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Abstract
Staphylococcus aureus is the leading cause of bone and joint infections (BJIs). Staphylo-

coccal pathogenesis involves numerous virulence factors including secreted toxins such as

pore-forming toxins (PFTs) and superantigens. The role of these toxins on BJI outcome is

largely unknown. In particular, few studies have examined how osteoclasts, the bone-

resorbing cells, respond to exposure to staphylococcal PFTs and superantigens. We inves-

tigated the direct impact of recombinant staphylococcal toxins on human primary mature

monocyte-derived osteoclasts, in terms of cytotoxicity and cell activation with cell death and

bone resorption assays, using macrophages of the corresponding donors as a reference.

Monocyte-derived osteoclasts displayed similar toxin susceptibility profiles compared to

macrophages. Specifically, we demonstrated that the Panton-Valentine leukocidin, known

as one of the most powerful PFT which lyses myeloid cells after binding to the C5a receptor,

was able to induce the death of osteoclasts. The archetypal superantigen TSST-1 was not

cytotoxic but enhanced the bone resorption activity of osteoclasts, suggesting a novel

mechanism by which superantigen-producing S. aureus can accelerate the destruction of

bone tissue during BJI. Altogether, our data indicate that the diverse clinical presentations

of BJIs could be related, at least partly, to the toxin profiles of S. aureus isolates involved in

these severe infections.

Introduction
Bone is a mineralized tissue in a constant renewal process called bone remodelling, provided
by the coordinated action of two main cell types, osteoblasts, the bone-forming cells, and osteo-
clasts, the bone-resorbing cells [1]. « Osteoblasts derive from mesenchymal stems, while osteo-
clasts have a myeloid origin and share common features with macrophages including a
phagocytic activity [2]. Osteoclast maturation involves the fusion of several mononucleated
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osteoclast precursors into giant multinucleated-cells endowed with the bone-matrix resorption
ability. In a physiological context, bone integrity is maintained by a balance between osteoblas-
tic and osteoclastic activities throughout life. During bone and joint infections (BJIs), including
osteomyelitis and orthopaedic device infections, this process is impaired by the interaction of
bacteria with bone tissue, leading to bone destruction [3]. Indeed, Staphylococcus aureus, the
leading cause of BJIs, is responsible for bone infections marked by progressive bone loss [4].

Numerous studies have investigated the direct impact of S. aureus on osteoblasts [5],[6]. It
is well-known that this pathogen is able to adhere to osteoblasts, become internalized and sur-
vive intracellularly and/or induce cell death [7]. Moreover, several studies have demonstrated
the ability of live S. aureus to inhibit osteoclastogenesis and to increase bone resorption medi-
ated by osteoclasts [2]. These observations suggest that S. aureus directly interacts with bone
cells, modifying their functions of bone mineralization or bone resorption. Nevertheless, the
pathophysiologic mechanisms, responsible for the bone destruction observed in BJI caused by
S. aureus, remain incompletely understood.

S. aureus is able to act on remote target cells through secreted virulence factors, including
toxins. S. aureus expresses a large panel of pore-forming toxins (PFTs) that target the host cell
membrane including α- (Hla), β- (Hlb), γ- (HlgAB and HlgBC) haemolysins, and leukocidins
(LukED, LukGH and the Panton Valentine Leukocidin [PVL]). PFT-induced permeabilization
of the cytoplasmic membrane results in the efflux of intracellular metabolites and ultimately
cell death [8]. S. aureus also expresses superantigenic toxins such as the toxic shock syndrome
toxin (TSST-1) or staphylococcal enterotoxins (SEA, SEB, etc.) responsible for a polyclonal
activation and a massive proliferation of T cells independent of antigen specificity. Most of
these staphylococcal toxins target immune cells derived from the myeloid lineage (monocytes,
macrophages and dendritic cells), a characteristic which is thought to help S. aureus escape the
immune system [9].

Noteworthy, several of the aforementioned toxins exhibit some degree of specificity with
respect to immune cells through the specific binding of cell surface receptors [10]. Because
osteoclasts derive from progenitors of the myeloid lineage, we hypothesized that their suscepti-
bility to staphylococcal toxins share some similarities with the susceptibility of other myeloid
cells such as macrophages, which could be of interest for our understanding of the pathophysi-
ology of S. aureus BJIs. We thus tested the direct effect of a panel of recombinant staphylococ-
cal toxins on primary human mature osteoclasts by assessing cell cytotoxicity. We also
investigated the impact of the TSST-1 superantigen on the bone resorption activity of
osteoclasts.

Materials and Methods

Preparation of osteoclasts
Monocytes were purified from the blood of healthy donors (n = 3) purchased from Etablisse-
ment Français du Sang (Lyon Gerland, France), as previously described [11]. Donors gave writ-
ten consent to EFS for the use of blood sample for research purposes at the time of sampling
(number of the agreement linking EFS and the research laboratory: 14-1820-69). Briefly, after
collection, blood was loaded on a Lymphocyte Separation Medium density gradient (Eurobio,
Courtaboeuf, France) to purify mononuclear cells. Cells were then centrifuged through a 50%
Percoll density gradient to concentrate monocytes and purified from the light-density fraction
by immunomagnetic depletion using magnetic beads (Dynabeads goat anti-mouse IgG, Invi-
trogen, Carlsbad, CA) and a cocktail of monoclonal antibodies (mAbs): anti-CD19, anti-CD3,
anti-CD56 and anti-glycophorin A (Beckman-Coulter, Miami, FL), ensuring purification
rates� 95%. Monocytes were then plated in 96-well plates at a density of 105cells/well and
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cultured in α-MEMmedium (Gibco Life Technologies, Inc., Grand Island, NY) supplemented
with 2 mM L-glutamine (Gibco Life Technologies), 1% penicillin/streptomycin (Gibco Life
Technologies), and 10% foetal bovine serum (PAN Biotech, Aldenbach, Germany).

Monocytes were differentiated into mature osteoclasts or macrophages as described else-
where [11]. Briefly, osteoclasts were obtained by incubating monocytes with 50 ng/mL M-CSF
(Monocyte Colony-stimulating Factor) (PeproTech, Rocky Hill, NJ) and 30 ng/mL of RANKL
(Receptor Activator of Nuclear factor Kappa-B Ligand) (PeproTech, Rocky Hill, NJ) from day
1 to day 3, and in presence of 25 ng/mL of M-CSF and 100 ng/mL of RANKL from day 3 to
day 6. Macrophages were obtained by incubation of monocytes with 50 ng/mL of M-CSF only
from day 0 to day 6.

Toxins production
Recombinant staphylococcal toxins (Hla, Hlb, HlgAB, HlgBC, LukED, LukGH, PVL, TSST-1
and SEA) were purified as described elsewhere [12]. The endotoxin content of the recombinant
protein solutions was controlled and confirmed to be less than 0.004 endotoxin units per μg of
protein.

Cytotoxicity assay
Toxin cytotoxicity to osteoclasts and macrophages was quantified by monitoring propidium
iodide (PI) incorporation as previously described [13]. Cells were incubated with PI (5 μg/ml)
and variable concentrations of recombinant staphylococcal toxins. Propidium iodide fluores-
cence was measured over a 3-hour period on a microplate fluorimeter (Tecan, Lyon, France),
using untreated cells as control.

Bone resorption assay
Bone resorption was quantified as a means to assess the impact of the TSST-1 superantigen on
osteoclast activity. On day 6, mature osteoclasts were detached from plastic wells by flushing
after incubation with Accutase (Invitrogen Life Technologies, Gaithersburg, MD) (37°C-30
min), and then seeded at 2.104 cells/well on mineralized matrix Osteo Assay Surface 96-well
plates (OsteoCorning1, Corning, MA, USA). TSST-1 was added to wells at 0.1, 1, 10, 100 and
1000 ng/ml. Twenty four hours later, osteoclasts were lysed by osmotic shock, and OsteoCorn-
ing1 Assay plates were stained with PBS/5% silver nitrate (Sigma-Aldrich) to quantify resorp-
tion using a Leica 22 DMI6000 microscope (Nanterre, France) and Fiji software (US National
Institutes of Health, Bethesda, Maryland, USA) as described elsewhere [14]. Results were
expressed as the proportion of resorbed area in each condition relative to the resorbed area in
untreated cells.

Statistical analyses
Differences in means were analysed using Student’s test (t-test) with a threshold of 0.05. Analy-
ses were performed using R software, version 2.14.2 (The R foundation for statistical comput-
ing, Vienna, Austria). Results were expressed as means and 95% confidence intervals derived
from three independent experiments realized in triplicate. Each experiment was realized with a
different blood donor.

Results
We first evaluated the cytotoxic effect of a wide range of staphylococcal toxins on human mac-
rophages by measuring incorporation of PI 3 hours post treatment. Macrophages served as a
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reference profile of the different toxins’ activities (Fig 1). As expected, we observed a high cyto-
toxicity of the membrane-damaging toxins (Hla, Hlb, HlgAB, HlgBC, LukGH and PVL) to
human macrophages while superantigenic toxins did not cause significant cytotoxicity com-
pared to untreated cells. These results, consistent with those obtained in literature [12], were
used to validate our experimental protocol.

Because osteoclasts share a common myeloid origin with macrophages, we hypothesized
that staphylococcal toxin cytotoxic activity profiles on osteoclasts could be similar with those
observed with macrophages. To confirm this hypothesis, the experimental protocol used with
macrophages was tested on mature human osteoclasts (Fig 1). Results indicated that pore-
forming toxins induced a significant cytotoxicity on mature human osteoclasts unlike

Fig 1. Cytotoxicity of staphylococcal toxins on humanmacrophages andmature osteoclasts. Humanmonocytes were differentiated for 6 days into
macrophages with macrophage colony-stimulating factor (M-CSF) (A) or into mature osteoclasts in the presence of M-CSF and receptor activator of NFκ-B
ligand (RANK-L) (B and C). Staphylococcal toxins were then added to the cell culture medium containing propidium iodide (PI) and cell death was quantified
by monitoring PI incorporation over a 3 hours period (A, B and C). Fluorescence in each well was normalised to the fluorescence obtained with untreated
cells. Results represent the mean cytotoxicity with 95% confidence interval, of 3 independent experiments performed in triplicate on 3 different donors
(*p<0.05, ** p<0.01, ***p<0.001). Hla: α haemolysin, Hlb: β haemolysin, Hlg AB and Hlg BC: γ haemolysins AB and BC, Luk ED and Luk GH: leukocidins
ED and GH, PVL: Panton Valentine Leukocidin, TSST-1: toxic shock syndrome toxin, SEA: Staphylococcal enterotoxin A.

doi:10.1371/journal.pone.0150693.g001
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superantigens. Moreover, cytotoxicity profiles appeared to be superimposable between macro-
phages and osteoclasts. Toxin-induced cytotoxicity to macrophages and osteoclasts could only
be compared qualitatively (cytotoxicity profiles caused by the various toxins), and not quantita-
tively (Fig 1). Indeed, mature osteoclasts have dozens of nuclei so this increased DNA content
per cell leads to higher values of PI incorporation-induced fluorescence as compared to macro-
phages, which prevented us to compare fluorescence values of macrophages and osteoclasts.

Using increasing concentrations of toxins, we showed that membrane-damaging toxins had
a dose-dependent cytotoxic effect on mature human osteoclasts. For example PI incorporation
in cells treated with PVL at 0.1, 1, 10 and 100 ng/ml were respectively 14%, 63%, 315% and
358% higher, compared to untreated (Fig 1). In contrast, superantigenic toxins caused signifi-
cant cytotoxicity on osteoclasts only above 10 000 ng/mL.

Because it has been established that some staphylococcal toxins also have cellular activation
effect [15], we tested the impact of the non-cytotoxic toxins on osteoclast activation. We inves-
tigated the capacity of TSST-1 to activate mature human osteoclasts by assessing bone resorp-
tion assays (Fig 2). Results demonstrated that TSST-1 significantly enhanced osteolytic activity
in a dose-dependent manner, resorbed area by cells treated with TSST-1 at 1, 10, 100, 1000 ng/
ml were respectively 13%, 17%, 24% and 26% higher, compared to untreated cells (p<0.001 for
all). TSST-1 concentrations below 1 ng/mL induced no measurable effect.

Discussion
Using an in vitromodel, we evaluated the direct, specific, and independent effect of recombi-
nant S. aureus toxins on mature human monocyte-derived osteoclasts. Using osteoclasts and
macrophages differentiated from the same blood donors, we have shown that human macro-
phages and mature monocyte-derived osteoclasts exhibit similar susceptibility profiles with
respect to staphylococcal toxins. PFTs caused significant dose-dependent cellular cytotoxicity
on these two cell types whereas superantigenic toxins were not or poorly cytotoxic. Notewor-
thy, these results are in agreement with the fact that mature osteoclasts express the complement
receptor C5a [16], which has recently been identified as the PVL and HlgBC receptor [17].
Moreover, several studies have demonstrated that human osteoclasts express CCR2, CCR5 and
CXCR1 and 2 [18], [19], [20] which have recently been identified as receptors respectively of
LukED, HlgBC and both of these PFTs [10]. This suggests that osteoclasts are targeted by PVL,
HlgBC and LukED during BJIs. The direct cytotoxic activity of PVL highlighted in this study
could play a role, which level remains to be determined, in the severity and outcome of acute
BJIs due to PVL-producing S. aureus. Indeed, it is known that BJIs caused by S. aureus PVL
positive strains are more severe and extensively destructive than those caused by S. aureus PVL
negative ones [21]. The direct effect on osteoclasts could be added to the cytolytic indirect effect
related to the release, at the infection site, of the cytoplasmic content of macrophages and neu-
trophils, which were the only target cells previously identified for PVL. Previous studies have
demonstrated that PVL, in addition to targeting neutrophils can target macrophages and to
trigger IL-1β secretion [15]and amplify inflammation. This content has likely a direct cytotoxic
effect on osteoblasts, osteoclasts and the bone tissue itself, leading to a local inflammation, tis-
sue necrosis and thus to bone destruction.

As superantigens were not cytotoxic to osteoclasts, the second part of this study aimed to
assess the ability of TSST-1, to stimulate mature monocyte-derived osteoclasts. It has been
shown that staphylococcal superantigens ensure, in absence of antigen presentation, bridging
between the TCR Vβ chain of T cells and MHC class II of antigen presenting cells and in partic-
ular by osteoclasts [22]. Although the presence of these two cell types appears to be required
for the synergistic action of superantigens, several studies have reported the ability of
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superantigens to stimulate macrophage pro-inflammatory cytokine secretion in the absence of
T cells [23]. Our data show that TSST-1 promotes bone resorption by human mature mono-
cyte-derived osteoclasts at concentrations above 1 ng/mL, which are probably relevant in the

Fig 2. TSST-1 stimulates bone resorption capacity of mature human osteoclasts. For bone resorption assay, mature osteoclasts were detached from
plastic on day 6 and seeded at 2.104 cells/well on mineralized matrix Osteo Assay Surface 96-well plates. TSST-1 was added to the cell culture medium.
After 24 hours of culture, the osteocorning matrices were stained with 5% silver nitrate to measure the resorbed area (white area). The percentages of matrix
that were resorbed by untreated (A) or TSST-1-treated osteoclasts (B, C) were measured using the Fiji software. Bars represent 100 μm. Results of
resorption area quantification (D) represent the mean of resorbed area with 95% confidence interval, of 3 independent experiments realised in triplicate on 3
different donors (*p<0.05, ** p<0.01, ***p<0.001). TSST-1: Toxic shock syndrome toxin.

doi:10.1371/journal.pone.0150693.g002
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context of bone infection in vivo. Indeed, plasmatic TSST-1 concentrations of more than 5 ng/
mL have been observed in infected patients [24], and it is likely that toxin concentrations at the
site of infection are greater than those in circulating blood. Importantly, S. aureus strains can
harbor other superantigens than TSST-1. Whether these superantigens could trigger osteoclas-
togenesis similar to TSST-1 remains an open question. Indeed, the osteoclastic stimulation
observed in our model might be specific to TSST-1, because this toxin has been shown to inter-
act with several cell surface targets including ADAM17 and EGFR [25] or CD40 [26], which
are expressed by osteoclasts [27][28][29]. Further studies are warranted to determine which
osteoclastic receptors are involved in TSST-1-induced stimulation, and to determine whether
this stimulation involves a canonical superantigen-MCH class II interaction which might be
triggered by other superantigens.

Collectively, our results suggest that bone loss during staphylococcal BJIs might not only be
driven by non-specific inflammation and local acidity, created by dead cells, but also by the
specific targeting and activation of bone resorbing cells by bacterial toxins. The balance
between osteoclasts killing by PFTs and the superantigen-mediated increase in osteoclasts’
bone resorption activity may control the different clinical expression of BJIs associated with
the toxinic profile of the different S. aureus strains.
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