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Abstract

Although potentially modifiable risk factors for interferon-alpha (IFN-α)-associated depression 

(IFN-MDD) have been identified, it is not currently known how they interact to confer risk. In the 

present study we prospectively investigated interactions among poor sleep quality, high stress, 

pre-existing depressive symptoms, and polyunsaturated fatty acid status. Non-depressed hepatitis 

C patients (n=104) were followed prospectively during IFN-α therapy. IFN-MDD occurs in 

20-40% of patients and was diagnosed using the Structured Clinical Interview of DSM-IV (SCID-

IV), with incidence examined using Cox regression. Baseline Pittsburgh Sleep Quality Inventory 

(PSQI), Perceived Stress Scale (PSS), Beck Depression Inventory (BDI), and a range of plasma 

long-chain fatty acid levels were measured (gas chromatography) -- focusing on the ratio of 

arachidonic acid (AA) to docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) 

(AA/EPA+DHA). The AA/EPA+DHA ratio (B=0.40±0.16; p=0.006), PSQI (B=0.12±0.04; 

p=0.001), PSS (B=0.07±0.02; p<0.001), and baseline BDI (B=0.05±0.02; p<0.001) each 

individually predicted IFN-MDD incidence. In step-wise Cox regression eliminating non-

significant variables, two interactions remained significantly predictive: PSQI*AA/EPA+DHA 

(p=0.008) and PSS*AA/EPA+DHA (p=0.01). Receiver Operator Curves (ROC) were used to 

examine the specificity and sensitivity of IFN-MDD prediction. When sleep was normal 

(PSQI<5), AA/EPA+DHA was strongly predictive of IFN-MDD (AUC = 91 +/− 6; p=0.002). For 

example, among those with AA/EPA+DHA less than the median (4.15), none with PSQI<5 

developed depression. Conversely, neither PSS nor PSQI was statistically associated with 

depression risk in those with an elevated AA/EPA+DHA ratio. These data demonstrate that the 

AA/EPA+DHA ratio moderates the effect of poor sleep on risk for developing IFN-MDD and may 

have broader implications for predicting and preventing MDD associated with inflammation.
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1. INTRODUCTION

Emerging evidence suggests that the pathophysiology of major depressive disorder (MDD) 

is frequently associated with chronic low-grade inflammation [1]. This is supported in part 

by findings that some MDD patients exhibit elevated levels of prostaglandin E2 [2] and pro-

inflammatory cytokines such as interleukin-6 [3]. Moreover, many initially non-depressed 

subjects develop a depressive episode during chronic administration of the pro-inflammatory 

cytokine interferon-alpha (IFN-α) [4-6]. Because 25-40% of patients develop interferon-

associated depression (IFN-MDD) with 2-4 months of treatment [7], prospective 

examination of patients treated with IFN-α represents a valuable opportunity to identify risk 

and resilience factors. To date several putative modifiable risk factors for IFN-MDD have 

been identified [8], and developing a better understanding of how these risk factors interact 

may inform novel preventative strategies for IFN-MDD specifically and inflammation-

associated MDD more generally.

1.1 Sleep is a risk factor for MDD

Poor sleep quality is commonly associated with subsequent depression incidence [9-11], and 

also predicts IFN-MDD [12, 13]. In particular, a physiological predictor of IFN-MDD is 

lower early night delta power [14], which also predicts MDD recurrence [15-17]. Whether 

improving sleep quality – specifically improving delta power during sleep – can prevent 

depression remains to be determined.

1.2 Long Chain fatty acid status is a risk factor for MDD

Deficits in the long-chain omega-3 (LCn-3) fatty acids eicosapentaenoic acid (EPA, 

20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) are associated with MDD [18]. In 

particular, the ratio of the omega-6 arachidonic acid (AA, 20:n-6) to LCn-3 fatty acids (the 

AA/EPA+DHA ratio) is elevated in MDD patients [19-24]. Likewise, IFN-MDD is also 

associated with a high AA/EPA+DHA ratio [25]. In fact, LCn-3 supplements have recently 

been demonstrated to prevent IFN-MDD in some people [26]. On proposed mechanism is 

via decreased inflammation [27], though direct brain effects may be plausible [28]. 

Although LCn-3 fatty acid levels may also interact with poor sleep quality to moderate 

adverse effects cognition [29], how or whether they interact with sleep quality to effect 

depression risk is not known.

1.3 Pre-existing sub-syndromal depression symptoms are a risk factor for MDD

Third, a history of prior MDD episodes and/or current sub-syndromal symptoms may 

predispose to IFN-MDD [30]. Prophylactic selective serotonin reuptake inhibitors (SSRIs) 

can halve the incidence of IFN-MDD [31-34]. Unfortunately, SSRIs don't eliminate the IFN-

MDD incidence, and may have side effects such as retinopathy [33] and worsened irritable 
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anger [35, 36]. Although LCn-3 fatty acids have antidepressant properties [37] and may 

augment SSRI antidepressant effects [38, 39] it is not known how or whether LCn-3 fatty 

acid biostatus and MDD history interact to modify IFN-MDD risk.

1.4 Stress is a risk factor for MDD

Fourth, psychosocial stressors are a significant predictor of depressive episodes [40]. 

Consistent with this, altered hypothalamic-pituitary-adrenal axis activity may predict IFN-

MDD [41, 42]. Interestingly, a fatty acid synthase polymorphism moderated the effect of 

perceived stress on depression [43] suggesting a plausible interaction between AA/EPA

+DHA and stress.

The present study thus sought to prospectively investigate the interactions between the 

AA/EPA+DHA ratio and other risk factors such as psychosocial stress and sleep quality on 

depression vulnerability. Our primary hypothesis was that these risk factors would interact 

in a synergistic manner to increase risk for developing subsequent IFN-MDD. Based on 

prior evidence linking pro-inflammatory processes with poor sleep quality [44, 45], stressful 

life events [46-48], and an elevated AA/EPA+DHA ratio [24, 49-51], these findings may 

have relevance for predicting and preventing inflammation-associated MDD more broadly.

2. Materials and Methods

2.1. Subjects

Non-depressed adult subjects (between ages 18-80) were examined for plasma fatty acid 

levels and completed a set of questionnaires prior to subsequent IFN-α therapy for HCV 

(n=104). Our primary interest is IFN-MDD incidence. These subjects partially overlapped 

with those in a prior study [25]. Exclusion criteria were active mood, anxiety, psychotic, or 

drug/alcohol use disorders within 6 months prior to starting IFN-α treatment – using the 

Structured Clinical Interview for DSM-IV Axis I Disorders (SCID-IV); known neurologic 

disease; or taking corticosteroids, antidepressants, anticonvulsants, and/or antipsychotics 

(although they could be taking as-needed sleeping medications). All subjects started weekly 

injections of pegylated (PEG) IFN-α2 (PEG-IFN-α2a: 135 μg/week or PEG-IFN-α2b: 120 

or 150 μg/week) augmented with oral ribavirin. This study was approved by the University 

of Pittsburgh Institutional Review Board.

2.2. Assessments

Prior to initiating IFN-α therapy, and monthly for four months after therapy was initiated, 

depression was assessed using the Beck Depression Inventory-II (BDI) and the 

Montgomery-Asberg Depression Rating Scale (MADRS) as previously described (Lotrich et 

al., 2009). IFN-MDD was diagnosed using either an abbreviated SCID-IV interview focused 

on depression and/or in any subject started on an antidepressant by their physician -- as 

previously described in more detail [25]. The Perceived Stress Scale (PSS) [52], the life 

events scale (LES) [53, 54], and the Pittsburgh Sleep Quality Inventory (PSQI)(Buysse et 

al., 1989) were administered at baseline. For the LES, we examined both total number of 

stressful life events in the past year, as well the total score after adjusting each event for 

impact (self-rated on a scale from −3 to +3).
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2.3. Gas chromatography

Plasma from whole blood was obtained from all subjects between 10AM and 4PM prior to 

initiating treatment for hepatitis C (HCV), and stored at −80°C until analysis. Folch reagent 

(2 mL Chloroform/Methanol 2:1) was added to 0.3ml of plasma to extract the lipid layer, 

dried under nitrogen, and reconstituted with chloroform (100 uL). The lipid extract was then 

transferred to a reversed-phase packed SPE column (Alltech, Nicholasville, KY) and washed 

with chloroform (10 mL), to remove triglycerides, and then acetone (10mL) to remove the 

cholesteryl esters. Phospholipids were then eluted with methanol (20mL), and the combined 

methanol fractions evaporated. The sample was methylated using NaOH/MeOH (0.5 mL) 

and the derivatization was completed with BF3/MeOH followed by heating for 15 minutes at 

85°C. To ensure total fatty acid methyl ester (FAME) extraction, NaCl (0.3 mL) was used 

before extraction with hexane. Sodium sulfate was added to the hexane layer to remove 

water, and the organic phase decanted and evaporated using nitrogen. Samples were then 

reconstituted with hexane (0.5 mL) and analyzed.

FAME's were analyzed using an HP 6890/5973 gas chromatograph/mass selective detector 

(Agilent Technologies, Santa Clara, CA). The column used to separate FAME's was an 

Agilent DB-FFAP 15m × 0.1 mm with 0.1 um of film thickness. Helium was used as carrier 

gas at a flow rate of 17.6 ml/min and a constant pressure of 53.8 psi. The initial temperature 

was set at 160°C and increased after injection of 1 ul of sample to 240°C at a rate of 15°C 

per minute. Once the temperature of 240°C was reached, it was maintained for 6 minutes for 

a total run time of 14.33 minutes. The transfer line was maintained at 280°C and the 

filament at 70Ev for EI. The data were evaluated using a TIC for compound identification 

and SCAN mode to measure relative percent of each fatty acid. Fatty acid identification was 

based on retention times of authenticated FAME standards (GLC 473B) and controls (GLC 

462 and GLC 463) to ensure reproducibility (NuCheck Prep, Elysian, MN). Data are 

expressed as weight percent of total fatty acid pool (mg fatty acid/100 mg fatty acids). We 

assessed the omega-6 fatty acids linoleic acid (LA; C18:2n-6), gamma-linolenic acid (GLA; 

C18:3n-6), dihomo-gamma-linolenic acid (DGLA; C20:3n-6), and arachidonic acid (AA; 

C20:4n-6), and the omega-3 fatty acids alpha-linolenic acid (ALA; C18:3n-3), 

eicosapentaenoic acid (EPA; C20:5n-3), and docosahexaenoic acid (DHA; C22:6n-3).

2.5. Statistical analyses

All statistics employed SPSS 22.0. We first examined IFN-MDD incidence (i.e. days after 

starting IFN-α therapy until MDD developed), following patients for 120 days after starting 

IFN-α therapy. Potential reasons for censored data were that patients quit IFN-α therapy or 

IFN-α therapy was stopped prematurely because of medical side effects. Cox regression 

analyses were employed in four stages. First, we tested the assumption of proportional 

hazards using two techniques: i. Graphical inspection of log-hazard vs. time, and the log 

(−log) survival plot. ii. testing the interaction of time by study group.

Next, we examined individual candidate variables that are likely influences on risk for IFN-

MDD, both without covariates and then including co-variates such as age and weight. Third, 

we examined hypothesized interactions, both with and without covariates. Finally, we then 
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included each variable (including interactions and covariates) into a step-wise Cox 

regression model, using conditional modeling to eliminate non-contributing variables.

All variables met the proportional hazards assumption except for AA/DHA+EPA, thus any 

interactions wit fatty acids found using Cox-regression were suspect. We therefore 

examined interactions with AA/DHA+EPA using several additional statistical approaches. 

First, we divided variables (AA/DHA+EPA, PSQI, and PSS) into quartiles. We utilized 

Kaplan-Meier with Mantel-Cox log rank comparisons to examine the AA/DHA+EPA 

quartiles, stratified by either PSQI or PSS. Secondly, we also used Receiver Operating 

Curve (ROC) analyses to examine sensitivity and specificity. ROC analyses examine 

predictive tests by plotting the false positive rate (1-specificity) against the true positive rate 

(sensitivity). The area under the curve (AUC) for this plot ranges from 100 (perfect 

performance) to 50 (uninformative) [55]. We examined the ability of baseline AA/DHA

+EPA to predict subsequent IFN-MDD, when stratified by PSQI.

Finally, the categorical diagnosis of “MDD” is only one way of defining depression. To 

examine interactions using a quantitative measure and confirm any findings from the 

survival analyses, we analyzed MADRS scores over time (where day one was the first day 

of IFN-α therapy) using a mixed-effect repeated-measure analysis. We dichotomized the 

variables (AA/DHA+EPA, PSQI, and PSS) using a median split and test for interactions: 

AA/EPA+DHA*PSQI*time and AA/EPA+DHA*PSS*time.

3. Results

3.1 Subject characteristics

Subjects were 2/3 male, mostly Caucasian, often overweight, and 40% had a history of any 

mood disorder in remission (Table 1). Both age and female gender were associated with 

lower ratios of AA/EPA+DHA (Table 2). None of the long-chain fatty acids were 

associated with weight; but self-reported African-American heritage was associated with 

evidence of greater delta-5 desaturase activity (as manifest in an elevated AA/DGLA ratio) 

and higher levels of DHA+EPA, as consistent with prior reports [56]. Age was associated 

with higher DHA levels; and females had lower AA/DGLA ratios and higher ALA levels 

(Table 2). Because of these various relationships, in subsequent analyses we controlled for 

age, weight, gender, and race. Consistent with prior studies, the only fatty acid variable 

predictive of IFN-MDD development was AA/EPA+DHA (Table 2), whether controlling 

for covariates or not.

3.21 Depression incidence with Cox regression

In Cox-regression analyses of depression development, the AA/EPA+DHA ratio, PSQI, 

PSS, and BDI all predicted IFN-MDD incidence, when examined individually or when co-

varying for race, weight, age, and gender (Table 3). When also controlling for baseline BDI, 

AA/EPA+DHA and PSQI both continued to predict IFN-MDD (p=0.002 for each). Actual 

stressful life events did not influence risk for IFN-MDD, but rather the subjective perception 

of stress (PSS) did (Table 3). However, when controlling for baseline BDI, PSS no longer 

was significant (p=0.13).
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AA/EPA+DHA interacted with both PSQI and PSS to predict IFN-MDD when other 

covariates were included (Table 3). When additionally co-varying for baseline BDI, both of 

these interactions remained significant (P<0.001 and p=0.011, respectively). We next added 

each of these variables stepwise into a single multivariate Cox regression model – 

sequentially including both interactions (PSQI*AA/EPA+DHA and PSS*AA/EPA+DHA), 

as well as AA/EPA+DHA, BDI, PSQI, PSS, race, age, gender, and weight. Because most of 

these variables are correlated with the others (Table 1), conditional modeling was employed 

to eliminate non-contributing variables (both the Wald or Likelihood Ratio produced similar 

results). The only remaining three variables that predicted IFN-MDD incidence were 

PSQI*AA/EPA+DHA (B=0.029+/−0.008; p=0.008), PSS*AA/EPA+DHA (B=0.01+/0.004; 

p=0.01) and race (B=1.038 +/− 0.008; p=0.04).

Because AA/EPA+DHA and PSQI are correlated at baseline (Table 1), we also examined if 

one might mediate the other's effects. When co-entered into Cox-regression analyses of IFN-

MDD incidence (along with weight, age, gender, race), both continued to be significant 

(B=0.57+/−0.18; p=0.002 and B=0.12+/−0.04; p=0.007 respectively). Thus the influence of 

AA/EPA+DHA on depression risk is not because it is correlated with PSQI.

3.22 Depression incidence with Kaplan-Meier

Although the interactions between AA/EPA+DHA were robust, the assumption of 

proportional hazards was not met by AA/DHA+EPA. Therefore, we divided AA/EPA+DHA 

(as well as PSQI and PSS) into quartiles for analysis using log-rank comparisons. When 

PSQI was in the lowest quartile (PSQI<5), AA/EPA+DHA was strongly predictive of IFN-

MDD (X2 = 17.7; p=0.001). In fact, 100% of subjects with the highest quartile of AA/EPA

+DHA (AA/EPA+DHA>4.95%) developed IFN-MDD while 0% of the subjects in the lower 

fatty acid quartile (AA/EPA+DHA<3.5%) did. Conversely, for the other three quartiles of 

PSQI, AA/EPA+DHA was no longer predictive at all (p>0.3). This supports the interaction 

between AA/EPA+DHA and PSQI noted above – where fatty acids are only predictive when 

PSQI is low. The interaction with stress was less evident. AA/EPA+DHA was no longer 

predictive for any quartile of PSS (p >0.13 for all four quartiles).

To explore potential clinical utility, we also combined z-scores for PSS, PSQI, and 

AA/DHA+EPA into a single measure for log-rank analysis. In Kaplan-Meier analyses, the 

lowest quartile of this combined z-score were almost all resilient whereas the highest 

quartile were almost all vulnerable to depression during IFN-α treatment (X2 = 18.2; 

p<0.001) (Fig. 1).

3.3 Receiver Operating Curve (ROC) analyses of depression prediction

To better define the nature of the significant interactions, we split AA/EPA+DHA ratios into 

greater or less than the median (median=4.15, range 1.47 to 7.06); and then examined the 

predictive utility of baseline BDI, PSS, and PSQI using ROC analyses. When AA/EPA

+DHA was <4.15, the ROC AUC for PSQI was 76 +/− 9 (p=0.02). In fact for all subjects 

with PSQI<5 and AA/EPA+DHA<4.15, sensitivity at predicting total resilience to IFN-

MDD was 100%. However, PSQI was not predictive of IFN-MDD when AA/EPA

+DHA>4.5 (p=0.21).
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Baseline BDI was similarly predictive of IFN-MDD regardless of having high or low 

AA/EPA+DHA (AUC = 68 +/− 9; p=0.045 and 67 +/− 8; p=0.045). PSS lost power to 

predict subsequent IFN-MDD, whether AA/EPA+DHA was less than or greater than the 

median, (p=0.49 and 0=0.72, respectively). Thus the moderation of sleep quality's effects by 

AA/EPA+DHA was the only consistent interaction associated with IFN-MDD development.

We also examined the ability of AA/EPA+DHA to predict IFN-MDD, as moderated by 

PSQI. PSQI was split into tertiles (<5, 5-8, >8), and ROC curves were assessed for AA/EPA

+DHA (Figure 2). When PSQI was low (<5), AA/EPA+DHA was strongly predictive of 

IFN-MDD (AUC = 91 +/− 6; p=0.002). However when PSQI was medium (5-8) or high 

(>8), AA/EPA+DHA was no longer predictive (AUC = 71 +/− 10 p=0.08 and AUC = 46+/− 

11; p=0.8).

3.4 Repeated-measure mixed-effect analysis of symptom development

This interaction between sleep and fatty acids was confirmed in repeated-measure mixed-

effect analyses of MADRS scores over time. For this, we examined median splits for PSS, 

PSQI, and AA/EPA+DHA to dichotomize each into ‘high’ and ‘low’ groups. We replicated 

the interaction between AA/EPA+DHA and time - those with greater AA/EPA+DHA have 

increasing MADRS scores after IFN-α is started (F=3.9(9,42.9); p=0.001). Consistent with 

the findings above, there was an interaction between PSQI*AA/EPA+DHA*time 

(F=2.2(10,39.3); p=0.042). However, there was no similar PSS*AA/EPA+DHA*time 

interaction (p>0.4).

4. Discussion

Self-reported sleep quality and LCn-3 status interact to affect resilience to inflammatory-

cytokine-associated depression. This interaction indicates that LCn-3 status (i.e. AA/EPA

+DHA) moderates the influence of sleep quality on depression risk. We have previously 

reported on the beneficial effect of good sleep [13], which is often reflected by PSQI <5 

[57]. However, a number of patients still develop IFN-MDD despite sleeping well. We now 

report that in these good sleeping subjects, the AA/EPA+DHA ratio was highly influential 

on risk for IFN-MDD. The AUC for the receiver operating curve was >0.9 for AA/EPA

+DHA, indicative of a test with excellent predictive performance [58]. However, in those 

sleeping poorly, the AA/EPA+DHA ratio lost much of its predictive power.

Our findings suggest that AA/EPA+DHA levels are less influential in those with poor sleep. 

In a recent placebo-controlled prevention trial, supplementation with EPA improved 

resilience, but 10% still developed IFN-MDD [26], indicating a significant amount of IFN-

MDD risk remains even following supplementation. Our results predict that (i) optimal 

benefits of LCn-3 supplementation will be seen in those that are sleeping well, and (ii) 

optimal benefits of sleep interventions will occur in those with low AA/EPA+DHA ratios.

We also observed that PSQI scores correlated with AA/EPA+DHA at baseline, prior to any 

IFN-α injection. In fact, this correlation continued to be significant even when co-varying 

for both BDI and PSS. LCn-3 fatty acids may influence sleep quality [59-61]; and consistent 

with our observation, poor sleep correlated with the AA/DHA ratio in children [62] and with 
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lower EPA and DHA levels in depressed inpatients [63]. It is thus possible that fatty acid 

supplementation can also improve sleep [60, 64]. However, any causal link between fatty 

acids and sleep is speculative at this point. Of note, we did not find any evidence that sleep 

mediated the effects of AA/EPA+DHA on depression risk.

Unlike the interaction with sleep, our findings did not support any influence of AA/EPA

+DHA on the risk related to baseline BDI. Treating pre-existing sub-syndromal depression 

symptoms may be important in preventing IFN-MDD [32, 65], but our results predict that 

these benefits of SSRIs do not depend on LCn-3 levels. Also, stress had limited predictive 

power. PSS scores were strongly correlated with BDI scores (R=0.7), and only somewhat 

correlated with stressful life events. This is consistent with observations that the subjective 

perception of stress is likely related to mood state and can improve with antidepressant 

treatment [66]. PSS lost the power to predict IFN-MDD when AA/EPA+DHA was used to 

split the population into subgroups; and LES had no predictive power. PSS also did not 

interact with AA/EPA+DHA in the repeated measures analysis of MADRS depression 

symptoms during IFN–α therapy. It is possible that we lacked statistical power to detect 

smaller effect sizes. Thus potential findings are only suggestive, and the role of stress in 

increasing vulnerability to inflammation requires further investigation. Nonetheless, patients 

with combined poor sleep quality, high perceived stress, and elevated AA/(EPA+DHA) are 

at highest risk of developing depression in response to IFN-α treatment.

Importantly in these analyses, we controlled for race, gender, weight, and age. Delta-5-

desaturase and delta-6 desaturase are the rate-limiting enzymes for polyunsaturated fatty 

acid conversion, and are recognized as main determinants (other than diet) of PUFA levels. 

Genetic polymorphism studies [67] support our findings of higher delta-5-desaturase activity 

in African-Americans [68, 69]. We also observed evidence that females have higher delta-5-

desaturase activity [70]. Interestingly African-Americans had higher EPA+DHA levels. This 

is despite the observation that African-Americans were about 4% more likely to develop 

IFN-MDD. There are likely other influences on risk for IFN-MDD that co-vary with racial 

background and gender [71, 72]. Thus, controlling for these variables is important in clinical 

studies of LCn-3 and depression.

One limitation of our study is that neither diet nor exercise was measured. Exercise can 

influence sleep quality [73], and diet is an obvious influence on fatty acid levels. A strength 

of this study is the prospective design and longitudinal assessment of IFN-MDD incidence. 

Another strength is the measurement of the ratio of AA/EPA+DHA, which may be more 

physiologically meaningful than straightforward LCn-3 levels [74-76]. This study did not 

address the physiological mechanism that might underlie the interactions. LCn-3 levels 

correlate with brain serotonin [77, 78] [79]; and with glutamate receptor subunit expression 

[80] [81, 82] [83]. Brain-derived neurotrophic factor (BDNF) genotype is associated with 

increased vulnerability to IFN-MDD [84], and LCn-3 fatty acids increase BDNF production 

[28, 85]. The effects of sleep on depression risk may also involve serotonin [86], glutamate 

[87], and growth factors [88, 89]. LCn-3 fatty acids may also blunt stress-induced elevations 

in inflammatory cytokines [27]. Thus, there are several mechanisms by which interactions 

are plausibly feasible.

Lotrich et al. Page 8

Prostaglandins Leukot Essent Fatty Acids. Author manuscript; available in PMC 2017 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Regardless of mechanism, the interaction between sleep and fatty acids on depression risk 

has important clinical implications. MDD is a leading cause of disability and suicide [90-92] 

and has adverse effects on the prognosis for those with co-morbid medical illness [93]. 

Targeted attention to modifiable, interacting risk factors like sleep and fatty acid levels may 

be critical for depression prevention. In brief, efforts to improve resiliency will be optimal if 

both sleep quality and AA/EPA+DHA are concomitantly addressed.
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DGLA Dihomo-gamma-linolenic acid

DHA Docosahexaenoic acid
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MADRS Montgomery-Asberg Depression Rating Scale

PSS Perceived Stress Scale

PSQI Pittsburgh Sleep Quality Inventory

PUFA Polyunsaturated fatty acid

ROC Receiver operator curve

SSRI Selective serotonin reuptake inhibitor

SCID-IV Structured Clinical Interview of DSM-IV
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Highlights

• Sleep, the AA/EPA+DHA ratio, and stress each influence risk for depression

• Sleep and AA/EPA+DHA interact - the AA/EPA+DHA effect is strongest in 

good sleepers

• Conversely, the role of sleep is strongest in those with low AA/EPA+DHA 

ratios

• The role of baseline depression remained independent of AA/EPA+DHA ratios

• The role of stress was less robust, but may interact with AA/EPA+DHA
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Figure 1. 
Kaplan-Meier survival plot of the quartiles for combined Z-score for fatty acids, PSS, and 

PSQI. Few patients in the lower quartile developed depression whereas the majority of 

patients in the upper quartile developed depression.
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Figure2. 
Receiver Operating Curves (ROC) for fatty acid ratio (AA/EPA+DHA). Three ROC curves 

were obtained: when Pittsburgh Sleep Quality Inventory tertiles of <5 (good sleep), 5-8 

(mild sleep problems), and >8 (significant sleep problems).
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Table 1

Demographic characteristics (mean +/− standard deviation) of the study population, and correlations with 

perceived stress (PSS), sleep quality (PSQI), and ratio of omega-6/omega3 fatty acids (AA/EPA+DHA). 

Significant (p<0.05) results for correlations (R) are indicated in bold and with an asterisk.

Mean +/− SD R with PSS R with PSQI R with AA/EPA+DHA

Female 33% 0.073 0.04 0.27*

African-American 15% 0.10 0.03 0.07

Age 47.9 +/− 11 0.20* 0.09 0.27*

Weight (Kg) 86.6 +/− 17.6 0.09 0.05 0.01

CRP 2.1 +/− 2.6 0.05 0.02 0.01

MADRS 3.6 +/− 4.4 0.38* 0.36* 0.19

BDI 9./1 +/− 7.9 0.70* 0.52* 0.26*

History of depression 40.0% 0.37* 0.25* 0.17

LES Total number 6.1 +/− 4.3 0.31* 0.28* 0.04

LES Total score −2.5 +/− 8.7 0.28* 0.23* 0.20 (p=0.07)

PSS 19.6 +/− 8.6 0.38* 0.12

PSQI 6.6 +/− 4.1 0.31*

AA/EPA+DHA 4.2 +/− 1.1
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Table 2

Mean percent of total fatty acids (+/− standard deviations) for seven long chain fatty acids, and correlations (R 

values) with demographics are presented. Statistical significance (p<0.05), not correcting for multiple testing, 

is labeled in bold and with an asterisk. Only one of these (AA/EPA+DHA) predicted depression during 

interferon treatment (IFN-MDD).

Fatty Acids Percent of total Correlations Cox-Regression with IFN-MDD

Gender Race Age Weight

LA C18:2n-6 23.6 +/− 2.8% .02 .16 .06 .1 B = −0.08 +/− 0.06; N.S.

GLA C18:3n-6 0.08 +/− 0.05% .01 .17 .08 .1 B = −0.73 +/− 3.0; N.S.

DGLA C20:3n-6 3.5 +/− 0.8% .14 .29* .08 .09 B = 0.09 +/− 0.18; N.S.

AA C20:4n-6 10.9 +/− 2.1% .12 .17 .05 .11 B = 0.05 +/− 0.07; N.S.

ALA C18:3n-3 0.19 +/− 0.08% .25* .04 .04 .19 B = −0.13 +/− 1.9; N.S.

EPA C20:5n-3 0.46 +/− 0.19% .12 .03 .07 .08 B = 1.1 +/− 0.8; N.S.

DHA C22:6n-3 2.3 +/− 0.8% .14 .24* .21* .08 B = −0.3 +/− 0.2; N.S.

GLA/LA Delta-6 desaturase index .01 .15 .1 .09 B = 4.7 +/− 6.2; N.S.

DGLA/LA Delta-6 desaturase index .11 .18 .08 .12 B = 3.4 +/− 3.6; N.S.

AA/DGLA Delta-5 desaturase index .22* .35* .12 .03 B = −0.03 +/− 0.145; N.S.

EPA+DHA Combined LCn-3 .15 .22* .21* .06 B = −0.23 +/− 0.18; N.S.

AA/EPA+DHA Ratio of LCn-6/3. .27* .07 .27* .01 B = 0.4 +/− 0.15; p=0.008

Prostaglandins Leukot Essent Fatty Acids. Author manuscript; available in PMC 2017 March 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lotrich et al. Page 20

Table 3

The fatty acid ratio (AA/EPA+DHA), perceived stress (PSS), sleep quality (PSQI), and baseline depression 

symptoms (BDI) all predicted IFN-MDD in Cox-regression survival analyses. Two measures of stressful life 

events did not. With covariates included, two interactions also predicted depression. The interaction between 

depression and fatty acids lost significance when covariates were included.

Without covariates With covariates (age, weight, gender, race)

AA/EPA+DHA B=0.40±0.15; p=0.008 B=0.56+/−0.17; p=0.001

PSS B=0.07±0.02; p<0.001 B=0.036 +/−0.014; p=0.01

PSQI B=0.12±0.04; p<0.002 B=0.13+/−0.04; p<0.001

BDI B=0.05±0.02; p<0.001 B=0.06+/−0.02; p<0.001

LES (total #) B=0.06 +/−0.03; p=0.07 B=−0.02 +/−0.05; p=0.6

LES (total score) B=0.0+/−0.02; p=0.9 B=0.03+/−0.02; p=0.12

PSS*AA/EPA+DHA B=0.01+/−0.004; p=0.006 B=0.009+/−0.004; p=0.035

PSQI*AA/EPA+DHA B=0.03+/−0.007; p<0.001 B=0.023+/−0.009; p=0.012

BDI*AA/EPA+DHA B=0.019+/−0.005; p<0.001 B=0.011+/−0.007; p=0.13
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