polygonal cells (3.5–6 × 1.5–2.5 μm). Conidiophores absent. Conidiogenous cells cylindrical, 12–15 μm long, 2 μm wide at the apex, 4–8 μm wide at the base, annellidic. Conidia ellipsoid, 20–30 × 6.5–8 μm (av. 24.8 × 7.1 μm, n = 50), l/w 2.9–4.2 (av. 3.5, n = 50), rounded at the apex, truncate at the base, yellowish brown, 3(–5)-septate (1+1+1, rarely 2+1+2), with striate ornamentation.

Specimens examined: Japan, Aomori, Towada, Sanbongi, Yagami, on vines of Berchemia racemosa, 2 Dec. 2003, K. Tanaka, S. Hatakeyama & N. Nakagawara (holotype KT 1607 = HHUF 29097, culture ex-type CBS 139704 = JCM 13101 = MAFF 239611); ibid., KT 1608 = HHUF 29098.

Note: This species is closely related to S. acerina with regard to its LSU sequences (similarity 1295/1302 = 99.5 %), but the ITS sequence shows a great deal of variation compared to the ITS of S. acerina (similarity 770/850 = 90.6 %, with gaps 29/850 = 3.4 %).

Trematosphaeriaceae K.D. Hyde et al., Cryptog. Mycol. 32: 347. 2011.

Type genus: Trematosphaeria Fuckel.

Trematosphaeria Fuckel, Jb. nassau. Ver. Naturk. 23–24: 161. 1870.

Type species: Trematosphaeria pertusa Fuckel.

Notes: Although more than 200 species have been assigned to Trematosphaeria (http://www.indexfungorum.org, Aug. 2015), most of these species have not had their generic placements verified by molecular evidence. The type species of this genus, T. pertusa, usually grows on terrestrial wood, but also can survive within freshwater (Suetrong et al. 2011b). Recently, Madurella grisea, originating from a human infection, water and pastry gel, was added to Trematosphaeria based on a multi-gene phylogeny (Ahmed et al. 2014).

Trematosphaeria pertusa Fuckel, Jb. Nassau. Ver. Naturk. 23–24: 161. 1870. Fig. 47.

Fig. 47.

Fig. 47

Trematosphaeria pertusa. A, B. Ascomata on the natural host surface; C. Ascoma in longitudinal section; D. Ascomatal wall; E. Pseudoparaphyses; F. Ascus; G–I. Ascospores; J. Germinating ascospore; K. Spermogonia in culture; L. Spermatiophores; M. Spermatia. A–J from KT 1496; K–M from culture KT 1496. Scale bars: A, K = 500 μm; B = 200 μm; C = 50 μm; D–J, L, M = 10 μm.

Ascomata gregarious, immersed or becoming superficial by weathering of host tissue, globose to pyriform in section, 270–380 μm high, 190–350 μm diam. Ostiolar neck central, papillate to cylindrical, 70–140 μm long, 90–130 μm wide, composed of thick-walled, heavily melanised cells (2–4 μm diam), with periphyses. Ascomatal wall in longitudinal section uniformly 17–25 μm thick, composed of 6–9 layers of polygonal to rectangular, thin-walled, brown cells (2–15 × 2–5 μm). Pseudoparaphyses branched and anastomosed, 1.5–2.5 μm wide. Asci fissitunicate, clavate to cylindrical, 73.5–102.5 × 12.5–17 μm (av. 89.8 × 14.6 μm, n = 20), with a stipe of 8.5–22 μm long, with 8 biseriate ascospores. Ascospores fusiform, slightly curved, 20–27.5 × 6–8 μm (av. 23.9 × 7.1 μm, n = 50), l/w 2.8–4.0 (av. 3.4, n = 50), with a nearly median or somewhat supramedian primary septum (0.43–0.53; av. 0.48, n = 50), rarely 3-septate, slightly constricted at the septum, reddish brown, smooth, without sheath.

In culture spermatial morph formed. Spermatia subglobose, hyaline, 2.8–3.9 × 1.9–2.3 μm (av. 3.4 × 2.1 μm, n = 20), l/w 1.4–1.9 (av. 1.6, n = 20).

Specimens examined: Japan, Aomori, Hirosaki, Aoki, Mohei-pond, on submerged twigs of woody plant, 27 Sep. 2003, K. Tanaka & N. Asama, KT 1496 = HHUF 30153, culture JCM 19430 = MAFF 243879; Hokkaido, Isl. Rebun, Nairo, Nairo-river, on submerged twigs of woody plant, 16 Aug. 2013, K. Tanaka, KT 3314 = HHUF 30452, culture CBS 139705; ibid., KT 3315 = HHUF 30453, culture CBS 139706.

Notes: We identified our specimens/isolates as T. pertusa, the type species of Trematosphaeria, based on close similarities between sequences obtained from the above isolates and an ex-epitype strain of the species (CBS 122368; Ahmed et al. 2014), i.e., 484/485 (99.8 %) in ITS (GenBank KF015668) and 900/907 (99.2 %) in tef1 (GenBank KF015701) regions. In comparison with the description of T. pertusa based on the neotype (Zhang et al. 2008b), our specimens have shorter asci (73.5–102.5 μm vs. 100–145 μm) and ascospores (av. 20–27.5 μm vs. 27.5–32.5 μm). Further collections of this species are needed to clarify the taxonomic significance of the intraspecific morphological variation.

Unknown Clade I

Fuscostagonospora Kaz. Tanaka & K. Hiray., gen. nov. MycoBank MB811330.

Etymology: From the Latin fusco-, meaning dark brown and the generic name, Stagonospora.

Ascomata scattered, immersed, globose to subglobose. Ostiolar neck clypeate, central, short papillate, with periphyses. Ascomatal wall composed of pale brown, compressed cells. Pseudoparaphyses appearing trabecular, branched and anastomosed, associated with gelatinous material. Asci fissitunicate, cylindrical, with a long stipe. Ascospores narrowly fusiform, 1(–3)-septate, hyaline, with an entire sheath. Conidiomata pycnidial, scattered, immersed, depressed globose, ostiolate. Conidiomatal wall composed of thin-walled cells. Conidiophores absent. Conidiogenous cells doliiform, annellidic. Conidia yellow to pale brown and 3-septate.

Type species: Fuscostagonospora sasae Kaz. Tanaka & K. Hiray.

Notes: The new genus, Fuscostagonospora, is introduced to accommodate the bambusicolous fungus, F. sasae. This genus is reminiscent of Stilbospora in having pigmented phragmosporous conidia, but the latter genus has acervular conidiomata filled with paraphyses and phylogenetically groups within the Diaporthales in the Sordariomycetes (Crous et al., 2012, Voglmayr and Jaklitsch, 2014). The conidial morphology of Fuscostagonospora is also similar to that of Sclerostagonospora, but the latter genus has phylogenetic affinity with species in the Phaeosphaeriaceae (Pleosporales) and may have a phaeosphaeria-like sexual morph (Quaedvlieg et al. 2013). In overall morphology, such as the narrowly fusiform ascospores and pigmented septate conidia, as well as in host preferences, Fuscostagonospora is most similar to Bambusicola (Bambusicolaceae; Dai et al. 2012). Fuscostagonospora, however, has ascomata with a prominent clypeus and phylogenetically deviates from the Bambusicolaceae, forming an Unknown Clade I (Fig. 1).

Fuscostagonospora sasae Kaz. Tanaka & K. Hiray., sp. nov. MycoBank MB811331. Fig. 48.

Fig. 48.

Fig. 48

Fuscostagonospora sasae. A, B. Ascomata on the natural host surface; C, D. Ascomata in longitudinal section; E. Ascomatal wall; F. Pseudoparaphyses; G. Ascus; H–J. Ascospores (arrowheads indicate gelatinous sheath; H, I. in India ink); K. Germinating ascospore; L, M. Conidiomata in culture (on rice straw); N. Conidioma in longitudinal section; O. Conidiomatal wall; P, Q. Conidiogenous cells (arrowheads indicate annellations); R. Conidia. A–K, N, O from KT 1467; L, M, P–R from culture KT 1467. Scale bars: A, L = 1 mm; B, M = 500 μm; C, D, N = 100 μm; E–K, O–R = 10 μm.

Etymology: Referring to the host genus.

Ascomata scattered, immersed, globose to subglobose, 220–250 μm high, 400–450 μm diam. Ostiolar neck clypeate, central, short papillate, 50–65 μm long, 75–90 μm wide, with periphyses. Ascomatal wall in longitudinal section 10–15 μm thick at sides, composed of 3–4 layers of compressed, 5–10 × 2–3 μm, pale brown cells. Pseudoparaphyses appearing trabecular, 1–1.5 μm wide, branched and anastomosed, associated with gelatinous material. Asci fissitunicate, cylindrical, 90–140 × 8.5–14.5 μm (av. 107.6 × 9.8 μm, n = 30), with an apical chamber, with a relatively long stipe (20–32.5 μm long). Ascospores narrowly fusiform, 1(–3)-septate, 22–31.5(–36) × 3–5.5 μm (av. 27.5 × 4.1 μm, n = 25), l/w 5.6–8.3 (av. 6.8, n = 25), with a nearly median septum (0.48–0.57; av. 0.52, n = 20), hyaline, surrounded by an entire gelatinous sheath up to 7 μm wide.

Conidiomata on the natural host pycnidial, scattered, immersed, depressed globose in section, 250 μm high, 500 μm diam, ostiolate. Conidiomatal wall in longitudinal section 12–20 μm thick, composed of thin-walled, hyaline to pale brown cells. In culture same coelomycetous asexual morph formed. Conidiophores absent. Conidiogenous cells doliiform, annellidic, 5–12 × 3–7 μm (av. 9.7 × 5.3 μm, n = 20). Conidia hyaline and aseptate at first, later yellow to pale brown and 3-septate, 17–22.5 × 4–5 μm (av. 19.8 × 4.4 μm, n = 50), l/w (3.4–)3.7–5.5 (av. 4.5, n = 50).

Colonies on PDA (after 4 wk) attaining a diam of 3.7–4.7 cm, iron grey; reverse similar; no pigment produced. In culture asexual morph formed.

Specimen examined: Japan, Fukushima. Minamiaizu, Ose pond, on dead twigs of Sasa sp., 30 Aug. 2003, N. Asama (holotype KT 1467 = HHUF 29106, culture ex-type CBS 139687 = JCM 13104 = MAFF 239614).

Unknown Clade IV

Pseudoxylomyces Kaz. Tanaka & K. Hiray., gen. nov. MycoBank MB811332.

Etymology: After its morphological similarity to Xylomyces.

Colonies on natural substratum scattered, dark brown, glistening. Mycelium immersed in agar medium, pale brown to reddish brown. Stromata lacking. Conidiophores branched, septate, brown. Conidiogenesis holoblastic. Conidia broadly fusiform, with several trans-septa of thick-walled, yellowish brown to dark brown with paler end cells. Chlamydospores absent. Sexual morph unknown.

Type species: Pseudoxylomyces elegans (Goh et al.) Kaz. Tanaka & K. Hiray.

Notes: A new genus Pseudoxylomyces is proposed to accommodate Xylomyces elegans. The type species of Xylomyces (X. chlamydosporus) is known to have phylogenetic affinities with the freshwater genus, Jahnula in the Jahnulales (Campbell et al., 2007, Sivichai et al., 2011). Therefore, Xylomyces is now regarded as a synonym of Jahnula (Hyde et al. 2013). Xylomyces elegans was excluded from the genus (Suetrong et al. 2011a), because it did not cluster with the type species of Xylomyces in phylogenetic analyses using ITS (Prihatini et al. 2008) and SSU sequences (Shearer et al. 2009). However, no taxonomic decision has been made for X. elegans.

Xylomyces is characterised by its lack of conidiophores and conidiogenous cells but it produces large, dark, thick-walled, multiseptate, intercalary, narrowly fusiform chlamydospores (Goos et al., 1977, Goh et al., 1997). In contrast, Pseudoxylomyces typified by P. elegans is quite distinctive in producing broadly fusiform conidia holoblastically at the tip of the conidiophores (Fig. 49A, B).

Fig. 49.

Fig. 49

Pseudoxylomyces elegans. A, B. Conidiophores and conidia; C–E. Conidia (E. bleached conidium); F. Germinating conidium. A, B, D, E from culture KT 2887; C, F from KT 2887. Scale bars: A = 200 μm; B–F = 20 μm.

Pseudoxylomyces elegans (Goh et al.) Kaz. Tanaka & K. Hiray., comb. nov. MycoBank MB811333. Fig. 49.

Basionym: Xylomyces elegans Goh et al., Mycol. Res. 101: 1324. 1997.

Mycelium immersed in agar, pale brown to reddish brown. Conidiophores up to 40 μm long. Conidiogenesis holoblastic. Conidia broadly fusiform, 4–7-septate, 72.5–98 × 35–41 μm, l/w 2.0–2.8, brown, with paler end cells. Sexual morph unknown.

Specimen examined: Japan, Okinawa, Isl. Iriomote, Oomijya-river, on submerged twigs of woody plant, 12 Jul. 2011, K. Tanaka & K. Hirayama, KT 2887 = HHUF 30139, culture MAFF 243852.

Notes: This species appears to be widely distributed and has been reported from Australia, Seychelles (Goh et al. 1997), Thailand (Sivichai et al. 2000), Hong Kong (Tsui & Hyde 2004), USA (Raja et al. 2007), Brazil (Barbosa & Gusmão 2011), and India (Patil & Borse 2015). A BLAST search using ITS sequences from our culture showed 98.7 % (464/470) similarity to sequences of X. elegans (GenBank FJ887920) collected from Thailand (Prihatini et al. 2008).

Unknown Clade VI

Monodictys S. Hughes, Canad. J. Bot. 36: 785. 1958.

Type species: Monodictys putredinis (Wallr.) S. Hughes, Canad. J. Bot. 36: 785. 1958.

Notes: More than 60 species have been described in Monodictys (http://www.indexfungorum.org, Aug. 2015), but their phylogenetic placements are mostly unknown. Apparently, Monodictys is a heterogenous group of hyphomycetes. Several species within this genus such as M. arctica (Leptosphaeriaceae; Day et al. 2006), M. cf. putredinis (Melanommataceae; Samuels 1980), Monodictys spp. (Parabambusicolaceae; Fig. 1), and M. capensis (Unknown Clade IV; Fig. 1) are scattered within the Dothideomycetes. Monodictys pelagica is known to have phylogenetic relationships with the Sordariomycetes (Mouzouras and Jones, 1985, Campbell et al., 2002), and Monodictys sp. is reported as an asexual morph of Hyaloscypha albohyalina var. monodictys (Hosoya & Huhtinen 2002; currently Hyaloscypha monodictys, Han et al. 2014) in the Leotiomycetes. Phylogenetic reassessment of many species of Monodictys including the type species of this genus (M. putredinis) is needed for taxonomic revision of this genus.

Monodictys capensis R.C. Sinclair et al., Mycotaxon 59: 359. 1996. Fig. 50.

Fig. 50.

Fig. 50

Monodictys capensis. A, B. Colonies on rice straw in culture; C. Conidiophores and conidia; D, E. Conidia (E. bleached conidium). All from culture HR 1. Scale bars: A = 2 mm; B = 500 μm; C = 100 μm; D, E = 10 μm.

Specimen examined: Russia, St. Petersburg, Botanical garden of the Komarov Botanical Institute of the Russian Academy of Sciences, on dead wood of Padus avium, 19 Oct. 2005, V. Mel'nik, HR 1 = HHUF 29712 = LE 226298, culture CBS 134928 = VKM F-4506.

Notes: This material has been reported as M. capensis by Mel’nik & Shabunin (2010). In culture, abundant conidia similar to those on the natural host were produced on rice straw agar (RSA).

Discussion

New familial lineages

The Parabambusicolaceae is erected here to accommodate Aquastroma (Fig. 40) and Parabambusicola (Fig. 41), as well as two unnamed “Monodictys” species. This family is superficially similar to the Bambusicolaceae in having depressed globose to hemispherical ascomata. In particular, Parabambusicola, the type genus of the Parabambusicolaceae, has a bambusicolous habitat like that of Bambusicola (Dai et al. 2012). However, members of the Parabambusicolaceae have ascomata surrounded by stromatic tissue (Parabambusicola) or compressed necks with wide ostioles (Aquastroma), and also multiseptate, clavate to fusiform, hyaline ascospores, unlike those of the Bambusicolaceae. Asexual morphs possessing sporodochial conidiomata and muriform conidia like those of Monodictys are not found in the Bambusicolaceae.

A new family Sulcatisporaceae is introduced to encompas Magnicamarosporium and Sulcatispora genera nova, as well as Neobambusicola (Crous et al. 2014b). These three genera form a strongly supported clade (97 %), which is a sister of the Bambusicolaceae. The sexual morphs of species in the Sulcatisporaceae are superficially similar to those of Bambusicolaceae, but subglobose to obovoid conidia with muriform septation (Magnicamarosporium) or 1 to several septate conidia with or without striate ornamentation (Neobambusicola, Sulcatispora) are not found in species of the Bambusicolaceae.

We resurrect the Periconiaceae as a sister taxon of the Massarinaceae (Fig. 1). The name of “Periconieae” was originally used for dematiaceous hyphomycetes that have macronematous conidiophores and 1-celled, pigmented conidia forming conidial heads (Saccardo 1886). Later, the group was raised to familial rank, and Periconia and Stachybotrys were assigned to the Periconiaceae (Nannizzi 1934), the latter genus now being placed in its own family, Stachybotryaceae (Crous et al. 2014a). The Periconiaceae has long been ignored in modern fungal systematics, but it should be regarded as a natural taxon in the suborder Massarineae. The main genus Periconia has been treated as a member of the Massarinaceae based on a topology of genealogical trees (Kodsueb et al., 2007, Schoch et al., 2009, Zhang et al., 2009b, Zhang et al., 2009c, Zhang et al., 2012, Hyde et al., 2013). Species of Periconia, however, are separated from the Massarinaceae and form a strongly supported clade of the Periconiaceae (100 %; Fig. 1). Sexual morphs within the Periconiaceae (Fig. 42, Fig. 43) differ from those of Helminthosporium (Fig. 25) and Massarina (Fig. 26) in the Massarinaceae. Members in the latter family possess medium to large subglobose ascomata, which are covered by a clypeus, and have clavate asci. The small ascomata of Periconia superficially resemble those of Stagonospora (= Saccharicola, Massarinaceae; Fig. 27, Fig. 28, Fig. 29) but differ in having a peridium composed of small-sized compressed cells. The most diagnostic features of the Periconiaceae are the asexual morphs of Periconia; these have macronematous, mononematous conidiophores with globose to cylindrical, blastic conidia (Mason and Ellis, 1953, Ellis, 1971).

Dictyosporium and phenotypically similar genera, such as Aquaticheirospora and Pseudodictyosporium, have been considered to belong in the Massarinaceae (Wijayawardene et al. 2012). However, the group including dictyosporium-like fungi forms a distinct lineage (as Dictyosporiaceae nom. prov.; see Liu et al. 2015), independent from the Massarinaceae (Fig. 1). One of the diagnostic features of the Dictyosporiaceae is their multicellular cheiroid conidia (Fig. 2), and these morphological features separate it from other families in the Massarineae. Sexual morphs observed in the Dictyosporiaceae (Gregarithecium and Pseudocoleophoma; Fig. 3, Fig. 4, Fig. 5) are somewhat similar to those of the Massarinaceae (e.g., Stagonospora; Fig. 27, Fig. 28, Fig. 29) or the Periconiaceae (e.g., Periconia; Fig. 42, Fig. 43), but can be differentiated by their subglobose to hemispherical ascomata with or without surrounding stromatic tissue, short ascomatal necks without clypeus, cylindrical asci with a short stipes, and narrowly fusiform, 1-septate, hyaline ascospores.

Summary of accepted families and genera incertae sedis of the Massarineae

Based on our phylogenetic analyses and morphological evaluation of fungi in the Massarineae, we recognise the following 12 families, as well as “Massarineae, incertae sedis”.

Bambusicolaceae. This family was established by Hyde et al. (2013) to accommodate Bambusicola species on bamboo (Dai et al. 2012). Palmiascoma on dead fronds of palms in Thailand was also reported as a member of Bambusicolaceae (Liu et al. 2015).

Dictyosporiaceae (Fig. 2, Fig. 3, Fig. 4, Fig. 5). Dictyosporiaceae (nom. prov., see Liu et al. 2015) includes the four asexual genera Aquaticheirospora (Kodsueb et al. 2007), Dendryphiella (Jones et al. 2008), Dictyosporium (Fig. 2) and Pseudodictyosporium (Kirschner et al. 2013), and two new genera with sexual morphs, Gregarithecium (Fig. 3) and Pseudocoleophoma (Fig. 4, Fig. 5). The two asexual monotypic genera Cheirosporium (Cai et al. 2008) and Kamatia (Kirschner et al. 2013) also belong in the Dictyosporiaceae. “Diplococciumasperum (Pirozynski, 1972, Goh and Hyde, 1998) is located in the Dictyosporiaceae (Fig. 1), but the type species of Diplococcium (D. spicatum) has phylogenetic affinity with the Helotiales (Shenoy et al. 2010). This species as well as Diplococcium pulneyense, the asexual morph of Otthia pulneyensis (Subramanian & Sekar 1987), are both related to the Dothideomycetes, and should be excluded from Diplococcium s. str. Likewise, “Paraconiothyriumflavescens in the Dictyosporiaceae clade should be renamed, because the type lineage of the genus, represented by P. estuarinum, groups with the Didymosphaeriaceae (= Montagnulaceae) (Verkley et al. 2014). The Dictyosporiaceae clade includes Digitodesmium bambusicola (Cai et al. 2002), but the phylogenetic placement of the generic type D. elegans is unknown at present.

Didymosphaeriaceae (Fig. 6, Fig. 7, Fig. 8, Fig. 9, Fig. 10, Fig. 11). Ariyawansa et al. (2014) accepted 16 genera including Karstenula (Fig. 6), Neokalmusia (Fig. 7, Fig. 8), and Paraphaeosphaeria (Fig. 9) as members of the Didymosphaeriaceae, and subsequently three genera, Paracamarosporium, Pseudocamarosporium, and Pseudotrichia were also added to this family (Thambugala et al., 2014, Wijayawardene et al., 2014d). We assigned the hyphomycetous genus Spegazzinia (Fig. 10, Fig. 11) with basauxic conidiogenesis and pigmented conidia with spine-like appendages, to the Didymosphaeriaceae, although it has long been treated as “Ascomycota, genera incertae sedis” (Wijayawardene et al. 2012). However, taxonomic reassessment will be required for several genera, such as Neokalmusia, Paraconiothyrium, Paraphaeosphaeria and Pseudocamarosporium, because their monophyletic status was not supported in this study. In addition to these genera, the type species of Cucurbidothis (C. pityophila) resides in the Didymosphaeriaceae (Fig. 1). Phaeodothis winteri with a didymosphaeria-like sexual morph (Aptroot 1995), and Sporidesmiella fusiformis with macronematous conidiophores and obclavate, multi-distoseptate, pigmented conidia (Wu & Zhuang 2005) are placed in the Didymosphaeriaceae, but sequences of the type species of these genera are presently unknown. Two species of “Camarosporium” with muriform conidia, C. brabeji and C. leucadendri (Marincowitz et al. 2008), are positioned in the Didymosphaeriaceae, and have subsequently been allocated to Pseudocamarosporium and Paracamarosporium, respectively (Crous et al. 2015b). In contrast, the type species of Camarosporium (C. quaternatum) is known to cluster within the Pleosporineae (Crous et al., 2006, Wijayawardene et al., 2014b). Munkovalsaria appendiculata (Aptroot 2004) groups with Montagnula species (M. aloes, M. opulenta and M. graminicola). However, Munkovalsaria is apparently polyphyletic, because M. rubra is found outside the Pleosporales (Voglmayr and Jaklitsch, 2011, Hernández-Restrepo et al., 2014). Although Munkovalsaria is regarded as a member of the Dacampiaceae (Hyde et al. 2013), molecular data from the generic type (M. donacina) are needed to clarify its phylogenetic position.

Latoruaceae. This family was established by Crous et al. (2015a) to accommodate two hyphomycetous genera, Latorua and Polyschema, both mostly known from soil (Ellis, 1976, Shenoy et al., 2010, Crous et al., 2015a). More recently, a new genus Matsushimamyces from soil has been added to this family (Sharma et al. 2015).

Lentitheciaceae (Fig. 12, Fig. 13, Fig. 14, Fig. 15, Fig. 16, Fig. 17, Fig. 18, Fig. 19, Fig. 20, Fig. 21, Fig. 22, Fig. 23, Fig. 24). Darksidea (Knapp et al. 2015), Katumotoa (Fig. 12), Keissleriella (Fig. 13, Fig. 14, Fig. 15, Fig. 16, Fig. 17, Fig. 18), Lentithecium (Fig. 19, Fig. 20), Murilentithecium (Wanasinghe et al. 2014), Phragmocamarosporium (Wijayawardene et al. 2015), Poaceascoma (Phookamsak et al. 2015) and Tingoldiago (Fig. 24) have been assigned in the Lentitheciaceae, and we add another two genera, i.e., Neoophiosphaerella (Fig. 21) and Setoseptoria (Fig. 22, Fig. 23). The clade comprising species of these six genera received moderate BP support (71 %; Fig. 1). “Wettsteininalacustris is also a member of this clade (Schoch et al. 2009). In our preliminary analysis using SSU and LSU sequences, Ascorhombispora aquatica (Cai & Hyde 2007b) resided in the Lentitheciaceae (data not shown), but the phylogenetic affinity of this species with members in the Dictyosporiaceae (Cai & Hyde 2007b) or Didymosphaeriaceae (Shearer et al. 2009) has also been suggested. Further investigation using additional sequence data is needed to confirm familial placement of this genus.

Macrodiplodiopsidaceae. Three species with coelomycetous asexual morphs, i.e., Camarographium koreanum (on Cornus, Verkley et al. 2005), Macrodiplodiopsis desmazieri (on Platanus, Barr 1982), and Pseudochaetosphaeronema larense (a human pathogen, Ahmed et al. 2014) comprise the Macrodiplodiopsidaceae, which was recently established by Crous et al. (2015a).

Massarinaceae (Fig. 25, Fig. 26, Fig. 27, Fig. 28, Fig. 29). Byssothecium (Boise 1983), Helminthosporium (Fig. 25), Massarina (Fig. 26), Stagonospora (Fig. 27, Fig. 28, Fig. 29) and Suttonomyces (Wijayawardene et al. 2015) are accepted in the Massarinaceae (Fig. 1). Neottiosporina paspali (Sutton & Alcorn 1974) should be treated as Stagonospora paspali (Atkinson 1897) based on the phylogenetic topology (Fig. 1) as well as the morphological resemblance with S. paludosa, the type species of Stagonospora (Quaedvlieg et al. 2013). The two Corynespora species C. leucadendri (Quaedvlieg et al. 2013) and C. olivacea (Ellis 1960) clustered in this family but are not congeneric. The type species of Corynespora (C. mazei = C. cassiicola, Wei 1950) is sister of the clade of the Pleosporineae + Massarineae (Hyde et al. 2013), hence the Corynespora species in the Massarinaceae should be renamed. “Didymosphaeriaspartii has been previously transferred to Montagnula (Aptroot 1995) and also to Didymosphaerella (Chlebicki 2009), but these generic placements are inappropriate (Fig. 1). A cultural study of D. spartii (Scheinpflug 1958, using CBS 183.58) indicated that it has a dendrophoma-like asexual morph with conidia 4–7 × 1–2 μm in size.

Morosphaeriaceae (Fig. 30, Fig. 31, Fig. 32, Fig. 33, Fig. 34, Fig. 35, Fig. 36, Fig. 37, Fig. 38, Fig. 39). In addition to Aquilomyces (Fig. 30), Helicascus (Fig. 35, Fig. 36, Fig. 37) and Morosphaeria (Fig. 38, Fig. 39), which were previously recognised as members of the Morosphaeriaceae (Suetrong et al., 2009, Hyde et al., 2013, Knapp et al., 2015), we add the new genus Clypeoloculus (Fig. 31, Fig. 32, Fig. 33, Fig. 34) to this family. Species in these four genera are only known to have sexual morphs. A pleurophomopsis-like conidial state has been reported for H. aquaticus (Zhang et al. 2013) as its asexual morph, and we also observed this for H. aquaticus, as well as for four species in Clypeoloculus, but these should be regarded as spermatial morphs. “Pithomycesvalparadisiacus (Kirk, 1983, Marincowitz et al., 2008) is basal to Clypeoloculus species, and is found to be a rare case in which a species known only from an asexual form belongs to the Morosphaeriaceae (Fig. 1). A hyphomycetous genus Pithomyces is regarded as a heterogenous group comprising more than three lineages (Phookamsak et al. 2013), and the generic type (P. flavus) has phylogenetic affinity with Astrosphaeriella basal to family Aigialaceae (Pratibha & Prabhugaonkar 2015).

Parabambusicolaceae (Fig. 40, Fig. 41). This new family includes two new sexual genera, Aquastroma (Fig. 40) and Parabambusicola (Fig. 41). Multiseptospora formerly classified in Pleosporales, genera incertae sedis (Liu et al. 2015) is also accepted as a member of the Parabambusicolaceae. Two unnamed Monodictys species with muriform conidia are also located in this clade, but this genus is obviously heterogenous (see Notes in Monodictys capensis).

Periconiaceae (Fig. 42, Fig. 43). Bambusistroma (Adamčík et al. 2015), Flavomyces (Knapp et al. 2015), Periconia (Fig. 42, Fig. 43) and Noosia (Crous et al. 2011a) are accepted in this family. “Sporidesmiumtengii is also placed in the Periconiaceae, but the phylogenetic position of the type species of Sporidesmium (S. atrum) is currently unknown. According to Shenoy et al. (2006), this genus is not monophyletic and species in Sporidesmium are phylogenetically distributed in seven lineages between two major ascomycete classes, Dothideomycetes and Sordariomycetes. Periconia species used in this study did not form a single clade. Therefore, a taxonomic revision of Periconia species along with Noosia and “Sporidesmiumtengii should be conducted in future.

Sulcatisporaceae (Fig. 44, Fig. 45, Fig. 46). Magnicamarosporium (Fig. 44) on Diplospora (Rubiaceae) and two species of Sulcatispora, S. acerina (Fig. 45) on Acer (Aceraceae) and S. berchemiae (Fig. 46) on Berchemia (Rhamnaceae), are assigned to the Sulcatisporaceae. Neobambusicola (on Grewia sp.; Malvaceae) previously placed in the Bambusicolaceae (Crous et al. 2014b) is accepted here as a member of the Sulcatisporaceae.

Trematosphaeriaceae (Fig. 47). This family was established by Suetrong et al. (2011b) to accommodate the three genera, Falciformispora, Halomassarina, and Trematosphaeria (Fig. 47) (Hyde et al. 2013). Later, Bryosphaeria, Hadrospora, and Medicopsis were listed as additional members of the Trematosphaeriaceae (Wijayawardene et al. 2014c). However, the placement of Bryosphaeria has not been verified by molecular data. Hadrospora may have affinity with the Lindgomycetaceae (Tanaka, unpublished data), and Medicopsis belongs to the Pleosporineae, rather than the Massarineae (Ahmed et al. 2014). A coelomycetous species, Amarenographium solium with pigmented muriform conidia (Hodhod et al. 2012), has been reported to have phylogenetic affinity to the Trematosphaeriaceae/Didymosphaeriaceae, but molecular data from the generic type (A. metableticum, Eriksson 1982) are currently unavailable.

Massarineae incertae sedis (Unknown Clades I–V; Fig. 48, Fig. 49, Fig. 50). Fuscostagonospora (Fig. 48) on bamboo is located in the Unknown Clade I and its familial placement remains unresolved. Pseudoxylomyces (Fig. 49), from freshwater environments, occupies a basal position in the Trematosphaeriaceae (Unknown Clade II, Fig. 1). Bactrodesmium cubense (Unknown Clade III), a sporodochial fungus with pigmented phragmoconidia (Zucconi & Lunghini 1997), is a sister taxon of the Morosphaeriaceae (Fig. 1). Monodictys capensis (Fig. 50), without a known sexual morph (Mel’nik & Shabunin 2010), and Inflatispora pseudostromatica, without a known asexual morph (Zhang et al. 2011), groups in Unknown Clade IV.

Morphological characteristics of sexual morphs

The Massarinaceae clade is supported by high BP support (100 %, Fig. 1), but it is somewhat difficult to circumscribe based on their sexual morphs. The Massarinaceae mainly contains two types of sexual morphs; massarina-like and stagonospora-like. The sexual morph observed in Helminthosporium (Fig. 25) and Massarina (Fig. 26) have immersed, hemispherical, medium to large (ca. 400–700 μm diam) ascomata with short papillate necks covered by a clypeus, clavate asci, and broadly fusiform to ellipsoidal, 1- to 3-septate, hyaline ascospores surrounded by a thick conspicuous sheath. Those of Stagonospora (Fig. 27, Fig. 28, Fig. 29) are characterised by globose, small (ca. 200–300 μm diam) ascomata lacking a clypeus, cylindrical to clavate asci, and fusiform, 1-septate, hyaline ascospores with a thin sheath. This family, however, includes further sexual species, such as “Didymosphaerella (or Montagnula)” spartii with globose ascomata and thick-walled, 1-septate, pigmented ascospores (Aptroot, 1995, Chlebicki, 2009), and Byssothecium circinans with subglobose ascomata with broadly papillate necks and versicoloured ascospores (Boise 1983). Further molecular investigation using additional taxa close to Massarina and Stagonospora may provide sufficient data to subdivide this family.

Bambusicolaceae, Macrodiplodiopsidaceae, Parabambusicolaceae and Sulcatisporaceae presently include only a few species. One to two genera with sexual morphs are recognised in each family: Bambusicola (Dai et al. 2012) and Palmiascoma (Liu et al. 2015) in the Bambusicolaceae, Macrodiplodiopsis (Crous et al. 2015a) in the Macrodiplodiopsidaceae, Aquastroma (Fig. 40) and Parabambusicola (Fig. 41) in the Parabambusicolaceae, and Sulcatispora (Fig. 45, Fig. 46) in the Sulcatisporaceae. The sexual morphs in the Bambusicolaceae, Parabambusicolaceae and Sulcatisporaceae are similar to those of Massarina s. lat. (Aptroot, 1998, Tanaka and Harada, 2003b) in having immersed to erumpent, hemispherical to depressed globose ascomata. Species in the Bambusicolaceae have conical ascomata with short ostiolar necks, narrow pseudoparaphyses, cylindrical asci, and narrowly fusiform, 1-septate ascospores, whereas those in the Parabambusicolaceae lack a prominent neck, and have relatively wide pseudoparaphyses, clavate to broadly cylindrical asci, and clavate to fusiform ascospores with multiple transverse septa. Species in the Sulcatisporaceae have subglobose ascomata, trabeculate pseudoparaphyses, clavate asci, and broadly fusiform ascospores, and occur on woody host plant rather than herbaceous host. On the other hand, the sexual morphs in the Macrodiplodiopsidaceae are similar to those of Pleomassariaceae s. lat. (Barr 1982). Macrodiplodiopsis desmazieri (= Splanchnonema platani) in this family is characterised by large-sized ascomata (500–900 μm diam) with thick ascomatal wall, clavate asci, and dark brown ascospores with 3–5(–6) eudistosepta (Barr, 1982, Crous et al., 2015a).

Morosphaeriaceae (Fig. 30, Fig. 31, Fig. 32, Fig. 33, Fig. 34, Fig. 35, Fig. 36, Fig. 37, Fig. 38, Fig. 39) and Trematosphaeriaceae (Fig. 47), mostly found from aquatic environments, are characterised by immersed to erumpent, medium to large, black, carbonaceous ascomata with or without papillate necks, but necks are prominent and/or surrounded by a clypeus in members of the Morosphaeriaceae. Asexual morphs are relatively rare in these families with few exceptions, i.e., Pithomyces valparadisiacus (Morosphaeriaceae, Kirk 1983), and Trematosphaeria grisea (Trematosphaeriaceae, Ahmed et al. 2014). This tendency has been observed in the Aliquandostipitaceae (Jahnulales), which also occurs in aquatic habitats, and a few asexual species in the genera Brachiosphaera, Speiropsis, and Xylomyces (Suetrong et al. 2011a).

We tentatively accept the Lentitheciaceae as a diverse assemblage. Four groups seem to be recognised based on morphological variations in the sexual morphs: Lentithecium with immersed, globose ascomata without clypeus, and broadly fusiform, 1-septate, hyaline ascospores (Fig. 19, Fig. 20), Keissleriella with small, globose to subglobose ascomata with setose necks and several septate ascospores (Fig. 13, Fig. 14, Fig. 15, Fig. 16, Fig. 17, Fig. 18), Setoseptoria (Fig. 22, Fig. 23) and Tingoldiago (Fig. 24) with single to grouped, hemispherical ascomata and cylindrical to fusiform ascospores, Katumotoa (Fig. 12) and Neoophiosphaerella (Fig. 21) with subglobose ascomata without prominent necks and fusiform or filiform ascospores. The morphological diversity of the family, as well as relatively low phylogenetic support of the clade (71 %, Fig. 1), strongly suggests polyphyly of the Lentitheciaceae s. lat. used in this study.

Similarly, various sexual morphs are observed in the Didymosphaeriaceae (Fig. 6, Fig. 7, Fig. 8, Fig. 9). Most of the species in this family have previously been placed in several genera of the Pleosporineae, which include Didymosphaeria (Montagnula opulenta, Phaeodothis winteri), Leptosphaeria (Paraconiothyrium fuckelii, Neokalmusia scabrispora), and Phaeosphaeria (Neokalmusia brevispora). The type species of Montagnula (M. infernalis; Berlese 1896) has been treated as Leptosphaeria or Pleospora (Wehmeyer 1961). Species having muriform ascospores similar to Pleospora are known in Deniquelata (Ariyawansa et al. 2013) and Tremateia (Kohlmeyer et al. 1995). Sexual morphs in the Didymosphaeriaceae have small to medium, globose to subglobose ascomata with papillate necks and melanised, didymo/phragmo/dictyo-ascospores resembling those of the Pleosporineae, but the ascomata are surrounded by abundant hyphae that form an apical clypeus at times, as was defined by Barr (2001). In addition, Bimuria (Hawksworth et al. 1979), a soil-borne ascomycete, with unique morphological characters such as ascomata composed of very thin peridium, 2-spored asci, and muriform, dark brown, verrucose ascospores, also belongs in the Didymosphaeriaceae. The family includes a wide variety of sexual morphs with dark coloured ascospores, as well as coniothyrium-like or Spegazzinia asexual morphs, and the clade receives 99 % BP support (Fig. 1).

In contrast, the Dictyosporiaceae and Periconiaceae mostly comprise asexual species. The few known sexual morphs in these families are characterised by single to grouped, globose to hemispherical ascomata with or without surrounding stromatic tissue, cylindrical asci with short stipes, and fusiform to broadly fusiform, 1-septate, hyaline ascospores. Examples are Dictyosporium (e.g., D. meiosporum; Liu et al. 2015), Gregarithecium (Fig. 3) and Pseudocoleophoma (Fig. 4, Fig. 5) in the Dictyosporiaceae and Bambusistroma (Adamčík et al. 2015) and Periconia (Fig. 42, Fig. 43) in the Periconiaceae. These morphological features agree in most respects with those of Massarina s. lat. (Aptroot, 1998, Tanaka and Harada, 2003b) and are similar to those of species in the Massarinaceae (e.g., Stagonospora). In the Latoruaceae, no sexual morphs are known at present (Crous et al. 2015a).

Morphological characteristics of asexual morphs

Although various asexual genera are found in the Massarineae, hyphomycetous species with macronematous, mononematous conidiophores are restricted to the Massarinaceae [Helminthosporium (Fig. 25) and Corynespora], Periconiaceae [Periconia (Fig. 43) and Sporidesmium], Dictyosporiaceae (Diplococcium and Dendryphiella), and Didymosphaeriaceae (Sporidesmiella). Similarly, synnematous hyphomycetes are extremely rare in this suborder and have only been observed in one instance, in Aquaticheirospora (Kodsueb et al. 2007) in the Dictyosporiaceae. Hyphomycetous asexual morphs without prominent conidiophores are found in the Periconiaceae (Noosia), Latoruaceae (Latorua and Polyschema), and the Morosphaeriaceae (Pithomyces). Sporodochial hyphomycetes are scattered through the Dictyosporiaceae [Dictyosporium (Fig. 2) and its morphologically similar genera], Didymosphaeriaceae (Spegazzinia, Fig. 10, Fig. 11), Parabambusicolaceae (Monodictys), and Unknown Clades III (Bactrodesmium) and IV (Monodictys, Fig. 50). In contrast, coelomycetous genera seem to be more common than hyphomycetous asexual morphs and are present throughout this suborder, i.e., in the Bambusicolaceae (Bambusicola), Dictyosporiaceae (Pseudocoleophoma, Fig. 4, Fig. 5), Didymosphaeriaceae [Paracamarosporium, Paraconiothyrium, Pseudocamarosporium, Karstenula, Paraphaeosphaeria (Fig. 9)], Lentitheciaceae [Keissleriella (Fig. 13, Fig. 16), Setoseptoria], Macrodiplodiopsidaceae (Camarographium, Macrodiplodiopsis, Pseudochaetosphaeronema), Massarinaceae (Stagonospora, Fig. 27, Fig. 28, Fig. 29), Sulcatisporaceae [Magnicamarosporium (Fig. 44), Sulcatispora (Fig. 45, Fig. 46)] and Unknown Clades I (Fuscostagonospora, Fig. 48).

In general, Dictyosporiaceae is characterised by hyphomycetous asexual morphs with pigmented cheiroconidia. These usually have sporodochial (e.g., Dictyosporium, Digitodesmium, and Pseudodictyosporium) or synnematous conidiomata (e.g., Aquaticheirospora). Dendryphiella and Diplococcium have macronematous, mononematous conidiophores with pigmented, multi-celled, tretic conidia. The coelomycetous morphs known in this family are “Paraconiothyriumflavescens and Pseudocoleophoma species, with phialidic, 1-celled conidia. In contrast, most asexual species in the Periconiaceae have mononematous, macronematous conidiophores and produce conidia in chains (e.g., Periconia), but some deviating species, such as “Sporidesmiumtengii have monoblastic, obpyriform, multi-septate, pigmented conidia (Wu & Zhuang 2005), and Noosia which lacks a prominent conidiophore (Crous et al. 2011a), are also known in the family. Further phylogenetic investigations of asexual genera exhibiting morphological resemblance to these two groups but without molecular information, such as dictyosporium-like (e.g., Cheiromycella, Digitomyces, Paratetraploa; Seifert et al. 2011) and periconia-like genera (e.g., Lacellinopsis, Sadasivania, Trichobotrys; Seifert et al. 2011), should be conducted to evaluate the phylogenetic significance of these phenotypic characters at familial level, and/or to clarify taxonomic understanding of the Dictyosporiaceae and Periconiaceae. Although in some families (e.g., the Didymosphaeriaceae and Massarinaceae), asexual morphs are extremely diverse and thus asexual characters alone appear insufficient for familial circumscriptions, there are many recent examples of families that are well defined by asexual morphological characters along with their phylogenetic information. These include the Coniothyriaceae (De Gruyter et al. 2013), Cladosporiaceae (Bensch et al. 2012), Kirschsteiniotheliaceae (Boonmee et al. 2012), Planistromellaceae (Minnis et al. 2012), and Tetraplosphaeriaceae (Tanaka et al. 2009).

Habitat

In contrast to the Pleosporineae which comprises numerous plant pathogens (Zhang et al. 2009b), such as necrotrophs (e.g., Alternaria, Bipolaris) and hemibiotrophs (e.g., Leptosphaeria, Setosphaeria) on economically important crops (Ohm et al. 2012), the Massarineae, a sister lineage of the Pleosporineae, mostly includes saprobes on various plant substrates.

Species in the Morosphaeriaceae and Trematosphaeriaceae have been reported mostly as saprobes on decomposed woody substrates submerged in freshwater or marine habitats. Recently, several human pathogenic species have been reported in genera in the Trematosphaeriaceae, and an association of the virulence factors with oligotrophism or halotolerance has been suggested (Ahmed et al. 2014). This may further indicate the presence of undescribed lineages of mycetoma agents in the Morosphaeriaceae.

Most other families in the Massarineae do not seem to have specific habitat preferences in each family. Species in the Dictyosporiaceae, for example, are reported from ecologically diverse environments, i.e., terrestrial monocots and dicots (e.g., Dictyosporium strelitziae and Diplococcium asperum; Pirozynski, 1972, Crous et al., 2009a), submerged wood in freshwater (e.g., Aquaticheirospora lignicola; Kodsueb et al. 2007), mangroves or drift wood in marine ecosystems (Dictyosporium inflatum; Kirschner et al. 2013), and rhizosphere soil (Pseudodictyosporium elegans; De Gruyter et al. 2013). In the Didymosphaeriaceae, many coelomycetous species similar to Phoma s. lat. are generally soil-borne fungi (Verkley et al. 2014), but species with other ecological features, e.g., endophytes (Dendrothyrium; Verkley et al. 2014), mycoparasites (Paraphaeosphaeria minitans; Campbell 1947), symbionts with scale insects (Cucurbidothis pityophila; Casagrande, 1969, Barr, 1990b), and marine saprobes (Tremateia halophila; Kohlmeyer et al. 1995) are also known. Paraconiothyrium fuckelii in the Didymosphaeriaceae is known as an agent of mycetoma and a serious plant pathogen of the Rosaceae (Verkley et al. 2014).

In the suborder Massarineae, relatively few species are known as plant pathogens. They are restricted to the Didymosphaeriaceae (Paraconiothyrium tiliae, Deniquelata barringtoniae; Butin and Kehr, 1995, Ariyawansa et al., 2013), Massarineae (Byssothecium circinans, Stagonospora spp., Helminthosporium solani; Kaiser et al., 1979, Semeniuk, 1983, Errampalli et al., 2001) and Periconiaceae (Periconia igniaria; Kolomiets et al. 2008); lineages rich in asexual species. Coprophilous species such as those in the Sporormiaceae (Kruys & Wedin 2009) and lichenicolous species such as Arthopyrenia salicis (Nelsen et al. 2009) are not known from the Massarineae.

Future studies

We examined the morphology of 106 taxa belonging to the Massarineae and analysed their phylogenetic relationships based on sequences from SSU rDNA, LSU rDNA and tef1, along with sequences of 131 taxa previously assigned to the Massarineae. Our results delineated 10 new genera and 29 new species/new combinations in more than 12 families and five unknown lineages (Fig. 1). Our study has contributed to the understanding of species diversity within the Massarineae, and improves the classification of these species, but several taxonomic issues remain unclear. The Lentitheciaceae s. lat. used here, for example, is probably polyphyletic based on the ecological and morphological divergence of these species, as well as based on our phylogenetic analysis, although we have tentatively accepted the family at this point. Furthermore, the presence of several lineages (Unknown Clades I to V), which we were unable to assign to any existing families, makes it certain that there are many undiscovered taxa, which should form a new family in the suborder.

Several comprehensive works have been published recently that have shown interest in the phylogeny of the Dothideomycetes. Schoch et al. (2006) provided a fundamental overview of the class, and its composition of two subclasses, the Pleosporomycetidae (pseudoparaphyses present) and the Dothideomycetidae (pseudoparaphyses absent), based on phylogenetic analyses of four loci (nucSSU, nucLSU rDNA, tef1, rpb2) from 96 taxa. Schoch et al. (2009) reconstructed the dothideomycete phylogeny based on five genes (nucSSU, nucLSU rDNA, tef1, rpb1, rpb2) from 356 isolates, and discussed the evolutionary transitions of ecological characteristics. Following these publications, the understanding of the natural relationships among dothideomycetous taxa and their taxonomic revision have tremendously progressed, and the number of accepted families in this class has been increased from 41 (Schoch et al. 2009) to 105 (Hyde et al. 2013) with or without molecular evidence. Monographic revision based on the type specimens along with phylogeneric analyses have been published by Zhang et al. (2012) who concentrated on reassessment of genera in the Pleosporales, and by Hyde et al. (2013) who circumscribed each family in the Dothideomycetes. The phylogenies of plant pathogenic taxa in this class, such as Alternaria (Woudenberg et al. 2013), Cercospora (Groenewald et al. 2013), Cladosporium (Bensch et al. 2012), Phoma (De Gruyter et al. 2013), Pseudocercospora (Crous et al. 2013a), Septoria (Verkley et al., 2013, Quaedvlieg et al., 2013) and several genera in the Botryosphaeriales (Wikee et al., 2013, Slippers et al., 2013, Phillips et al., 2013), have been intensively studied. More recently, a special issue of Phytotaxa has been published, comprising 26 articles focused on the taxonomy and phylogeny of the Dothideomycetes (Mckenzie et al. 2014).

However, these works on Dothideomycetes include relatively few species belonging to the Massarineae. The number of Massarineae taxa used in phylogenetic analyses of the Dothideomycetes was only six (among 96 taxa; Schoch et al. 2006), and 35 (among 356 taxa; Schoch et al. 2009). In the revision of the Pleosporales by Zhang et al. (2012) who recognised the validity of Massarineae, only 46 taxa of the suborder were phylogenetically analysed. Furthermore, most families in this suborder including the Bambusicolaceae (Hyde et al. 2013), Lentitheciaceae (Zhang et al. 2009b), Morosphaeriaceae (Suetrong et al. 2009), and Trematosphaeriaceae (Suetrong et al. 2011b), have been lineages recently recognised based on molecular data, and are currently characterised morphologically by only a few genera. To provide more precise circumscription of these families, as well as of the unnamed lineages we have found (Clades I to V, Fig. 1), further phylogenetic analyses using a greater number of taxa should be conducted with priority. These should include a fundamental taxonomic approach to species discovery along with sequence verification, such as the work undertaken by Fungal Planet (Crous et al. 2015c), Fungal Diversity Notes (Liu et al. 2015) and Fungal Systematics and Evolution (FUSE) (Crous et al. 2015b).

In due course further phylogenetic study is also necessary of the more than 1 500 asexual genera treated as “Ascomycota, genera incertae sedis” (Wijayawardene et al. 2012); those without sexual links or molecular phylogenetic information. However, asexual characters alone may not provide good resolution for familial circumscription for some aquatic lineages, such as Morosphaeriaceae and Trematosphaeriaceae, in which predominantly sexual species are known. In contrast, species in the Dictyosporiaceae and Periconiaceae comprise a high proportion of asexual taxa. These have previously been treated as Massarinaceae (Hyde et al. 2013), but we have further characterised these as independent families based on their sexual morphs, in addition to their distinct asexual morphologies. Recognition of the Dictyosporiaceae and Periconiaceae partially indicates the phylogenetic significance of asexual taxa, but further comprehensive taxonomic work based on the holomorph and not weighted towards a particular fungal morph (e.g., Crous et al., 2009b, Tanaka et al., 2009, Tanaka et al., 2010, Voglmayr and Jaklitsch, 2011, Dai et al., 2012, Phillips et al., 2013, Boonmee et al., 2014) should be conducted to revise sexual morph-based fungal systematics.

Acknowledgements

We gratefully acknowledge N. Asama, K. Izumi, T. Handa, S. Hatakeyama, Y. Hiro, N. Nakagawara, A. Ooba, Y. Ooki, J. Onodera, and Y. Suzuki for providing fungal specimens. We thank the curator of TMI, E. Nagasawa, who permitted us to examine type collections. We wish to acknowledge V.A. Mel'nik for kindly supplying the specimen of Monodictys capensis and H.A. Raja for kindly providing literature of Periconiaceae. We also thank editors and anonymous reviewers for critically reviewing the manuscript. This work was partially supported by grants from the Japan Society for the Promotion of Science (JSPS 25440199 and 26291084) and Hirosaki University Grant for Exploratory Research by Young Scientists and Newly-appointed Scientists for financial support (2010–2013, 2015).

Footnotes

Peer review under responsibility of CBS-KNAW Fungal Biodiversity Centre.

References

  1. Adamčík S., Cai L., Chakraborty D. Fungal biodiversity profiles 1–10. Cryptogamie Mycologie. 2015;36:121–166. [Google Scholar]
  2. Ahmed S.A., van de Sande W.W.J., Stevens D.A. Revision of agents of black-grain eumycetoma in the order Pleosporales. Persoonia. 2014;33:141–154. doi: 10.3767/003158514X684744. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Akaike H. A new look at the statistical model identification. IEEE Transactions on Automatic Control. 1974;19:716–723. [Google Scholar]
  4. Anastasiou C.J. Fungi from salt lakes. II. Ascomycetes and fungi imperfecti from the Salton sea. Nova Hedwigia. 1963;6:243–276. [Google Scholar]
  5. Aptroot A. Redisposition of some species excluded from Didymosphaeria (Ascomycotina) Nova Hedwigia. 1995;60:325–379. [Google Scholar]
  6. Aptroot A. A world revision of Massarina (Ascomycota) Nova Hedwigia. 1998;66:89–162. [Google Scholar]
  7. Aptroot A. Two new ascomycetes with long gelatinous appendages collected from monocots in the tropics. Studies in Mycology. 2004;50:307–311. [Google Scholar]
  8. Ariyawansa H.A., Maharachchikumbura S.S.N., Karunarathne S.C. Deniquelata barringtoniae gen. et sp. nov., associated with leaf spots of Barringtonia asiatica. Phytotaxa. 2013;105:11–20. [Google Scholar]
  9. Ariyawansa H.A., Tanaka K., Thambugala K.M. A molecular phylogenetic reappraisal of the Didymosphaeriaceae (= Montagnulaceae) Fungal Diversity. 2014;68:69–104. [Google Scholar]
  10. Atkinson G.F. Some fungi from Alabama collected chiefly during the years 1889–1892. Bulletin of the Cornell University (Science) 1897;3:1–50. [Google Scholar]
  11. Barbosa F.R., Gusmão L.F.P. Conidial fungi from semi-arid Caatinga Biome of Brazil. Rare freshwater hyphomycetes and other new records. Mycosphere. 2011;2:475–485. [Google Scholar]
  12. Barr M.E. A classification of Loculoascomycetes. Mycologia. 1979;71:935–957. [Google Scholar]
  13. Barr M.E. On the Pleomassariaceae (Pleosporales) in North America. Mycotaxon. 1982;15:349–383. [Google Scholar]
  14. Barr M.E. Published by the author; Amherst, Massachusetts: 1987. Prodromus to class Loculoascomycetes. [Google Scholar]
  15. Barr M.E. Melanommatales (Loculoascomycetes) North American Flora, Series II. 1990;13:1–129. [Google Scholar]
  16. Barr M.E. Some dictyosporous genera and species of Pleosporales in North America. Memoirs of the New York Botanical Garden. 1990;62:1–92. [Google Scholar]
  17. Barr M.E. Notes on the Lophiostomataceae (Pleosporales) Mycotaxon. 1992;45:191–221. [Google Scholar]
  18. Barr M.E. Montagnulaceae, a new family in the Pleosporales, and lectotypification of Didymosphaerella. Mycotaxon. 2001;77:193–200. [Google Scholar]
  19. Bensch K., Braun U., Groenewald J.Z. The genus Cladosporium. Studies in Mycology. 2012;72:1–401. doi: 10.3114/sim0003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Berlese A.N. 1894. Icones fungorum omnium hucusque cognitorum, vol. 1. (Reprint Bibliotheca Mycologica16A: 1–243) [Google Scholar]
  21. Berlese A.N. 1896. Icones fungorum omnium hucusque cognitorum, vol. 2. (Reprint Bibliotheca Mycologica16B: 1–216) [Google Scholar]
  22. Boise J. On Trematosphaeria circinans and reinstatement of the genus Byssothecium. Mycologia. 1983;75:666–669. [Google Scholar]
  23. Boise J. New combinations in the Pleomassariaceae and the Massarinaceae. Mycotaxon. 1985;22:477–482. [Google Scholar]
  24. Boonmee S., KoKo T.W., Chukeatirote E. Two new Kirschsteiniothelia species with Dendryphiopsis anamorphs cluster in Kirschsteiniotheliaceae fam. nov. Mycologia. 2012;104:698–714. doi: 10.3852/11-089. [DOI] [PubMed] [Google Scholar]
  25. Boonmee S., Rossman A.Y., Liu J.K. Tubeufiales, ord. nov., integrating sexual and asexual generic names. Fungal Diversity. 2014;68:239–298. [Google Scholar]
  26. Booth C. Didymosphaeria igniaria sp. nov., the perfect state of Periconia igniaria. Transactions of the British Mycological Society. 1968;51:803–805. [Google Scholar]
  27. Bose S.K. Studies on Massarina Sacc. and related genera. Phytopathologische Zeitschrift. 1961;41:151–213. [Google Scholar]
  28. Bunning S.E., Griffiths D.A. Spore development in species of Periconia II. P. byssoides and P. igniaria. Transactions of the British Mycological Society. 1984;82:397–404. [Google Scholar]
  29. Butin H., Kehr R. Leaf blotch of lime associated with Asteromella tiliae comb. nov. and the latter's connection to Didymosphaeria petrakiana. Mycological Research. 1995;99:1191–1194. [Google Scholar]
  30. Cai L., Guo X.Y., Hyde K.D. Morphological and molecular characterisation of a new anamorphic genus Cheirosporium, from freshwater in China. Persoonia. 2008;20:53–58. doi: 10.3767/003158508X314732. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Cai L., Hyde K.D. Anamorphic fungi from freshwater habitats in China: Dictyosporium tetrasporum and Exserticlava yunnanensis spp. nov., and two new records for Pseudofuscophialis lignicola and Pseudobotrytis terrestris. Mycoscience. 2007;48:290–296. [Google Scholar]
  32. Cai L., Hyde K.D. Ascorhombispora aquatica gen. et sp. nov. from a freshwater habitat in China, and its phylogenetic placement based on molecular data. Cryptogamie Mycologie. 2007;28:291–300. [Google Scholar]
  33. Cai L., Zhang K., McKenzie E.H.C. Acrodictys liputii sp. nov. and Digitodesmium bambusicola sp. nov. from bamboo submerged in the Liput River in the Philippines. Nova Hedwigia. 2002;75:525–532. [Google Scholar]
  34. Cai L., Zhang K., McKenzie E.H.C. New species of Canalisporium and Dictyosporium from China and a note on the differences between these genera. Cryptogamie Mycologie. 2003;24:3–11. [Google Scholar]
  35. Câmara M.P.S., O'Neill N.R., van Berkum P. Ophiosphaerella agrostis sp. nov. and its relationship to other species of Ophiosphaerella. Mycologia. 2000;92:317–325. [Google Scholar]
  36. Câmara M.P.S., Palm M.E., van Berkum P. Systematics of Paraphaeosphaeria: a molecular and morphological approach. Mycological Research. 2001;105:41–56. [Google Scholar]
  37. Câmara M.P.S., Palm M.E., van Berkum P. Molecular phylogeny of Leptosphaeria and Phaeosphaeria. Mycologia. 2002;94:630–640. doi: 10.1080/15572536.2003.11833191. [DOI] [PubMed] [Google Scholar]
  38. Câmara M.P.S., Ramaley A.W., Castlebury L.A. Neophaeosphaeria and Phaeosphaeriopsis, segregates of Paraphaeosphaeria. Mycological Research. 2003;107:516–522. doi: 10.1017/s0953756203007731. [DOI] [PubMed] [Google Scholar]
  39. Campbell J., Ferrer A., Raja H.A. Phylogenetic relationships among taxa in the Jahnulales inferred from 18S and 28S nuclear ribosomal DNA sequences. Canadian Journal of Botany. 2007;85:873–882. [Google Scholar]
  40. Campbell J., Shearer C.A., Mitchell J.I. Corollospora revisited: a molecular approach. In: Hyde K.D., editor. Fungal Diversity Press; Hong Kong: 2002. pp. 15–33. (Fungi in marine environments. Fungal diversity research series 7). [Google Scholar]
  41. Campbell W.A. A new species of Coniothyrium parasitic on sclerotia. Mycologia. 1947;39:190–195. [Google Scholar]
  42. Casagrande F. Ricerche biologiche e sistematische su particolari ascomiceti pseudosferiali. Phytopathologische Zeitschrift. 1969;66:97–136. [Google Scholar]
  43. Chen J.L., Hwang C.H., Tzean S.S. Dictyosporium digitatum, a new hyphomycete from Taiwan. Mycological Research. 1991;95:1145–1149. [Google Scholar]
  44. Chlebicki A. Fungi on higher plants of the upper limit of the alpine zone: new species from Tian Shan. Mycotaxon. 2009;110:443–450. [Google Scholar]
  45. Clements F.E., Shear C.L. Wilson; New York: 1931. The genera of fungi. [Google Scholar]
  46. Constantinescu O. Teleomorph-anamorph connections in ascomycetes: Microdiplodia anamorph of Karstenula rhodostoma. Mycological Research. 1993;97:377–380. [Google Scholar]
  47. Corbaz R. Recherches sur le genre Didymella Sacc. Phytopathologische Zeitschrift. 1956;28:375–414. [Google Scholar]
  48. Corlett M., Smith J.D. Didymella proximella and its Stagonospora anamorph. Canadian Journal of Botany. 1978;56:2818–2824. [Google Scholar]
  49. Crane J.L., Shearer C.A. A nomenclator of Leptosphaeria V. Cesati & G. de Notaris (Mycota-Ascomycotina-Loculoascomycetes) Illinois Natural History Survey Bulletin. 1991;34:1–355. [Google Scholar]
  50. Crous P.W., Braun U., Hunter G.C. Phylogenetic lineages in Pseudocercospora. Studies in Mycology. 2013;75:37–114. doi: 10.3114/sim0005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Crous P.W., Braun U., Wingfield M.J. Phylogeny and taxonomy of obscure genera of microfungi. Persoonia. 2009;22:139–161. doi: 10.3767/003158509X461701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Crous P.W., Carris L.M., Giraldo A. The Genera of Fungi – fixing the application of the type species of generic names – G 2: Allantophomopsis, Latorua, Macrodiplodiopsis, Macrohilum, Milospium, Protostegia, Pyricularia, Robillarda, Rotula, Septoriella, Torula, and Wojnowicia. IMA Fungus. 2015;6:163–198. doi: 10.5598/imafungus.2015.06.01.11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Crous P.W., Gams W., Stalpers J.A. MycoBank: an online initiative to launch mycology into the 21st century. Studies in Mycology. 2004;50:19–22. [Google Scholar]
  54. Crous P.W., Groenewald J.Z. A phylogenetic re-evaluation of Arthrinium. IMA Fungus. 2013;4:133–154. doi: 10.5598/imafungus.2013.04.01.13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Crous P.W., Groenewald J.Z., Lombard L. Homortomyces gen. nov., a new dothidealean pycnidial fungus from the Cradle of Humankind. IMA Fungus. 2012;3:109–115. doi: 10.5598/imafungus.2012.03.02.02. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Crous P.W., Groenewald J.Z., Shivas R.G. Fungal Planet description sheets: 69–91. Persoonia. 2011;26:108–156. doi: 10.3767/003158511X581723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Crous P.W., Schoch C.L., Hyde K.D. Phylogenetic lineages in the Capnodiales. Studies in Mycology. 2009;64:17–47. doi: 10.3114/sim.2009.64.02. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Crous P.W., Schumacher R.K., Wingfield M.J. Fungal Systematics and Evolution: FUSE 1. Sydowia. 2015;67:81–118. [Google Scholar]
  59. Crous P.W., Shivas R.G., Quaedvlieg W. Fungal Planet description sheets: 214–280. Persoonia. 2014;32:184–306. doi: 10.3767/003158514X682395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Crous P.W., Slippers B., Wingfield M.J. Phylogenetic lineages in the Botryosphaeriaceae. Studies in Mycology. 2006;55:235–253. doi: 10.3114/sim.55.1.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Crous P.W., Summerell B.A., Carnegie A.J. Foliicolous Mycosphaerella spp. and their anamorphs on Corymbia and Eucalyptus. Fungal Diversity. 2007;26:143–185. [Google Scholar]
  62. Crous P.W., Summerell B.A., Shivas R.G. Fungal Planet description sheets: 92–106. Persoonia. 2011;27:130–162. doi: 10.3767/003158511X617561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Crous P.W., Wingfield M.J., Guarro J. Fungal Planet description sheets: 154–213. Persoonia. 2013;31:188–296. doi: 10.3767/003158513X675925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Crous P.W., Wingfield M.J., Guarro J. Fungal Planet description sheets: 320–370. Persoonia. 2015;34:167–266. doi: 10.3767/003158515X688433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Crous P.W., Wingfield M.J., Schumacher R.K. Fungal Planet description sheets: 281–319. Persoonia. 2014;33:212–289. doi: 10.3767/003158514X685680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Dai D.Q., Bhat D.J., Liu J.K. Bambusicola, a new genus from bamboo with asexual and sexual morphs. Cryptogamie Mycologie. 2012;33:363–379. [Google Scholar]
  67. Day M.J., Gibas C.F.C., Fujimura K.E. Monodictys arctica, a new hyphomycete from the roots of Saxifraga oppositifolia collected in the Canadian High Arctic. Mycotaxon. 2006;98:261–272. [Google Scholar]
  68. De Gruyter J., Aveskamp M.M., Woudenberg J.H.C. Molecular phylogeny of Phoma and allied anamorph genera: towards a reclassification of the Phoma complex. Mycological Research. 2009;113:508–519. doi: 10.1016/j.mycres.2009.01.002. [DOI] [PubMed] [Google Scholar]
  69. De Gruyter J., Woudenberg J.H.C., Aveskamp M.M. Redisposition of Phoma-like anamorphs in Pleosporales. Studies in Mycology. 2013;75:1–36. doi: 10.3114/sim0004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Dennis R.W.G. 3rd edn. J. Cramer; Vaduz: 1978. British Ascomycetes. [Google Scholar]
  71. Ellis M.B. Dematiaceous hyphomycetes. I. Mycological Papers. 1960;76:1–36. [Google Scholar]
  72. Ellis M.B. Dematiaceous hyphomycetes. III. Mycological Papers. 1961;82:1–55. [Google Scholar]
  73. Ellis M.B. Commonwealth Mycological Institute; Kew, Surrey, UK: 1971. Dematiaceous hyphomycetes. [Google Scholar]
  74. Ellis M.B. Commonwealth Mycological Institute; Kew, Surrey, UK: 1976. More dematiaceous hyphomycetes. [Google Scholar]
  75. Eriksson O.E. On graminicolous pyrenomycetes from Fennoscandia. 2. Phragmosporous and scolecosporous species. Arkiv för Botanik. 1967;6:381–440. [Google Scholar]
  76. Eriksson O.E. The families of bitunicate ascomycetes. Opera Botanica. 1981;60:1–220. [Google Scholar]
  77. Eriksson O.E. Notes on ascomycetes and coelomycetes from NW Europe. Mycotaxon. 1982;15:189–202. [Google Scholar]
  78. Eriksson O.E. NaClO, sodium hypochlorite, a powerful agent in studies of ascospore morphology. Systema Ascomycetum. 1989;8:29–57. [Google Scholar]
  79. Eriksson O.E., Hawksworth D.L. Saccharicola, a new genus for two Leptosphaeria species on sugar cane. Mycologia. 2003;95:426–433. [PubMed] [Google Scholar]
  80. Eriksson O.E., Winka K. Families and higher taxa of Ascomycota. Myconet. 1998;1:17–24. [Google Scholar]
  81. Errampalli D., Saunders J.M., Holley J.D. Emergence of silver scurf (Helminthosporium solani) as an economically important disease of potato. Plant Pathology. 2001;50:141–153. [Google Scholar]
  82. Goh T.K., Ho W.H., Hyde K.D. Four new species of Xylomyces from submerged wood. Mycological Research. 1997;101:1323–1328. [Google Scholar]
  83. Goh T.K., Hyde K.D. A synopsis of and a key to Diplococcium species, based on the literature, with a description of a new species. Fungal Diversity. 1998;1:65–83. [Google Scholar]
  84. Goh T.K., Hyde K.D., Ho W.H. A revision of the genus Dictyosporium, with descriptions of three new species. Fungal Diversity. 1999;2:65–100. [Google Scholar]
  85. Goos R.D., Brooks R.D., Lamore B.J. An undescribed hyphomycete from wood submerged in a Rhode Island stream. Mycologia. 1977;69:280–286. [Google Scholar]
  86. Grandaubert J., Lowe R.G.T., Soyer J.L. Transposable element-assisted evolution and adaptation to host plant within the Leptosphaeria maculans-Leptosphaeria biglobosa species complex of fungal pathogens. BMC Genomics. 2014;15:891. doi: 10.1186/1471-2164-15-891. [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Groenewald J.Z., Nakashima C., Nishikawa J. Species concepts in Cercospora: spotting the weeds among the roses. Studies in Mycology. 2013;75:115–170. doi: 10.3114/sim0012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  88. Grove W.B. Cambridge University Press; Cambridge, UK: 1935. British stem and leaf-fungi (Coelomycetes), Vol. I. Sphaeropsidales. [Google Scholar]
  89. Han J.G., Hosoya T., Sung G.H. Phylogenetic reassessment of Hyaloscyphaceae sensu lato (Helotiales, Leotiomycetes) based on multigene analyses. Fungal Biology. 2014;118:150–167. doi: 10.1016/j.funbio.2013.11.004. [DOI] [PubMed] [Google Scholar]
  90. Hawksworth D.L., Kirk P.M., Sutton B.C. 8th edn. CAB International; Wallingford, UK: 1995. Ainsworth and Bisby's Dictionary of the Fungi. [Google Scholar]
  91. Hawksworth D.L., Sutton B.C., Ainsworth G.C. 7th edn. Commonwealth Mycological Institute; Kew, UK: 1983. Ainsworth and Bisby's Dictionary of the Fungi. [Google Scholar]
  92. Hawksworth D.L., Yen C.C., Sheridan J.E. Bimuria novae-zelandiae gen. et sp. nov., a remarkable ascomycete isolated from a New Zealand barley field. New Zealand Journal of Botany. 1979;17:267–273. [Google Scholar]
  93. Hedjaroude G.A. Etudes taxonomiques sur les Phaeosphaeria Miyake et leurs formes voisines (Ascomycetes) Sydowia. 1968;22:57–107. [Google Scholar]
  94. Hernández-Restrepo M., Castañeda-Ruiz R.F., Gené J. Two new species of Solicorynespora from Spain. Mycological Progress. 2014;13:157–164. [Google Scholar]
  95. Hirayama K., Tanaka K. Notes on two species of Massarina sensu lato from Island Iriomote in Japan (in Japanese) Aomorisizenshikenkyuu. 2011;16:43–47. [Google Scholar]
  96. Hirayama K., Tanaka K. Taxonomic revision of Lophiostoma and Lophiotrema based on reevaluation of morphological characters and molecular analyses. Mycoscience. 2011;52:401–412. [Google Scholar]
  97. Hirayama K., Tanaka K., Raja H.A. A molecular phylogenetic assessment of Massarina ingoldiana sensu lato. Mycologia. 2010;102:729–746. doi: 10.3852/09-230. [DOI] [PubMed] [Google Scholar]
  98. Hirayama K., Yonezawa H., Tanaka K. Description of Hyphomycetes, Dictyosporium bulbosum and D. digitatum, new to Japan (in Japanese) Aomorisizensikenkyu. 2012;17:51–54. [Google Scholar]
  99. Hodhod M.S., Abdel-Wahab M.A., Bahkali A.H.A. Amarenographium solium sp. nov. from Yanbu mangroves in the Kingdom of Saudi Arabia. Cryptogamie Mycologie. 2012;33:285–294. [Google Scholar]
  100. Holm L. Études taxonomiques sur les pléosporacées. Symbolae Botanicae Upsalienses. 1957;14:1–188. [Google Scholar]
  101. Hosoya T., Huhtinen S. Hyaloscyphaceae in Japan (7): Hyaloscypha albohyalina var. monodictys var. nov. Mycoscience. 2002;43:405–409. [Google Scholar]
  102. Hsieh W.H. The causal organism of sugarcane leaf blight. Mycologia. 1979;71:892–898. [Google Scholar]
  103. Hu D.M., Cai L., Chen H. Four new freshwater fungi associated with submerged wood from Southwest Asia. Sydowia. 2010;62:191–203. [Google Scholar]
  104. Hughes S.J. Conidiophores, conidia, and classification. Canadian Journal of Botany. 1953;31:577–659. [Google Scholar]
  105. Hughes S.J. Fungi from the Gold Coast. II. Mycological Papers. 1953;50:1–104. [Google Scholar]
  106. Huhndorf S.M. Studies in Leptosphaeria. Transfer of Leptosphaeria opuntiae to Montagnula (Ascomycetes) Brittonia. 1992;44:208–212. [Google Scholar]
  107. Hyde K.D. Massarina velatospora and a new mangrove-inhabiting species, M. ramunculicola sp. nov. Mycologia. 1991;83:839–845. [Google Scholar]
  108. Hyde K.D. The genus Massarina, with a description of M. eburnea and an annotated list of Massarina names. Mycological Research. 1995;99:291–296. [Google Scholar]
  109. Hyde K.D., Aptroot A. Tropical freshwater species of the genera Massarina and Lophiostoma (ascomycetes) Nova Hedwigia. 1998;66:489–502. [Google Scholar]
  110. Hyde K.D., Fröhlich J., Taylor J.E. Fungi from palms. XXXVI. Reflections on unitunicate ascomycetes with apiospores. Sydowia. 1998;50:21–80. [Google Scholar]
  111. Hyde K.D., Goh T.K. Tropical Australian freshwater fungi. XVI. Some new melanommataceous fungi from woody substrata and a key to genera of lignicolous loculoascomycetes in freshwater. Nova Hedwigia. 1999;68:251–272. [Google Scholar]
  112. Hyde K.D., Jones E.B.G., Liu J.K. Families of Dothideomycetes. Fungal Diversity. 2013;63:1–313. [Google Scholar]
  113. Hyde K.D., McKenzie E.H.C., KoKo T.W. Towards incorporating anamorphic fungi in a natural classification – checklist and notes for 2010. Mycosphere. 2011;2:1–88. [Google Scholar]
  114. Hyde K.D., Wong W.S.W., Aptroot A. Marine and estuarine species of Lophiostoma and Massarina. In: Hyde K.D., editor. Fungal Diversity Press; Hong Kong: 2002. pp. 93–109. (Fungi in marine environments. Fungal diversity research series 7). [Google Scholar]
  115. Jobb G. 2011. Treefinder Mar 2011.http://www.treefinder.de Available at: [Google Scholar]
  116. Jones E.B.G., Klaysuban A., Pang K.L. Ribosomal DNA phylogeny of marine anamorphic fungi: Cumulospora varia, Dendryphiella species and Orbimyces spectabilis. The Raffles Bulletin of Zoology supplement. 2008;19:11–18. [Google Scholar]
  117. Kaiser W.J., Ndimande B.N., Hawksworth D.L. Leaf-scorch disease of sugarcane in Kenya caused by a new species of Leptosphaeria. Mycologia. 1979;71:479–492. [Google Scholar]
  118. Karsten P.A. Mycologia Fennica. Pars secunda. Pyrenomycetes. Bidrag till Kännedom af Finlands Natur och Folk. 1873;23:1–252. [Google Scholar]
  119. Khashnobish A., Shearer C.A. Reexamination of eight Leptosphaeria species (Ascomycetes: Pleosporales) originally described on Typha. Nova Hedwigia. 1993;57:33–46. [Google Scholar]
  120. Kirk P.M. New or interesting microfungi IX. Dematiaceous hyphomycetes from Esher Common. Transactions of the British Mycological Society. 1983;80:449–467. [Google Scholar]
  121. Kirk P.M., Cannon P.F., Minter D.W. 10th edn. CAB International; Wallingford, UK: 2008. Ainsworth and Bisby's Dictionary of the Fungi. [Google Scholar]
  122. Kirschner R., Pang K.L., Jones E.B.G. Two cheirosporous hyphomycetes reassessed based on morphological and molecular examination. Mycological Progress. 2013;12:29–36. [Google Scholar]
  123. Knapp D.G., Kovács G.M., Zajta E. Dark septate endophytic pleosporalean genera from semiarid areas. Persoonia. 2015;35:87–100. doi: 10.3767/003158515X687669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  124. Kobayasi Y. Mycological reports from New Guinea and the Solomon Islands (1–11) Bulletin of the National Science Museum (Tokyo) 1971;14:367–551. [Google Scholar]
  125. Kodsueb R., Dhanasekaran V., Aptroot A. The family Pleosporaceae: intergeneric relationships and phylogenetic perspectives based on sequence analyses of partial 28S rDNA. Mycologia. 2006;98:571–583. doi: 10.3852/mycologia.98.4.571. [DOI] [PubMed] [Google Scholar]
  126. Kodsueb R., Lumyong S., Ho W.H. Morphological and molecular characterization of Aquaticheirospora and phylogenetics of Massarinaceae (Pleosporales) Botanical Journal of the Linnean Society. 2007;155:283–296. [Google Scholar]
  127. Kohlmeyer J. Marine fungi of Hawaii including the new genus Helicascus. Canadian Journal of Botany. 1969;47:1469–1487. [Google Scholar]
  128. Kohlmeyer J., Volkmann-Kohlmeyer B. Illustrated key to the filamentous marine fungi. Botanica Marina. 1991;34:1–61. [Google Scholar]
  129. Kohlmeyer J., Volkmann-Kohlmeyer B., Eriksson O.E. Fungi on Juncus roemerianus. 2. New dictyosporous ascomycetes. Botanica Marina. 1995;38:165–174. [Google Scholar]
  130. Kolomiets T., Pankratova L., Mukhina Z. First report of leaf spot caused by Periconia igniaria on yellow starthistle in Russia. Plant Disease. 2008;92:983. doi: 10.1094/PDIS-92-6-0983A. [DOI] [PubMed] [Google Scholar]
  131. Kruys Å., Wedin M. Phylogenetic relationships and an assessment of traditionally used taxonomic characters in the Sporormiaceae (Pleosporales, Dothideomycetes, Ascomycota), utilising multi-gene phylogenies. Systematics and Biodiversity. 2009;7:465–478. [Google Scholar]
  132. Lawrey J.D., Diederich P., Nelsen M.P. Phylogenetic placement of lichenicolous Phoma species in the Phaeosphaeriaceae (Pleosporales, Dothideomycetes) Fungal Diversity. 2012;55:195–213. [Google Scholar]
  133. Leuchtmann A. Über Phaeosphaeria Miyake und andere bitunicate Ascomyceten mit mehrfach querseptierten Ascosporen. Sydowia. 1984;37:75–194. [Google Scholar]
  134. Liew E.C.Y., Aptroot A., Hyde K.D. An evaluation of the monophyly of Massarina based on ribosomal DNA sequences. Mycologia. 2002;94:803–813. [PubMed] [Google Scholar]
  135. Liu J.K., Hyde K.D., Jones E.B.G. Fungal diversity notes 1–110: taxonomic and phylogenetic contributions to fungal species. Fungal Diversity. 2015;72:1–197. [Google Scholar]
  136. Liu J.K., Phookamsak R., Jones E.B.G. Astrosphaeriella is polyphyletic with species in Fissuroma gen. nov., and Neoastrosphaeriella gen. nov. Fungal Diversity. 2011;51:135–154. [Google Scholar]
  137. Lucas M.T. Culture studies on Portuguese species of Leptosphaeria II. Transactions of the British Mycological Society. 1968;51:411–415. [Google Scholar]
  138. Lumbsch H.T., Huhndorf S.M. Outline of Ascomycota – 2009. Fieldiana Life and Earth Sciences. 2010;1:1–60. [Google Scholar]
  139. Luttrell E.S. Loculoascomycetes. In: Ainsworth G.C., Sparrow F.K., Sussman A.S., editors. Academic Press; New York: 1973. pp. 135–219. (The fungi, vol IVA). [Google Scholar]
  140. Manamgoda D.S., Cai L., Bahkali A.H. Cochliobolus: an overview and current status of species. Fungal Diversity. 2011;51:3–42. [Google Scholar]
  141. Manoharachary C., Kunwar I.K., Rao N.K. Two new species of Dictyosporium from India. Indian Phytopathology. 2007;60:341–344. [Google Scholar]
  142. Marincowitz S., Crous P.W., Groenewald J.Z. Microfungi occurring on Proteaceae in the fynbos. CBS Biodiversity Series. 2008;7:1–166. [Google Scholar]
  143. Mason E.W., Ellis M.B. British species of Periconia. Mycological Papers. 1953;56:1–127. [Google Scholar]
  144. Matsushima T. Published by the Author; Kobe, Japan: 1971. Microfungi of the Solomon Islands and Papua-New Guinea. [Google Scholar]
  145. McKenzie E.H.C. Two new dictyosporous hyphomycetes on Rhopalostylis sapida (Arecaceae) in New Zealand. Mycotaxon. 2010;111:155–160. [Google Scholar]
  146. McKenzie E.H.C., Jones E.B.G., Hyde K.D., editors. Taxonomy and phylogeny of DothideomycetesPhytotaxa. 2014;176:1–323. [Google Scholar]
  147. Mel'nik V.A., Shabunin D.A. Rare or rarely revealed fungi Monodictys capensis and Peyronelina glomerulata. Mikologiya i Fitopatologiya. 2010;44:410–413. [Google Scholar]
  148. Minnis A.M., Kennedy A.H., Grenier D.B. Phylogeny and taxonomic revision of the Planistromellaceae including its coelomycetous anamorphs: contributions towards a monograph of the genus Kellermania. Persoonia. 2012;29:11–28. doi: 10.3767/003158512X658766. [DOI] [PMC free article] [PubMed] [Google Scholar]
  149. Mouzouras R., Jones E.B.G. Monodictys pelagica, the anamorph of Nereiospora cristata (Halosphaeriaceae) Canadian Journal of Botany. 1985;63:2444–2447. [Google Scholar]
  150. Munk A. The system of the Pyrenomycetes. A contribution to a natural classification of the group Sphaeriales sensu Lindau. Dansk Botanisk Arkiv. 1953;15:1–163. [Google Scholar]
  151. Munk A. On Metasphaeria coccodes (Karst.) Sacc. and other fungi probably related to Massarina Sacc. Massarinaceae n. fam. Friesia. 1956;5:303–308. [Google Scholar]
  152. Munk A. Danish Pyrenomycetes. A preliminary flora. Dansk Botanisk Arkiv. 1957;17:1–491. [Google Scholar]
  153. Nagasawa E., Otani Y. Some species of the bambusicolous ascomycetes from Japan. I. Reports of the Tottori Mycological Institute. 1977;15:38–42. [Google Scholar]
  154. Nag Raj T.R. Genera coelomycetum. XXVI: Amarenographium, Callistospora, Hyalothyridium, Orphanocoela anam.-gen. nov., Scolesporiella, and Urohendersoniella. Canadian Journal of Botany. 1989;67:3169–3186. [Google Scholar]
  155. Nannizzi A. Repertorio sistematico dei miceti dell' uomo e degli animali. Trattato di Micopatologia Umana. 1934;4:1–557. [Google Scholar]
  156. Nelsen M.P., Lücking R., Grube M. Unravelling the phylogenetic relationships of lichenised fungi in Dothideomyceta. Studies in Mycology. 2009;64:135–144. doi: 10.3114/sim.2009.64.07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  157. Ohm R.A., Feau N., Henrissat B. Diverse lifestyles and strategies of plant pathogenesis encoded in the genomes of eighteen Dothideomycetes fungi. PLoS Pathogens. 2012;8:e1003037. doi: 10.1371/journal.ppat.1003037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  158. Olivier C., Berbee M.L., Shoemaker R.A. Molecular phylogenetic support from ribosomal DNA sequences for origin of Helminthosporium from Leptosphaeria-like loculoascomycete ancestors. Mycologia. 2000;92:736–746. [Google Scholar]
  159. O'Neill N.R., Farr D.F. Miscanthus blight, a new foliar disease of ornamental grasses and sugarcane incited by Leptosphaeria sp. and its anamorphic state Stagonospora sp. Plant Disease. 1996;80:980–987. [Google Scholar]
  160. Pang K.L., Jones E.B.G., Vrijmoed L.L.P. Okeanomyces, a new genus to accommodate Halosphaeria cucullata (Halosphaeriales, Ascomycota) Botanical Journal of the Linnean Society. 2004;146:223–229. [Google Scholar]
  161. Patil V.R., Borse B.D. Checklist of freshwater mitosporic fungi of India. International Journal of Bioassays. 2015;4:4090–4099. [Google Scholar]
  162. Peever T.L. Role of host specificity in the speciation of Ascochyta pathogens of cool season food legumes. European Journal of Plant Pathology. 2007;119:119–126. [Google Scholar]
  163. Phillips A.J.L., Alves A., Abdollahzadeh J. The Botryosphaeriaceae: genera and species known from culture. Studies in Mycology. 2013;76:51–167. doi: 10.3114/sim0021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  164. Phookamsak R., Liu J.K., Chukeatirote E. Phylogeny and Morphology of Leptosphaerulina saccharicola sp. nov. and Pleosphaerulina oryzae and relationships with Pithomyces. Cryptogamie Mycologie. 2013;34:303–319. [Google Scholar]
  165. Phookamsak R., Liu J.K., McKenzie E.H.C. Revision of Phaeosphaeriaceae. Fungal Diversity. 2014;68:159–238. [Google Scholar]
  166. Phookamsak R., Manamgoda D.S., Li W.J. Poaceascoma helicoides gen et sp. nov., a new genus with scolecospores in Lentitheciaceae. Cryptogamie Mycologie. 2015;36:225–236. [Google Scholar]
  167. Photita W., Lumyong P., McKenzie E.H.C. A new Dictyosporium species from Musa acuminata in Thailand. Mycotaxon. 2002;82:415–419. [Google Scholar]
  168. Pirozynski K.A. Microfungi of Tanzania. I. Miscellaneous fungi on oil palm. II. New hyphomycetes. Mycological Papers. 1972;129:1–64. [Google Scholar]
  169. Prasher I.B., Verma R.K. Two new species of Dictyosporium from India. Phytotaxa. 2015;204:193–202. [Google Scholar]
  170. Pratibha J., Prabhugaonkar A. Multi-gene phylogeny of Pithomyces with the sexual morph of P. flavus Berk. & Broome. Phytotaxa. 2015;218:84–90. [Google Scholar]
  171. Prihatini R., Boonyuen N., Sivichai S. Phylogenetic evidence that two submerged-habitat fungal species, Speiropsis pedatospora and Xylomyces chlamydosporus, belong to the order Jahnulales insertae sedis Dothideomycetes. Microbiology Indonesia. 2008;2:136–140. [Google Scholar]
  172. Quaedvlieg W., Verkley G.J.M., Shin H.D. Sizing up Septoria. Studies in Mycology. 2013;75:307–390. doi: 10.3114/sim0017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  173. Raja H.A., Stchigel A.M., Miller A.N. Hyphomycetes from the Great Smoky Mountains National Park, including three new species. Fungal Diversity. 2007;26:271–286. [Google Scholar]
  174. Raja H.A., Tanaka K., Hirayama K. Freshwater ascomycetes: two new species of Lindgomyces (Lindgomycetaceae, Pleosporales, Dothideomycetes) from Japan and USA. Mycologia. 2011;103:1421–1432. doi: 10.3852/11-077. [DOI] [PubMed] [Google Scholar]
  175. Rayner R.W. Commonwealth Mycological Institute; Kew, Surrey: 1970. A mycological colour chart. British Mycological Society. [Google Scholar]
  176. Rehner S.A., Buckley E. A Beauveria phylogeny inferred from nuclear ITS and EF1-α sequences: evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia. 2005;97:84–98. doi: 10.3852/mycologia.97.1.84. [DOI] [PubMed] [Google Scholar]
  177. Rehner S.A., Samuels G.J. Taxonomy and phylogeny of Gliocladium analysed from nuclear large subunit ribosomal DNA sequences. Mycological Research. 1994;98:625–634. [Google Scholar]
  178. Ridley G.S. New records and species of Loculoascomycetes from New Zealand. New Zealand Journal of Botany. 1988;26:409–422. [Google Scholar]
  179. Rouxel T., Balesdent M.H. The stem canker (blackleg) fungus, Leptosphaeria maculans, enters the genomic era. Molecular Plant Pathology. 2005;6:225–241. doi: 10.1111/j.1364-3703.2005.00282.x. [DOI] [PubMed] [Google Scholar]
  180. Saccardo P.A. 1883. Sylloge Fungorum Omnium hucusque cognitorum, Volume 2. Padova, Italy. [Google Scholar]
  181. Saccardo P.A. 1884. Sylloge Fungorum Omnium hucusque cognitorum, Volume 3. Padova, Italy. [Google Scholar]
  182. Saccardo P.A. 1886. Sylloge Fungorum Omnium hucusque cognitorum, Volume 4. Padova, Italy. [Google Scholar]
  183. Samuels G.J. Ascomycetes of New Zealand 1. Ohleria brasiliensis and its Monodictys anamorph, with notes on taxonomy and systematics of Ohleria and Monodictys. New Zealand Journal of Botany. 1980;18:515–523. [Google Scholar]
  184. Scheinpflug H. Untersuchungen über die Gattung Didymosphaeria Fuck. und einige verwandte Gattungen. Berichte der Schweizerischen Botanischen Gesellschaft. 1958;68:325–385. [Google Scholar]
  185. Scheuer C.H. Massarina tetraploa sp. nov., the teleomorph of Tetraploa aristata. Mycological Research. 1991;95:126–128. [Google Scholar]
  186. Schoch C.L., Crous P.W., Groenewald J.Z. A class-wide phylogenetic assessment of Dothideomycetes. Studies in Mycology. 2009;64:1–15. doi: 10.3114/sim.2009.64.01. [DOI] [PMC free article] [PubMed] [Google Scholar]
  187. Schoch C.L., Seifert K.A., Huhndorf S. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences of the United States of America. 2012;109:6241–6246. doi: 10.1073/pnas.1117018109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  188. Schoch C.L., Shoemaker R.A., Seifert K.A. A multigene phylogeny of the Dothideomycetes using four nuclear loci. Mycologia. 2006;98:1041–1052. doi: 10.3852/mycologia.98.6.1041. [DOI] [PubMed] [Google Scholar]
  189. Seifert K.A., Morgan-Jones G., Gams W. The genera of Hyphomycetes. CBS Biodiversity Series. 2011;9:1–997. [Google Scholar]
  190. Semeniuk G. Association of Trematosphaeria circinans with crown and root rot of alfalfa in South Dakota. Mycologia. 1983;75:744–747. [Google Scholar]
  191. Sharma R., Sharma R., Crous P.W. Matsushimamyces, a new genus from soil in Central India. IMA Fungus. 2015;6:337–343. doi: 10.5598/imafungus.2015.06.02.05. [DOI] [PMC free article] [PubMed] [Google Scholar]
  192. Shearer C.A. A new species of Kirschsteiniothelia (Pleosporales) with an unusual fissitunicate ascus. Mycologia. 1993;85:963–969. [Google Scholar]
  193. Shearer C.A., Huhndorf S.M., Crane J.L. Reexamination of eight taxa originally described in Leptosphaeria on members of Asteraceae. Mycologia. 1993;85:825–834. [Google Scholar]
  194. Shearer C.A., Raja H.A. 2010. Freshwater ascomycetes database.http://fungi.life.illinois.edu/ (accessed 11 Feb 2014) [Google Scholar]
  195. Shearer C.A., Raja H.A., Miller A.N. The molecular phylogeny of freshwater Dothideomycetes. Studies in Mycology. 2009;64:145–153. doi: 10.3114/sim.2009.64.08. [DOI] [PMC free article] [PubMed] [Google Scholar]
  196. Shenoy B.D., Jeewon R., Wang H. Sequence data reveals phylogenetic affinities of fungal anamorphs Bahusutrabeeja, Diplococcium, Natarajania, Paliphora, Polyschema, Rattania and Spadicoides. Fungal Diversity. 2010;44:161–169. [Google Scholar]
  197. Shenoy B.D., Jeewon R., Wu W.P. Ribosomal and RPB2 DNA sequence analyses suggest that Sporidesmium and morphologically similar genera are polyphyletic. Mycological Research. 2006;110:916–928. doi: 10.1016/j.mycres.2006.06.004. [DOI] [PubMed] [Google Scholar]
  198. Shoemaker R.A. Canadian and some extralimital Nodulosphaeria and Entodesmium species. Canadian Journal of Botany. 1984;62:2730–2753. [Google Scholar]
  199. Shoemaker R.A., Babcock C.E. Canadian and some extralimital Paraphaeosphaeria species. Canadian Journal of Botany. 1985;63:1284–1291. [Google Scholar]
  200. Shoemaker R.A., Babcock C.E. Phaeosphaeria. Canadian Journal of Botany. 1989;67:1500–1599. [Google Scholar]
  201. Shoemaker R.A., Eriksson O.E. Paraphaeosphaeria michotii. Canadian Journal of Botany. 1967;45:1605–1608. [Google Scholar]
  202. Sivanesan A. J. Cramer; Vaduz: 1984. The bitunicate ascomycetes and their anamorphs. [Google Scholar]
  203. Sivanesan A. Graminicolous species of Bipolaris, Curvularia, Exserohilum and their teleomorphs. Mycological Papers. 1987;158:1–261. [Google Scholar]
  204. Sivanesan A., Waller J.M. Sugarcane diseases. Phytopathological Paper. 1986;29:1–88. [Google Scholar]
  205. Sivichai S., Jones E.B.G., Hywel-Jones N.L. Fungal colonisation of wood in a freshwater stream at Khao Yai National Park, Thailand. Fungal Diversity. 2000;5:71–88. [Google Scholar]
  206. Sivichai S., Sri-Indrasutdhi V., Jones E.B.G. Jahnula aquatica and its anamorph Xylomyces chlamydosporus on submerged wood in Thailand. Mycotaxon. 2011;116:137–142. [Google Scholar]
  207. Slippers B., Boissin E., Phillips A.J.L. Phylogenetic lineages in the Botryosphaeriales: a systematic and evolutionary framework. Studies in Mycology. 2013;76:31–49. doi: 10.3114/sim0020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  208. Subramanian C.V. On some species of Cryptostictis. Proceedings of the National Institute of Science, India Part B Biological Sciences. 1961;27:236–245. [Google Scholar]
  209. Subramanian C.V., Sekar G. Three bitunicate ascomycetes and their tretic anamorphs. Kavaka. 1987;15:87–98. [Google Scholar]
  210. Suetrong S., Boonyue N., Pang K.L. A taxonomic revision and phylogenetic reconstruction of the Jahnulales (Dothideomycetes), and the new family Manglicolaceae. Fungal Diversity. 2011;51:163–188. [Google Scholar]
  211. Suetrong S., Hyde K.D., Zhang Y. Trematosphaeriaceae fam. nov. (Dothideomycetes, Ascomycota) Cryptogamie Mycologie. 2011;32:343–358. [Google Scholar]
  212. Suetrong S., Schoch C.L., Spatafora J.W. Molecular systematics of the marine Dothideomycetes. Studies in Mycology. 2009;64:155–173. doi: 10.3114/sim.2009.64.09. [DOI] [PMC free article] [PubMed] [Google Scholar]
  213. Sutton B.C. Commonwealth Mycological Institute; Kew, Surrey, England: 1980. The Coelomycetes. Fungi imperfecti with pycnidia, acervuli and stromata. [Google Scholar]
  214. Sutton B.C., Alcorn J.L. Neottiosporina. Australian Journal of Botany. 1974;22:517–530. [Google Scholar]
  215. Tamura K., Stecher G., Peterson D. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution. 2013;30:2725–2729. doi: 10.1093/molbev/mst197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  216. Tanabe A.S. Kakusan4 and Aminosan: two programs for comparing nonpartitioned, proportional and separate models for combined molecular phylogenetic analyses of multilocus sequence data. Molecular Ecology Resources. 2011;11:914–921. doi: 10.1111/j.1755-0998.2011.03021.x. [DOI] [PubMed] [Google Scholar]
  217. Tanaka K., Harada Y. Pleosporales in Japan (1): the genus Lophiostoma. Mycoscience. 2003;44:85–96. [Google Scholar]
  218. Tanaka K., Harada Y. Pleosporales in Japan (3). The genus Massarina. Mycoscience. 2003;44:173–185. [Google Scholar]
  219. Tanaka K., Harada Y. Bambusicolous fungi in Japan (1): four Phaeosphaeria species. Mycoscience. 2004;45:377–382. [Google Scholar]
  220. Tanaka K., Harada Y. Bambusicolous fungi in Japan (6): Katumotoa, a new genus of phaeosphaeriaceous ascomycetes. Mycoscience. 2005;46:313–318. [Google Scholar]
  221. Tanaka K., Harada Y., Barr M.E. Bambusicolous fungi in Japan (3): a new combination, Kalmusia scabrispora. Mycoscience. 2005;46:110–113. [Google Scholar]
  222. Tanaka K., Hatakeyama S., Harada Y. A new species, Massarina magniarundinacea. Mycotaxon. 2004;90:349–353. [Google Scholar]
  223. Tanaka K., Hatakeyama S., Harada Y. Three new freshwater ascomycetes from rivers in Akkeshi, Hokkaido, northern Japan. Mycoscience. 2005;46:287–293. [Google Scholar]
  224. Tanaka K., Hirayama K., Yonezawa H. Molecular taxonomy of bambusicolous fungi: Tetraplosphaeriaceae, a new pleosporalean family with Tetraploa-like anamorphs. Studies in Mycology. 2009;64:175–209. doi: 10.3114/sim.2009.64.10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  225. Tanaka K., Mel'nik V.A., Kamiyama M. Molecular phylogeny of two coelomycetous fungal genera with stellate conidia, Prosthemium and Asterosporium, on Fagales trees. Botany. 2010;88:1057–1071. [Google Scholar]
  226. Taylor J.E., Hyde K.D. Fungal Diversity Press; Hong Kong: 2003. Microfungi of tropical and temperate palms. [Google Scholar]
  227. Teng S.C. Notes on Sphaeriales from China. Sinensia. 1934;4:359–433. [Google Scholar]
  228. Teng S.C. Additional fungi from China. II. Sinensia. 1936;7:490–527. [Google Scholar]
  229. Thambugala K.M., Ariyawansa H.A., Liu Z.Y. Towards a natural classification of Dothideomycetes 6: The genera Dolabra, Placostromella, Pleosphaerellula, Polysporidiella and Pseudotrichia (Dothideomycetes incertae sedis) Phytotaxa. 2014;176:55–67. [Google Scholar]
  230. Trakunyingcharoen T., Lombard L., Groenewald J.Z. Mycoparasitic species of Sphaerellopsis, and allied lichenicolous and other genera. IMA Fungus. 2014;5:391–414. doi: 10.5598/imafungus.2014.05.02.05. [DOI] [PMC free article] [PubMed] [Google Scholar]
  231. Tsui C.K.M., Berbee M.L., Jeewon R. Molecular phylogeny of Dictyosporium and allied genera inferred from ribosomal DNA. Fungal Diversity. 2006;21:157–166. [Google Scholar]
  232. Tsui C.K.M., Hyde K.D. Biodiversity of fungi on submerged wood in a stream and its estuary in the Tai Ho Bay, Hong Kong. Fungal Diversity. 2004;15:205–220. [Google Scholar]
  233. Tsui C.K.M., Hyde K.D., Fukushima K. Fungi on submerged wood in the Koito River, Japan. Mycoscience. 2003;44:55–59. [Google Scholar]
  234. Tubaki K. On the Skerman's micromanipulator and microforge (in Japanese) Transactions of the Mycological Society of Japan. 1978;19:237–239. [Google Scholar]
  235. Tzean S.S., Chen J.L. Two new species of Dictyosporium from Taiwan. Mycological Research. 1989;92:497–502. [Google Scholar]
  236. Van Warmelo K.T., Sutton B.C. Coelomycetes VII. Stegonsporium. Mycological Papers. 1981;145:1–45. [Google Scholar]
  237. Vasilyeva L.N. Pyrenomycetes and Loculoascomycetes (in Russian) In: Azbukina Z.M., editor. Nauka; St. Petersburg: 1998. pp. 1–419. (Lower plants, fungi, and bryophytes of the Russian Far East, vol. IV). [Google Scholar]
  238. Verkley G.J.M., Dukik K., Renfurm R. Novel genera and species of coniothyrium-like fungi in Montagnulaceae (Ascomycota) Persoonia. 2014;32:25–51. doi: 10.3767/003158514X679191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  239. Verkley G.J.M., Mel'nik V.A., Shin H.D. Camarographium koreanum sp. nov., a new coelomycete from Korea. Sydowia. 2005;57:259–266. [Google Scholar]
  240. Verkley G.J.M., Quaedvlieg W., Shin H.D. A new approach to species delimitation in Septoria. Studies in Mycology. 2013;75:213–305. doi: 10.3114/sim0018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  241. Voglmayr H., Jaklitsch W.M. Molecular data reveal high host specificity in the phylogenetically isolated genus Massaria (Ascomycota, Massariaceae) Fungal Diversity. 2011;46:133–170. [Google Scholar]
  242. Voglmayr H., Jaklitsch W.M. Stilbosporaceae resurrected: generic reclassification and speciation. Persoonia. 2014;33:61–82. doi: 10.3767/003158514X684212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  243. Von Arx J.A., Müller E. A re-evaluation of the bitunicate ascomycetes with keys to families and genera. Studies in Mycology. 1975;9:1–159. [Google Scholar]
  244. Wanasinghe D.N., Jones E.B.G., Camporesi E. An exciting novel member of Lentitheciaceae in Italy from Clematis vitalba. Cryptogamie Mycologie. 2014;35:323–337. [Google Scholar]
  245. Webster J. Graminicolous pyrenomycetes. V. Conidial states of Leptosphaeria michotii, L. microscopica, Pleospora vagans and the perfect state of Dinemasporium graminum. Transactions of the British Mycological Society. 1955;38:347–365. [Google Scholar]
  246. Wehmeyer L.E. University of Michigan Press; Michigan, USA: 1961. A world monograph of the genus Pleospora and its segregates. [Google Scholar]
  247. Wei C.T. Notes on Corynespora. Mycological Papers. 1950;34:1–10. [Google Scholar]
  248. White T.J., Bruns T., Lee S. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M.A., Gelfand D.H., Sninsky J.J., White T.J., editors. PCR protocols: a guide to methods and applications. Academic Press; San Diego, California: 1990. pp. 315–322. [Google Scholar]
  249. Whitton R.S., McKenzie E.H.C., Hyde K.D. Fungi associated with Pandanaceae. Fungal Diversity Research Series. 2012;21:1–428. [Google Scholar]
  250. Wijayawardene N.N., Bhat D.J., Hyde K.D. Camarosporium sensu stricto in Pleosporinae, Pleosporales with two new species. Phytotaxa. 2014;183:16–26. [Google Scholar]
  251. Wijayawardene N.N., Camporesi E., Bhat D.J. Macrodiplodiopsis in Lophiostomataceae, Pleosporales. Phytotaxa. 2014;176:192–200. [Google Scholar]
  252. Wijayawardene N.N., Crous P.W., Kirk P.M. Naming and outline of Dothideomycetes – 2014 including proposals for the protection or suppression of generic names. Fungal Diversity. 2014;69:1–55. doi: 10.1007/s13225-014-0309-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  253. Wijayawardene N.N., Hyde K.D., Bhat D.J. Camarosporium-like species are polyphyletic in Pleosporales; introducing Paracamarosporium and Pseudocamarosporium gen. nov. in Montagnulaceae. Cryptogamie Mycologie. 2014;35:177–198. [Google Scholar]
  254. Wijayawardene N.N., Hyde K.D., Bhat D.J. Additions to brown spored coelomycetous taxa in Massarinae, Pleosporales: introducing Phragmocamarosporium gen. nov. and Suttonomyces gen. nov. Cryptogamie Mycologie. 2015;36:213–224. [Google Scholar]
  255. Wijayawardene D.N.N., Mckenzie E.H.C., Hyde K.D. Towards incorporating anamorphic fungi in a natural classification – checklist and notes for 2011. Mycosphere. 2012;3:157–228. [Google Scholar]
  256. Wikee S., Lombard L., Nakashima C. A phylogenetic re-evaluation of Phyllosticta (Botryosphaeriales) Studies in Mycology. 2013;76:1–29. doi: 10.3114/sim0019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  257. Wongsawas M., HongKai W., Hyde K.D. Dictyosporium zhejiangense sp. nov., a new freshwater anamorphic fungus from China. Cryptogamie Mycologie. 2009;30:355–362. [Google Scholar]
  258. Woudenberg J.H.C., Groenewald J.Z., Binder M. Alternaria redefined. Studies in Mycology. 2013;75:171–212. doi: 10.3114/sim0015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  259. Wu W.P., Zhuang W.Y. Sporidesmium, Endophragmiella and related genera from China. Fungal Diversity Research Series. 2005;15:1–351. [Google Scholar]
  260. Yuan Z.Q., Barr M.E. New ascomycetous fungi on bush cinquefoil from Xinjiang, China. Sydowia. 1994;46:329–337. [Google Scholar]
  261. Zhang H., Hyde K.D., Abdel-Wahab M.A. A modern concept for Helicascus with a Pleurophomopsis-like asexual state. Sydowia. 2013;65:147–166. [Google Scholar]
  262. Zhang J., Zhou Y., Dou Z. Helicascus unilocularis sp. nov., a new freshwater pleosporalean ascomycete from the Caribbean area. Mycological Progress. 2015;14:47. [Google Scholar]
  263. Zhang T.Y., Zhao G.Z., Zhang X.G. Science Press; Beijing: 2009. 26 genera of dematiaceous dictyosporous hyphomycetes excluding Alternaria. (Flora Fungorum Sinicorum 31). (in Chinese) [Google Scholar]
  264. Zhang Y., Crous P.W., Schoch C.L. Pleosporales. Fungal Diversity. 2012;53:1–221. doi: 10.1007/s13225-011-0117-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  265. Zhang Y., Fournier J., Bahkali A.H. Inflatispora, a novel lignicolous genus of Pleosporales from France. Sydowia. 2011;63:287–295. [Google Scholar]
  266. Zhang Y., Fournier J., Jeewon R. Quintaria microsporum sp. nov., from a stream in France. Cryptogamie Mycologie. 2008;29:179–182. [Google Scholar]
  267. Zhang Y., Fournier J., Pointing S.B. Are Melanomma pulvis-pyrius and Trematosphaeria pertusa congeneric? Fungal Diversity. 2008;33:47–60. [Google Scholar]
  268. Zhang Y., Liu Y., Zhoh Y. Helicascus gallicus sp. nov., a new freshwater pleosporalean ascomycete from France. Phytotaxa. 2014;183:183–192. [Google Scholar]
  269. Zhang Y., Schoch C.L., Fournier J. Multi-locus phylogeny of Pleosporales: a taxonomic, ecological and evolutionary re-evaluation. Studies in Mycology. 2009;64:85–102. doi: 10.3114/sim.2009.64.04. [DOI] [PMC free article] [PubMed] [Google Scholar]
  270. Zhang Y., Wang H.K., Fournier J. Towards a phylogenetic clarification of Lophiostoma/Massarina and morphologically similar genera in the Pleosporales. Fungal Diversity. 2009;38:225–251. [Google Scholar]
  271. Zhang Y., Zhang J., Wang Z. Neotypification and phylogeny of Kalmusia. Phytotaxa. 2014;176:164–173. [Google Scholar]
  272. Zucconi L., Lunghini D. Studies on Mediterranean hyphomycetes. VI. Remarks on Bactrodesmium, and B. cubense comb. nov. Mycotaxon. 1997;63:323–327. [Google Scholar]

Articles from Studies in Mycology are provided here courtesy of Westerdijk Fungal Biodiversity Institute

RESOURCES