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Abstract

The stomach bacterium Helicobacter pylori is one of the most prevalent human pathogens. It has 

dispersed globally with its human host resulting in a distinct phylogeographic pattern that can be 

used to reconstruct both recent and ancient human migrations. The extant European population of 

H. pylori is known to be a hybrid between Asian and African bacteria, but there exist different 

hypotheses about when and where the hybridization took place, reflecting the complex 

demographic history of Europeans. Here, we present a 5,300-year-old H. pylori genome from a 

European Copper Age glacier mummy. The “Iceman” H. pylori is a nearly-pure representative of 

the bacterial population of Asian origin that existed in Europe prior to hybridization, suggesting 

the African population arrived in Europe within the last few thousand years.

The highly recombinant pathogen Helicobacter pylori has uniquely evolved to live in the 

acidic environment of the human stomach (1). Today this Gram-negative bacterium is found 

in approximately half the world's human population, but less than 10% of carriers develop 

disease, typically stomach ulcers or gastric carcinoma (2, 3). Predominant intra-familial 

transmission of H. pylori and the long-term association with humans has resulted in a 

phylogeographic distribution pattern of H. pylori that is shared with its host (4, 5). This 

observation suggests that the pathogen not only accompanied modern humans out of Africa 

(6), but that it has also been associated with its host for at least 100,000 years (7). Thus, the 

bacterium has been used as a marker for tracing complex demographic events in human 

prehistory (4, 8, 9). Modern H. pylori strains have been assigned to distinct populations 

based on their geographic origin (hpEurope, hpSahul, hpEastAsia, hpAsia2, hpNEAfrica, 

hpAfrica1 and hpAfrica2) that are derived from at least six ancestral sources (4, 5, 8). The 

modern H. pylori strain found in most Europeans (hpEurope) has putatively originated from 

recombination of the two ancestral populations Ancestral Europe 1 and 2 (AE1 and AE2) 

(6). It has been suggested that AE1 originated in Central Asia, where it evolved into 

hpAsia2, which is commonly found in South Asia. On the other hand, AE2 appears to have 

evolved in northeast Africa and hybridized with AE1 to become hpEurope (4). However, the 

precise hybridization zone of the parental populations and the true origin of hpEurope are 

controversial. Early studies observed a south-to-north cline in AE2/AE1 frequency in 

Europe (4, 6). This finding has been attributed to independent peopling events that 

introduced these ancestral H. pylori components, which eventually recombined in Europe 

since the Neolithic period. More recently, it has been suggested that the AE1/AE2 admixture 

might have occurred in the Middle East or Western Asia between 10,000 and 52,000 years 

ago and that recombinant strains were introduced into Europe with the first human re-

colonizers after the last glacial maximum (7).
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In this study, we screened 12 biopsy samples from the gastrointestinal tract of the Iceman, a 

5,300-year-old Copper Age mummy, for the presence of H. pylori. Stable isotope analyses 

showed that the Iceman originated and lived in South Europe, in the Eastern Italian Alps 

(10). Genetically he most closely resembles early European farmers (11-13). The Iceman's 

stomach was discovered in a re-appraisal of radiological data and contains the food he 

ingested shortly before his death (14) (Fig. 1). The study material included stomach content, 

mucosa tissue and content of the small and large intestines (table S1). By using direct PCR, 

metagenomic diagnostics and targeted genome capture (figs. S1 and S2), we determined the 

presence of H. pylori and reconstructed its complete genome.

Metagenomic analysis yielded endogenous ancient H. pylori DNA (15,350 reads) in all 

gastrointestinal tract contents (Fig. 1 and table S4). A control dataset derived from Iceman's 

muscle tissue was negative. The distribution of the observed read counts throughout the 

Iceman's intestinal tract is similar to that in modern H. pylori-positive humans, with 

abundance decreasing from the stomach towards the lower intestinal tract (15, 16). The 

retrieved unambiguous reads were aligned to a modern H. pylori reference genome (strain 

26695) and showed damage patterns indicative of ancient DNA (17) (fig. S7). After DNA 

repair, the H. pylori DNA was enriched up to 216-fold using in-solution hybridization 

capture (Agilent) (fig. S5). From this dataset, 499,245 non-redundant reads mapped to 

92.2% of the 1.6 Mb H. pylori reference genome with an 18.9-fold average coverage (Fig. 

2). In comparison to the reference, the Iceman's ancient H. pylori genome had approximately 

43,000 single nucleotide polymorphisms (SNPs) and 39 deletions that range from 95bp to 

17kb and mainly comprise complete coding regions. Owing to deletions, the number of 

genomic variants is slightly below the range of what can be observed between modern H. 

pylori strains (table S13). The analysis of SNP allele frequencies does not indicate an 

infection by more than one strain (see supplementary materials part S6). In addition, as 

expected for this highly recombinant bacterium, we found evidence for gene insertions from 

H. pylori strains that differ from the reference genome (see supplementary materials part S8 

for details about the InDels).

Subsequent sequence analysis classified the ancient H. pylori as a cagA-positive vacA 

s1a/i1/m1 type strain that is now associated with inflammation of the gastric mucosa (18) 

(fig. S11). Using multi-step solubilization and fractionation proteomics we identified 115 

human proteins in the stomach metaproteome, of which six were either highly expressed in 

the stomach mucosa (trefoil factor 2) (19) or present in the gastrointestinal tract and 

involved in digestion (see supplementary materials part S10). The majority of human 

proteins were enriched in extracellular matrix organizing proteins (P=3.35e-14) and proteins 

of immune processes (P=2e-3) (fig. S13). In total, 22 proteins observed in the Iceman 

stomach proteome are primarily expressed in neutrophils and are involved in the 

inflammatory host response. The two subunits S100A8 and S100A9 of calprotectin (CP) 

were detected with the highest number of distinct peptide hits in both analyzed samples. 

Inflamed gastric tissues of modern H. pylori-infected patients also show high levels of CP 

subunit S100A8 and S100A9 expression (20, 21). Thus, the Iceman's stomach was colonized 

by a cytotoxic H. pylori type strain that triggered CP release as a result of host inflammatory 

immune responses. However, whether the Iceman suffered from gastric disease cannot be 
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determined from our analysis owing to the poor preservation of the stomach mucosa (fig. 

S3).

Comparative analysis of seven housekeeping gene fragments with a global multilocus 

sequence typing (MLST) database of 1,603 H. pylori strains with the STRUCTURE (22) no-

admixture model assigned the 5,300-year-old bacterium to the modern population hpAsia2, 

commonly found in Central and South Asia (Fig. 3A and fig. S14). The detection of an 

hpAsia2 strain in the Iceman's stomach is rather surprising, since despite intensive sampling 

only three hpAsia2 strains have ever been detected in modern Europeans. Stomachs of 

modern Europeans are predominantly colonized by recombinant hpEurope strains. Further 

analysis with the STRUCTURE linkage model (23), used to detect ancestral structure from 

admixture linkage disequilibrium, revealed that the ancient H. pylori strain contained only 

6.5% (95% probability intervals [PI]: 1.5%-13.5 %) of the northeast African (AE2) ancestral 

component of hpEurope (Fig. 3B). Among European strains, this low proportion of AE2 is 

unique and has thus far only been observed in hpAsia2 strains from India and Southeast 

Asia. In contrast, the three European hpAsia2 strains (Fig. 3B, black arrows) contained 

considerably higher AE2 ancestries than the H. pylori strain of the Iceman (Finland 13.0%, 

PI: 5.9-21.7; Estonia 13.2%, PI: 6.2-22.3; and the Netherlands 20.8%, PI: 11.5-31.7), 

although 95% probability intervals did overlap. A principal component analysis (PCA) of 

the MLST sequences of the hpAsia2, hpEurope and hpNEAfrica populations revealed a 

continuum along PC1 that correlates with the proportion of AE2 ancestry versus AE1 

ancestry of the isolates (Fig. 3C). The Iceman's ancient H. pylori was separated from modern 

hpEurope strains, and its position along PC1 was close to modern hpAsia2 strains from 

India, reflecting its almost pure AE1 and very low AE2 ancestry.

Comparative whole-genome analyses (neighbor joining, STRUCTURE and principle 

component analyses) with publicly available genomes (n=45) confirmed the MLST result by 

showing that the Iceman's ancient H. pylori genome has highest similarity to three hpAsia2 

genomes from India (figs. S15-S17). Although the Iceman's H. pylori strain appears 

genetically similar to the extant strains from northern India, slight differences were observed 

along PC2 in both MLST (Fig. 3C) and genome PCAs (fig. S17), and in the neighbor joining 

tree (fig. S15). To further study genomic scale introgression, we performed a high-resolution 

analysis of ancestral motifs using fineSTRUCTURE (24). The resulting linked co-ancestry 

matrix (Fig. 4) showed that the ancient H. pylori genome shares high levels of ancestry with 

Indian hpAsia2 strains (Fig. 4, green boxes), but even higher co-ancestry with most 

European hpEurope strains (Fig. 4, blue boxes). In contrast, the Iceman's H. pylori shares 

low ancestry with the hpNEAfrica strain, a modern representative of AE2 (Fig. 4, black 

box), and with European strains originating from the Iberian Peninsula, where the proportion 

of AE2 ancestry is relatively high (4) (Fig. 4, white box). Our sample size (n=1) does not 

allow further conclusions about the prevalence of AE1 in ancient Europe and the course or 

rate of AE2 introgression. However, the ancient H. pylori strain provides the first evidence 

that AE2 was already present in Central Europe during the Copper Age, albeit at a low level. 

If the Iceman H. pylori strain is representative of its time, the low level of AE2 admixture 

suggests that most of the AE2 ancestry observed in hpEurope today is a result of AE2 

introgression into Europe after the Copper Age, which is later than previously proposed (4, 
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6). Furthermore, our co-ancestry results indicate that the Iceman's strain belonged to a 

prehistoric European branch of hpAsia2 that is different to the modern hpAsia2 population 

from northern India. The high genetic similarity of the ancient strain to bacteria from Europe 

implies that much of the diversity present in Copper Age Europe is still retained within the 

extant hpEurope population, despite millennia of subsequent AE2 introgression.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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One Sentence Summary

The analysis of a 5,300-year-old H. pylori genome from the Iceman provides novel 

insights into the evolutionary history of H. pylori populations.
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Fig. 1. 
H. pylori specific reads detected in the metagenomic datasets of the Iceman's intestine 

content samples. The color gradient displays the number of unambiguous H. pylori reads per 

million metagenomic reads. Control metagenomic datasets of the Iceman's muscle tissue and 

of the extraction blank were included in the analysis. The different intestinal content 

sampling sites are marked in the radiographic image by the following symbols: * stomach 

content, ○ small intestine, □ upper large intestine, Δ lower large intestine. The sampling site 

of the muscle control sample is highlighted in the Iceman overview picture (◇).
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Fig. 2. 
Gene coverage and distribution of the enriched and validated Iceman H. pylori reads 

mapped onto the 1.6 Mb large reference genome H. pylori 26695. The coverage plot 

displayed in black is superimposed onto the genomic plot. The bar on the right-hand side 

indicates a coverage of up to 50x. The gene coding sequences are shown in blue (positive 

strand) and yellow (negative strand) bars in the genomic plot. The loci of the ribosomal 

RNA genes, of two virulence genes (vacA and cagA) and of seven genes used for MLST 

analysis are highlighted in the genome plot.
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Fig. 3. 
Multilocus sequence analyses (A) Bayesian cluster analysis performed in STRUCTURE 

displays the population partitioning of hpEurope, hpAsia2 and hpNEAfrica and the Iceman's 

H. pylori strain (for details about the worldwide population partitioning of 1,603 reference 

H. pylori strains please refer to fig. S14). (B) STRUCTURE linkage model analysis showing 

the proportion of Ancestral Europe 1 (from Central Asia) and Ancestral Europe 2 (from 

northeast Africa) nucleotides among strains assigned to populations hpNEAfrica, hpEurope 

and hpAsia2 and the Iceman's H. pylori strain on the extreme right. The black arrows 

indicate the position of the three extant European hpAsia2 strains (C) Principal component 

analysis of contemporary hpNEAfrica, hpEurope and hpAsia2 strains and the Iceman's H. 

pylori strain.
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Fig. 4. 
Comparative whole-genome analysis. Co-ancestry matrix showing H. pylori population 

structure and genetic flux. The color in the heat map corresponds to the number of genomic 

motifs imported from a donor genome (column) to a recipient genome (row). The inferred 

tree and the H. pylori strain names are displayed on the top and left of the heat map. Strain 

names are colored according to the H. pylori population assignment provided in the legend 

below the heat map. Signs for population ancestry are highlighted in the heat map with 

green, blue, black and white boxes.
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