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Abstract

Primates tend to be long-lived for their size with humans being the longest lived of all primates. 

There are compelling reasons to understand the underlying age-related processes that shape human 

lifespan. But the very fact of our long lifespan that makes it so compelling, also makes it 

especially difficult to study. Thus, in studies of aging, researchers have turned to non-human 

primate models, including chimpanzees, baboons, and rhesus macaques. More recently, the 

common marmoset, Callithrix jacchus, has been recognized as a particularly valuable model in 

studies of aging, given its small size, ease of housing in captivity, and relatively short lifespan. 

However, little is known about the physiological changes that occur as marmosets age. To begin to 

fill in this gap, we utilized high sensitivity metabolomics to define the longitudinal biochemical 

changes associated with age in the common marmoset. We measured 2104 metabolites from blood 

plasma at three separate time points over a 17-month period, and we completed both a cross-

sectional and longitudinal analysis of the metabolome. We discovered hundreds of metabolites 
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associated with age and body weight in both male and female animals. Our longitudinal analysis 

identified age-associated metabolic pathways that were not found in our cross-sectional analysis. 

Pathways enriched for age-associated metabolites included tryptophan, nucleotide, and xenobiotic 

metabolism, suggesting these biochemical pathways might play an important role in the basic 

mechanisms of aging in primates. Moreover, we found that many metabolic pathways associated 

with age were sex specific. Our work illustrates the power of longitudinal approaches, even in a 

short time frame, to discover novel biochemical changes that occur with age.
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1. Introduction

Many studies have attempted to determine biomarkers of age and age-related survivorship of 

individuals (reviewed in Johnson 2006; Mather et al. 2011). However, most have been 

unsuccessful. There are numerous factors that might account for our relative lack of success 

in finding biomarkers of aging, one of which is that most studies have looked at cross-

sectional, rather than longitudinal, data. Cross-sectional studies compare changes that occur 

among all individuals as they age, but fail to track changes within individuals. There are 

molecular changes that occur throughout an individual's life that may have profound effects 

on aging and age-related disease, yet are not revealed by traditional cross-sectional aging 

studies. The most meaningful biomarkers might be those whose long-term trajectories, 

rather than their static values at one time point, predict pathology or death. To identify these 

biomarkers, we need to turn to longitudinal data analysis. In fact, many longitudinal studies 

in humans have identified genetic and environmental correlates of longevity (e.g. Colditz 

and Hankinson 2005; Ferrucci 2008). However, these studies take many decades to 

complete, and at considerable expense. With this in mind, we turned to the common 

marmoset, Callithrix jacchus, in which we could use longitudinal approaches to search for 

systems biology predictors of healthspan and lifespan.

The marmoset, a small, relatively short-lived non-human primate, offers us a powerful, 

translational model to understand the causes and correlates of aging. Though most studies 

have utilized large primates, such as the rhesus macaque, recent studies have pointed to the 

common marmoset, Callithrix jacchus, as an ideal non-human primate model of aging 

(Fischer and Austad 2011; Tardif et al. 2011). Marmosets have age-associated pathologies 

also seen in humans, and they have a relatively short lifespan (average 8-12 years and 

maximum 16.5-21.5) compared to other well-studied primates (Tardif et al. 2011; Nishijima 

et al. 2012).

We believe that by studying the biochemical changes that occur throughout the life of the 

marmoset, we may be able to better detect specific, accurate biomarkers of aging. One way 

to do this is through the use of high-resolution metabolomics (Jones et al. 2012), the study of 

small molecules in an organism. This can provide us with a snapshot of metabolic changes 

that occur over time. Cross-sectional approaches in non-human primates have been 
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completed to identify metabolites correlated with age (Muehlenbein et al. 2003; Kuehnel et 

al. 2012). However, longitudinal studies of metabolites in primates have been confined to 

earlier developmental stages (Higley et al. 1992; Beckstrom et al. 2012). Research in model 

organisms show that the analysis of metabolites has the potential to identify metabolic 

pathways that might be implicated in aging (Fuchs et al. 2010; Houtkooper et al. 2011; 

Hoffman et al. 2014).

Metabolomic studies have rarely been used in the analysis of natural aging in non-human 

primates, with previous studies focusing on biomarkers of specific diseases, rather than the 

effects of natural aging (e.g. Patterson et al. 2011; Liu et al. 2013). Moreover, metabolomic 

studies that do look at metabolites associated with age in the marmoset have relied on cross-

sectional analyses (Kuehnel et al. 2012; Roede et al. 2013), which as described earlier, may 

be missing important changes within individuals. This leaves a potentially important gap in 

our understanding of how individual metabolites and metabolic pathways change over the 

life of an animal.

We take advantage of the marmoset's short lifespan to gain insight into the longitudinal 

changes in the metabolome, and use this system as a potential model for human aging 

metabolomics. While the common marmoset has been proposed as a new non-human 

primate model of aging, very little is known about how its biochemical makeup changes 

with age. Here, we present the first longitudinal study of age related changes in the 

metabolome of a large colony of marmosets.

2. Methods

2.1 Marmosets and sample collection

Marmosets were housed at the New England Primate Research Center and were maintained 

as described in Soltow et al. (2013). Briefly, most marmosets were pair housed in cages and 

fed commercial marmoset chow that was supplemented with various fruits, vegetables, 

seeds, and mealworms. Animals were given water ad libitum, and water was changed daily. 

Animal cages were cleaned three times a week. All rooms containing animals were 

temperature and humidity controlled, and the animals were given various life enrichments 

including toys, food treats, and music.

Blood plasma samples were collected at three different time points over a 17-month period 

(June 2012, October 2012, and November 2013) during routine physical exams of the 

animals under sedation with 0.2mL of ketamine as described in Roede et al. (2013). 

Previous reproductive history of the animals was unknown; however, no females pregnant at 

the time of sampling were included in the population. This 17-month period represents at 

least 12% of the mean lifespan in this species (Tardif et al. 2011).

2.2 Metabolomic analysis

Metabolites were analyzed by high-resolution mass spectrometry (MS; LTQ-Velos Orbitrap, 

Thermo Fisher) coupled to liquid chromatography (LC) using a reverse-phase C18 column 

(Soltow et al. 2013). Briefly, 50 μL of plasma was added to 100 μL of acetonitrile along 

with a 2.5 μL aliquot containing stable isotope standards. Samples were mixed, incubated at 
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4° C for 30 min, and centrifuged to remove protein. Supernatants were analyzed in triplicate 

by LC-MS (Soltow et al. 2013; Go et al. 2014). Data were extracted using apLCMS (Yu et 

al. 2009) with xMSanalyzer (Uppal et al. 2013) as m/z features, where an m/z feature is 

defined by m/z (mass-to-charge ratio), retention time, and ion intensity (Johnson et al. 2010).

2.3 Data analysis

Data analyses were carried out using the statistics package R, version 3.0.2 (R Core Team 

2013) unless otherwise stated. For each time point, the data structure originally consisted of 

over 20,000 metabolites measured for each individual. As a first quality control step, all 

metabolites were normalized using a log transformation. We then measured the repeatability 

of technical replicates for each metabolite, measured as the signal-to-noise ratio (SNR, 

), where  is the mean intensity of metabolite i across all samples, and  is the mean 

of the standard deviation of technical replicates within each biological replicate for 

metabolite i, averaged across all biological replicates. Following Hoffman et al. (2014), only 

those metabolites with SNR ≥ 15 were kept for further analysis. These quality control 

measures were executed separately for each time point.

Next, to ensure we combined the same metabolites across the three different time points, we 

used the R package xMSanalyzer (Uppal et al., 2013). This program identifies the same 

metabolite from different datasets by analyzing both the mass to charge (m/z) ratio and 

column retention time. Metabolites were considered identical across the time points if they 

had m/z ratios within 10 ppm of each other and their retention times varied by less than 10 

seconds.

We first wanted to discover specific metabolites that were associated with age and body 

weight within each time point individually (i.e., cross-sectional analysis). We ran a linear 

model with body weight and age as fixed effects predicting metabolite intensity. The sexes 

were analyzed separately. Metabolites were considered significantly associated with either 

factor if they passed a false discovery rate (FDR) of α = 0.1 (Benjamini and Hochberg 

1995).

We then looked at metabolite associations with weight change. For those animals that had 

data from the first and last time points, we calculated the change in weight over the 17-

month period. We then ran a linear model looking at associations of weight change and 

metabolite values in the first time point. Thus we were determining if metabolite values 

were correlated with future weight changes.

To determine if the changes observed across ages within a time point continued across time 

and individuals as well as to discover novel metabolites associated with aging in the 

marmoset, we sought metabolites with significant longitudinal changes in intensity across all 

individuals. The sexes were again analyzed separately. Our longitudinal analysis was carried 

out by implementing a random effects model in the nlme package (Pinherio et al. 2012), 

with age and weight as fixed effects and individual as a random effect. Thus, we wanted to 

determine if the correlations between metabolite intensity and age and body weight in our 

cross-sectional analysis were recapitulated across time within individuals in our longitudinal 

analysis. The linear mixed effects approach enables us to include all individuals, including 
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those for which we have only a single time point (Bernal-Rusiel et al. 2013). We were also 

interested in discovering if specific metabolites were associated with age or body weight in 

one statistical approach but not the other. This would also give us insight into whether a 

cross-sectional or longitudinal approach is more sensitive to changes in metabolite 

concentration with age. There are batch effects in the data such that the mean metabolite 

concentration across all samples can vary between time points, and we were interested in the 

relative metabolite intensity among individuals. Accordingly, for this longitudinal analysis, 

we centered all metabolites within a marmoset to a mean of zero. We again used an FDR 

with α = 0.1 to correct for multiple comparisons.

For those metabolites that were discovered to be associated either with age or weight in the 

cross sectional or longitudinal analysis, we looked for specific metabolic pathways that were 

overrepresented using the pathway enrichment program mummichog (Li et al. 2013). 

Mummichog annotates m/z features and determines specific metabolic pathway enrichment 

using the MetaCyc database (Caspi et al. 2014). In particular, we set mummichog to query 

the “human_mfn” reference metabolic pathway, as humans are the most closely related 

organism to the marmoset for which metabolite profiles and pathways have been well 

defined. For this analysis, we considered pathways significantly enriched for a factor if the 

mummichog-adjusted P value was less than 0.05. The adjusted P-value is calculated from 

resampling the reference input file using a gamma distribution which penalizes pathways 

with fewer reference hits, thus giving more significance to larger pathways.

3. Results

Our final dataset consisted of information from 230 individual marmosets across a period of 

17-months. Of the 230 animals, 77 were sampled twice, and 84 were sampled three times 

(Figure 1). The animals ranged in age from 1-17 years with an average age of 6.3 years. Age 

distributions in each time point are shown in Figure 1. Females were slightly but not 

significantly larger than males on average across all time points combined, (407.4 g (+/− 

62.8 SD) and 403.6 g (+/− 49.3 SD), respectively). Age and weight means and ranges for 

each time point individually are shown in Table 1. We also found significant differences in 

weight changes over the 17 months between young and old animals. In both sexes, young 

animals (those under 4 years at the first time point) lost weight on average, while old 

animals (those over 10 years at the first time point) gained weight on average. The 

distributions of weight changes over the course of the experiment were significantly 

different between old and young monkeys (t-test: P<0.01 for both sexes).

Our final metabolomics dataset consisted of 2104 metabolites that were present in all three 

time points analyzed. Of these metabolites, we were able to putatively annotate 250 (11.9%) 

using the program mummichog.

We analyzed our data in two steps. First, we ran a cross-sectional analysis of each time point 

individually to identify metabolites associated with age and body weight among individuals 

within a time-specific cohort. We were able to discover hundreds of metabolites that 

increased (up to 46% of metabolites analyzed) or decreased (up to 21% of metabolites 
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analyzed) with age, as well as dozen of metabolites that were positively correlated with body 

mass (Table 1). Relatively few metabolites were negatively correlated with body weight.

Metabolite enrichment analysis using mummichog pointed to many metabolic pathways 

associated with age within the individual time points. Among metabolites that increased 

with age, we found significant enrichment for purine and pyrimidine metabolism in both 

sexes (Table 2). In contrast, we did not find any pathways that were clearly enriched for 

metabolites that decreased with age (Table 3).

We then looked at the associations with metabolite values and changes in weight. Our 

regression analysis found no metabolites in females that in the first time point (June 2012) 

were associated with future change in body weight. However, in males we discovered 127 

metabolites that were correlated with future changes in weight. The majority of these 

metabolites were found to be associated with a future increase in weight (115), yet as with 

the metabolites associated with body weight before, we did not find enrichment for any 

metabolic pathways.

After carrying out the cross-sectional analysis, we used the random effects model for 

longitudinal data analysis, with the goal of identifying those metabolites whose trajectory 

changed consistently with age and/or body weight within individuals throughout the 

population. Unlike our cross-sectional analysis, in females, we were able to find many 

metabolites both positively correlated (Table 1, Figure 2a) and negatively correlated (Table 

1, Figure 2b) with body weight. We found many fewer metabolites either positively or 

negatively associated with body weight in males (Table 1). In neither sex did we identify 

enrichment in any specific metabolic pathways for body weight.

In our longitudinal analysis we identified hundreds of specific metabolites that both 

increased (Table 1, Figure 3a and 3b) and decreased with age (Table 1, Figure 3c and 3d) 

across individuals. Our mummichog pathway analysis was then able to determine 27 specific 

metabolic pathways that were significantly associated with age-related change in at least one 

sex (Table 2 and 3). Numbers of actual metabolites found in each metabolic pathway are 

shown in Tables S1 and S2. Over 30% (10) of the metabolic pathways associated with age in 

our longitudinal analysis were shared between the sexes. Moreover, ten metabolic pathways 

associated with age in the longitudinal analysis were not discovered in any of the cross-

sectional analyses. Several of the metabolic pathways found to be associated with age are 

associated with tryptophan and tyrosine, nucleotide, and xenobiotic metabolism. The 

changes seen in tryptophan and tyrosine metabolism metabolic pathway are shown in Figure 

4.

4. Discussion

Here, we have presented the largest longitudinal metabolomics study to date, and we show 

the power longitudinal studies have to identify metabolites associated with age that are not 

found in cross sectional analyses. Cross sectional studies provide great insight into how 

metabolites are associated with age; however, our findings suggest that longitudinal studies, 

even over relatively short periods of time, may better identify metabolic correlates of aging.
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We were able to discover hundreds of metabolites significantly associated with age in the 

marmoset, and our 17-month longitudinal analysis was able to cover between twelve and 

eighteen percent of the average lifespan of the marmoset (depending on reported population 

averages). This is comparable to nine to fourteen years of human lifespan, yet previous 

longitudinal metabolomics studies in humans have covered a maximum of seven years 

(Yousri et al. 2014),. The results of this study show the power of the common marmoset to 

discover new potential biomarkers of aging in a much shorter time frame than studies on 

humans (and other non-human primates).

We have shown that many metabolic pathways associated with age in the animals are only 

found in one sex. While many studies have looked at sex differences in metabolomic 

profiles and age (e.g. Slupsky et al. 2007; Psihogios et al. 2008), few have attempted to 

determine how metabolomic profiles change with age between the sexes (e.g. Lawton et al. 

2008; Yu et al. 2012). Our results suggest future metabolomics and aging studies should 

look at the sexes independently as the metabolic causes and consequences of aging may be 

sex specific, similar to results previously shown in human metabolomic profiles (Yu et al. 

2012). Moreover, the sex-specific trajectories observed here point to the possibility that sex-

specific metabolomic analysis might point to mechanisms that underlie sex-differences in 

aging and aging-related disease.

Among metabolites whose concentrations increased or decreased significantly with age, we 

found substantial enrichment for tryptophan and tyrosine metabolism, nucleotide 

metabolism, and xenobiotic metabolism. Here we discuss each of these metabolic pathways 

in turn.

Our results suggest that in the marmoset there is significant enrichment across time points 

for changes in tryptophan and tyrosine metabolism with age (Figure 4). Previous studies 

have implicated tryptophan metabolism in aging in a variety of model organisms (reviewed 

in van der Goot and Nollen 2013), especially in its breakdown to kynurenine (e.g. Coburn 

and Gems 2013). Tyrosine and tryptophan metabolism can involve the production of 

monoamine neurotransmitters, which have recently been associated with aging in flies 

(Hoffman et al. 2014). Both tryptophan and tyrosine metabolism have been associated with 

inflammation in elderly human subjects (Capuron et al. 2011). Our results combined with 

previous research suggest there is the potential that changes in tryptophan metabolism may 

be a conserved metabolic pathway that is associated the age and longevity across distantly 

related organisms. Future studies are needed to determine if the age-related changes that we 

see in the tryptophan metabolic pathway affect patterns of aging, or rather are a secondary 

consequence of aging.

We also found evidence that pathways associated with xenobiotic metabolism are enriched 

for metabolites that increase with age. Xenobiotic metabolism involves the breakdown of 

foreign metabolites that are taken in from the environment. The ability to break down 

xenobiotics may decrease in older individuals, leading to a buildup of these metabolites. 

Previous research in mice has shown that longer-lived strains exhibit increased expression of 

genes linked to xenobiotic metabolism (Amador-Noguez et al. 2007; Steinbaugh et al. 
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2012). These results, combined with our own, suggest that xenobiotic metabolism might be 

an important factor associated with aging.

We also found strong evidence that the concentration of metabolites associated with 

nucleotide metabolite, especially purine metabolism, increased with age. The majority of 

metabolites associated with purine metabolism were found to be increased with age, and it is 

conserved across both sexes and multiple time points (Table 2). While DNA damage is often 

cited as a potential causative agent of aging and longevity (e.g. Gensler and Bernstein 1981; 

Schumacher et al. 2008; Hoeijmakers 2009), few aging studies have shown changes in the 

metabolites that make up nucleotide metabolism pathways. Previous metabolomic work in 

yeast has shown that decreases in nucleotide concentrations are significantly associated with 

extended longevity (Yoshida et al. 2010), and nucleotide metabolism has been shown to 

influence tumor growth (Aird and Zhang 2015). These results in other species, coupled with 

our significant changes in nucleotide metabolism in the marmoset suggest changes in 

nucleotide metabolism may have a significant impact on the aging phenotype. Future studies 

are needed to determine the specific effects nucleotides have on natural aging and longevity 

within different organisms.

While not the focus of this study, we were able to discover dozens of metabolites in both 

sexes that were significantly associated with body weight longitudinally. Interestingly, while 

we failed to find many metabolites that decline with increases in body weight in our cross 

sectional analysis, we found over 100 metabolites in the longitudinal study. This again 

points to the power of longitudinal studies, even over a relatively short time frame, to detect 

potential biomarkers of phenotypes of interest. We were also able to discover that some 

metabolites appear to be associated with future changes in body weight, but in males only. 

Previous work has shown the metabolome to be associated with changes in body weight; 

however the sexes were analyzed together in this analysis (Wahl et al. 2015).

Although we were able to discover many metabolites associated with body weight and 

change in body weight (both positively and negatively), we were not able to discern any 

specific pathways in either sex that were significantly enriched for these metabolites. This 

suggests that while metabolomic profiles are associated with body weight, these associations 

might occur throughout the metabolome, rather than focused on specific pathways. 

Interestingly, metabolites were more likely to be associated with body weight in females, but 

more likely to be associated with changes in body weight in males. This suggests there may 

be sex differences not only in metabolite correlates with body weight, but also in how 

metabolites respond to changes in weight. Our results are consistent with previous work 

showing sex-specificity of metabolite-body weight associations (Szymanska et al. 2012). 

Future studies are necessary to more fully understand the effects of body size on 

metabolomic profiles as an animal ages.

Although the results of this study represent the largest metabolomic longitudinal analysis to 

date, the time period investigated is overall quite short. As described above the three time 

points only represent about 15% or so of the average lifespan of the animal, yet by looking 

at metabolites across time points we were able to discover many metabolic pathways that 

might have been missed in a cross-sectional analysis. Eleven metabolic pathways were 
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found to be enriched solely in the longitudinal analysis, and 28 pathways were found in only 

one individual time point. This suggests that if we had only sampled the animals as one 

point, there are many metabolic pathways associated with age that we would have missed.

While we were able to analyze thousands of metabolites and find hundreds that significantly 

change with age and body weight across the sexes, there were several limitations to this 

study. First, metabolomic profiles are known to change on a daily basis and even cyclically 

within the day (Queiroz 1974). However, we were not able to draw marmoset blood samples 

on the same day let alone the same time of day. These daily changes could explain, in part, 

the large variances seen in metabolite concentrations even within animals of the same age, 

which might have limited our ability to detect metabolites that change with age. Second, 

blood samples were drawn while the primates were anesthetized with ketamine, which could 

potentially disrupt normal metabolomic profiles. While the effects of ketamine on blood 

metabolomics are unknown, previous research in macaques has shown that ketamine does 

not change blood hormones levels and has less pronounced effects than other forms of 

anesthesia (Zaidi et al. 1982). Both of these factors are expected to add noise to the data; 

however, it does suggest that those patterns we see in the data are reliable correlations, 

making these results all the more impressive.

The nature of this dataset points to two additional caveats to these findings. First, the 

parameters we used to combine metabolites across time points were conservative (especially 

the retention time). Each time point had over 10,000 metabolites left after quality control, 

but only 2104 could be conservatively said to be the same across all three time points, which 

suggests that we might have discarded information on some metabolites that were actually 

present in the data from all three time points. Our study was also limited by the lack of 

metabolite annotation matches available. Very little is known about specific marmoset 

metabolites, so we used the human metabolome as the reference. However, mummichog was 

only able to annotate a small proportion of the metabolites used in this study (~12%). While 

some of these undefined metabolites might have simply been adducts of metabolites that we 

did identify, others might have been novel, unknown chemicals.

5. Conclusion

Here we have presented the first large-scale longitudinal metabolomics study in a non-

human primate, and we were able to discover many metabolic pathways that show 

consistent changes with age. We believe longitudinal studies are underutilized as a method 

for determining changes in metabolites and metabolic pathways that are involved in the 

aging process, and future metabolomics studies should try to incorporate multiple 

measurements of the same individuals. The marmosets in this colony will continue to be 

followed, and as the animals age and die, we hope to identify long-term changes in 

metabolomic profiles that are predictive of risk of morbidity and mortality.
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Refer to Web version on PubMed Central for supplementary material.

Hoffman et al. Page 9

Exp Gerontol. Author manuscript; available in PMC 2017 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Acknowledgements

This work was funded in part by NIH grant AG038746 to DPJ and DELP. JMH was supported in part by NIH 
training grant T32 GM007103. We thank the two anonymous reviewers for their helpful comments.

References

Aird KM, Zhang R. Nucleotide metabolism, oncogene-induced senescence and cancer. Cancer Letters. 
2015; 356:204–210. [PubMed: 24486217] 

Amador-Noguez D, Dean A, Huang WD, Setchell K, Moore D, Darlington G. Alterations in 
xenobiotic metabolism in the long-lived Little mice. Aging Cell. 2007; 6:453–470. [PubMed: 
17521389] 

Beckstrom AC, Tanya P, Humston EM, Snyder LR, Synovec RE, Juul SE. The perinatal transition of 
the circulating metabolome in a nonhuman primate. Pediatric Research. 2012; 71:338–344. 
[PubMed: 22391633] 

Benjamini Y, Hochberg Y. Controlling the False Discovery Rate - a Practical and Powerful Approach 
to Multiple Testing. J Roy Stat Soc B Met. 1995; 57:289–300.

Bernal-Rusiel JL, Greve DN, Reuter M, Fischl B, Sabuncu MR, Alzheimer's Disease Neuroimaging I. 
Statistical analysis of longitudinal neuroimage data with Linear Mixed Effects models. NeuroImage. 
2013; 66:249–260. [PubMed: 23123680] 

Capuron L, Schroecksnadel S, Feart C, Aubert A, Higueret D, Barberger-Gateau P, Laye S, Fuchs D. 
Chronic low-grade inflammation in elderly persons is associated with altered tryptophan and 
tyrosine metabolism: role in neuropsychiatric symptoms. Biol Psychiatry. 2011; 70:175–182. 
[PubMed: 21277567] 

Caspi R, Altman T, Billington R, Dreher K, Foerster H, Fulcher CA, Holland TA, Keseler IM, Kothari 
A, Kubo A, Krummenacker M, Latendresse M, Mueller LA, Ong Q, Paley S, Subhraveti P, Weaver 
DS, Weerasinghe D, Zhang PF, Karp PD. The MetaCyc database of metabolic pathways and 
enzymes and the BioCyc collection of Pathway/Genome Databases. Nucleic Acids Res. 2014; 
42:D459–D471. [PubMed: 24225315] 

Chignell CF. Structure Activity Relationships in the Free-Radical Metabolism of Xenobiotics. Environ 
Health Persp. 1985; 61:133–137.

Coburn C, Gems D. The mysterious case of the C. elegans gut granule: death fluorescence, anthranilic 
acid and the kynurenine pathway. Frontiers in Genetics. 2013; 4:151. [PubMed: 23967012] 

Colditz GA, Hankinson SE. The Nurses' Health Study: Lifestyle and health among women. Nat Rev 
Cancer. 2005; 5:388–396. [PubMed: 15864280] 

Ferrucci L. The Baltimore Longitudinal Study of Aging (BLSA): A 50-Year-Long Journey and Plans 
for the Future. The Journals of Gerontology. Series A, Biological Sciences and Medical sciences. 
2008; 63:1416–1419.

Fischer KE, Austad SN. The Development of Small Primate Models for Aging Research. Ilar J. 2011; 
52:78–88. [PubMed: 21411860] 

Fuchs S, Bundy JG, Davies SK, Viney JM, Swire JS, Leroi AM. A metabolic signature of long life in 
Caenorhabditis elegans. BMC Biol. 2010; 8

Gensler HL, Bernstein H. DNA damage as the primary cause of aging. The Quarterly Review of 
Biology. 1981; 56:279–303. [PubMed: 7031747] 

Go Y-M, Uppal K, Walker DI, Dury L, Strobel FH, Baudichon-Cortay H, Roede JR, Jones DP. 
Raftery D. Mitochondrial Metabolomics Using High- Resolution Fourier-Transform Mass 
Spectrometry, in Mass Spectrometry in Metabolomics Methods and Protocols. Methods in 
Molecular Biology. 2014

Higley JD, Suomi SJ, Linnoila M. A Longitudinal Assessment of Csf Monoamine Metabolite and 
Plasma-Cortisol Concentrations in Young Rhesus- Monkeys. Biol Psychiat. 1992; 32:127–145. 
[PubMed: 1384725] 

Hoeijmakers JH. DNA damage, aging, and cancer. The New England Journal of Medicine. 2009; 
361:1475–1485. [PubMed: 19812404] 

Hoffman et al. Page 10

Exp Gerontol. Author manuscript; available in PMC 2017 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Hoffman JM, Soltow QA, Li SZ, Sidik A, Jones DP, Promislow DEL. Effects of age, sex, and 
genotype on high-sensitivity metabolomic profiles in the fruit fly, Drosophila melanogaster. Aging 
Cell. 2014; 13:596–604. [PubMed: 24636523] 

Houtkooper RH, Argmann C, Houten SM, Canto C, Jeninga EH, Andreux PA, Thomas C, Doenlen R, 
Schoonjans K, Auwerx J. The metabolic footprint of aging in mice. Scientific Reports. 2011; 1 
Article 134. 

Johnson JM, Yu TW, Strobel FH, Jones DP. A practical approach to detect unique metabolic patterns 
for personalized medicine. Analyst. 2010; 135:2864–2870. [PubMed: 20838665] 

Johnson TE. Recent results: biomarkers of aging. Exp Gerontol. 2006; 41:1243–1246. [PubMed: 
17071038] 

Jones DP, Park Y, Ziegler TR. Nutritional metabolomics: progress in addressing complexity in diet 
and health. Annual Review of Nutrition. 2012; 32:183–202.

Kuehnel F, Grohmann J, Buchwald U, Koeller G, Teupser D, Einspanier A. Parameters of 
haematology, clinical chemistry and lipid metabolism in the common marmoset and alterations 
under stress conditions. J Med Primatol. 2012; 41:241–250. [PubMed: 22765494] 

Lawton KA, Berger A, Mitchell M, Milgram KE, Evans AM, Guo L, Hanson RW, Kalhan SC, Ryals 
JA, Milburn MV. Analysis of the adult human plasma metabolome. Pharmacogenomics. 2008; 
9:383–397. [PubMed: 18384253] 

Li SZ, Park Y, Duraisingham S, Strobel FH, Khan N, Soltow QA, Jones DP, Pulendran B. Predicting 
network activity from high throughput metabolomics. Plos Comput Biol. 2013; 9:e1003123. 
[PubMed: 23861661] 

Liu JP, Wang D, Chen YN, Sun HJ, He SR, Wang CS, Yang G, Shi MM, Zhang J, Ren Y, Wang L, Lu 
YR, Cheng JQ. H-1 NMR-based metabonomic analysis of serum and urine in a nonhuman primate 
model of diabetic nephropathy. Mol Biosyst. 2013; 9:2645–2652. [PubMed: 24228270] 

Mather KA, Jorm AF, Parslow RA, Christensen H. Is telomere length a biomarker of aging? A review. 
The Journals of Gerontology. Series A, Biological Sciences and Medical sciences. 2011; 66:202–
213.

Muehlenbein MP, Campbell BC, Richards RJ, Svec F, Phillippi- Falkenstein KM, Murchison MA, 
Myers L. Dehydroepiandrosterone sulfate as a biomarker of senescence in male non-human 
primates. Exp Gerontol. 2003; 38:1077–1085. [PubMed: 14580861] 

Nishijima K, Saitoh R, Tanaka S, Ohsato-Suzuki M, Ohno T, Kitajima S. Life span of common 
marmoset (Callithrix jacchus) at CLEA Japan breeding colony. Biogerontology. 2012; 13:439–
443. [PubMed: 22752736] 

Patterson AD, Bonzo JA, Li F, Krausz KW, Eichler GS, Aslam S, Tigno X, Weinstein JN, Hansen BC, 
Idle JR, Gonzalez FJ. Metabolomics Reveals Attenuation of the SLC6A20 Kidney Transporter in 
Nonhuman Primate and Mouse Models of Type 2 Diabetes Mellitus. J Biol Chem. 2011; 
286:19511–19522. [PubMed: 21487016] 

Pinherio J, Bates D, DebRoy S, Sarkar D, Team RC. nlme: Linear and Nonlinear Mixed Effect 
Models. R package version 3. 2012:1–118.

Psihogios NG, Gazi IF, Elisaf MS, Seferiadis KI, Bairaktari ET. Gender-related and age-related 
urinalysis of healthy subjects by NMR-based metabonomics. NMR in Biomedicine. 2008; 21:195–
207. [PubMed: 17474139] 

Queiroz O. Circadian-Rhythms and Metabolic Patterns. Annu Rev Plant Phys. 1974; 25:115–134.

R Core Team.. R: A language and environment for statistical computing. R Foundation for Statistical 
Computing; Vienna, Austria: 2013. 

Roede JR, Uppar K, Yongliang L, Promislow DEL, Wachtman LM, Jones DP. Characterization of 
plasma thiol redox potential in a common marmoset model of aging. Redox Biology. 2013; 1:387–
393. [PubMed: 24024176] 

Schumacher B, Garinis GA, Hoeijmakers JH. Age to survive: DNA damage and aging. Trends in 
Genetics : TIG. 2008; 24:77–85. [PubMed: 18192065] 

Slupsky CM, Rankin KN, Wagner J, Fu H, Chang D, Weljie AM, Saude EJ, Lix B, Adamko DJ, Shah 
S, Greiner R, Sykes BD, Marrie TJ. Investigations of the effects of gender, diurnal variation, and 
age in human urinary metabolomic profiles. Analytical Chemistry. 2007; 79:6995–7004. 
[PubMed: 17702530] 

Hoffman et al. Page 11

Exp Gerontol. Author manuscript; available in PMC 2017 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Soltow QA, Strobel FH, Mansfield KG, Wachtman L, Park Y, Jones DP. High-performance metabolic 
profiling with dual chromatography-Fourier- transform mass spectrometry (DC-FTMS) for study 
of the exposome. Metabolomics. 2013; 9:S132–S143. [PubMed: 26229523] 

Steinbaugh MJ, Sun LY, Bartke A, Miller RA. Activation of genes involved in xenobiotic metabolism 
is a shared signature of mouse models with extended lifespan. Am J Physiol-Endoc M. 2012; 
303:E488–E495.

Szymanska E, Bouwman J, Strassburg K, Vervoort J, Kangas AJ, Soininen P, Ala-Korpela M, 
Westerhuis J, van Duynhoven JP, Mela DJ, Macdonald IA, Vreeken RJ, Smilde AK, Jacobs DM. 
Gender-dependent associations of metabolite profiles and body fat distribution in a healthy 
population with central obesity: towards metabolomics diagnostics. Omics : A Journal of 
Integrative Biology. 2012; 16:652–667. [PubMed: 23215804] 

Tardif SD, Mansfield KG, Ratnam R, Ross CN, Ziegler TE. The Marmoset as a Model of Aging and 
Age-Related Diseases. Ilar J. 2011; 52:54–65. [PubMed: 21411858] 

Uppal K, Soltow QA, Strobel FH, Pittard WS, Gernert KM, Yu TW, Jones DP. xMSanalyzer: 
automated pipeline for improved feature detection and downstream analysis of large-scale, non-
targeted metabolomics data. BMC Bioinformatics. 2013; 14

van der Goot AT, Nollen EA. Tryptophan metabolism: entering the field of aging and age-related 
pathologies. Trends in Molecular Medicine. 2013; 19:336–344. [PubMed: 23562344] 

Wahl S, Vogt S, Stuckler F, Krumsiek J, Bartel J, Kacprowski T, Schramm K, Carstensen M, 
Rathmann W, Roden M, Jourdan C, Kangas AJ, Soininen P, Ala-Korpela M, Nothlings U, Boeing 
H, Theis FJ, Meisinger C, Waldenberger M, Suhre K, Homuth G, Gieger C, Kastenmuller G, Illig 
T, Linseisen J, Peters A, Prokisch H, Herder C, Thorand B, Grallert H. Multi-omic signature of 
body weight change: results from a population-based cohort study. BMC Medicine. 2015; 13:48. 
[PubMed: 25857605] 

Yoshida R, Tamura T, Takaoka C, Harada K, Kobayashi A, Mukai Y, Fukusaki E. Metabolomics-
based systematic prediction of yeast lifespan and its application for semi-rational screening of 
ageing-related mutants. Aging Cell. 2010; 9:616–625. [PubMed: 20550517] 

Yousri NA, Kastenmuller G, Gieger C, Shin SY, Erte I, Menni C, Peters A, Meisinger C, Mohney RP, 
Illig T, Adamski J, Soranzo N, Spector TD, Suhre K. Long term conservation of human metabolic 
phenotypes and link to heritability. Metabolomics. 2014; 10:1005–1017. [PubMed: 25177233] 

Yu TW, Park Y, Johnson JM, Jones DP. apLCMS-adaptive processing of high-resolution LC/MS data. 
Bioinformatics. 2009; 25:1930–1936. [PubMed: 19414529] 

Yu ZH, Zhai GJ, Singmann P, He Y, Xu T, Prehn C, Roemisch-Margl W, Lattka E, Gieger C, Soranzo 
N, Heinrich J, Standl M, Thiering E, Mittelstrass K, Wichmann HE, Peters A, Suhre K, Li YX, 
Adamski J, Spector TD, Illig T, Wang-Sattler R. Human serum metabolic profiles are age 
dependent. Aging Cell. 2012; 11:960–967. [PubMed: 22834969] 

Zaidi P, Wickings EJ, Nieschlag E. The Effects of Ketamine Hcl and Barbiturate Anesthesia on the 
Metabolic-Clearance and Production-Rates of Testosterone in the Male Rhesus-Monkey, Macaca-
Mulatta. J Steroid Biochem. 1982; 16:463–466. [PubMed: 7087473] 

Hoffman et al. Page 12

Exp Gerontol. Author manuscript; available in PMC 2017 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Highlights

• Longitudinal studies give insights into aging not seen in cross sectional analyses

• The common marmoset provides an ideal model to study aging metabolomics

• The metabolome is highly associated with age of an individual

• Tryptophan, nucleotide, and xenobiotic metabolism are associated with age
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Figure 1. Plot of all ages of each individual maramoset
Marmosets are ranked by age. Each point represents a blood sample that was taken from an 

individual marmoset. The y-axis values represents a single marmoset while the x-axis values 

represents the age at which it was sampled. Animals were sampled either 1, 2, or 3 times. 

Females are in red on the left; males on the right in blue.
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Figure 2. Plot of individual metabolites that change with body weight
a) metabolite increasing with body weight. b) metabolite decreasing with body weight. Each 

line represents an individual marmoset. Data are only shown for female animals.
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Figure 3. Plot of individual metabolites associated with age
a) female increase with age. b) male increase with age. c) female decrease with age. d) male 

decrease with age. Each line represents an individual marmoset.
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Figure 4. Metabolites in Tryptophan and Tyrosine metabolism pathway
Each circle represents a metabolite in the metabolic pathway, and lines with arrows are 

known metabolic interactions. Blue circles decrease with age while red circles increase with 

age. The degree of saturation indicates the strengths of the response. Metabolites in the 

metabolic pathway but not found in our dataset are colored yellow. Bold names indicate 

metabolites with significant changes with age (FDR<0.1). Results shown are for males only.
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Table 2
Pathways associated with an increase with age

Metabolic pathways enriched for individual time points and the longitudinal analysis. Values reported are 

adjusted p-values from the metabolic pathway enrichment program mummichog. Pathways were considered 

significant if their adjusted p-values were less than 0.05. Tables of actual metabolites detected increasing with 

age and in the entire annotated metabolome shown in Table S1.

Increase with age

Pathway June 2012 October 2012 November 2013 Longitudinal

Females Males Females Males Females Males Females Males

3-Chloroacrylic acid degradation 0.0033

Androgen and estrogen biosynthesis and metabolism 0.0023 0.0049 0.0301

Arginine and Proline Metabolism 0.0016

Ascorbate (Vitamin C) and Aldarate Metabolism 0.0093

Aspartate and asparagine metabolism 0.0018

Beta-Alanine metabolism 0.0451

C21-steroid hormone biosynthesis and metabolism 0.0291

Caffeine metabolism 0.0089 0.0048

Carnitine shuttle 0.0183

D4&E4-neuroprostanes formation 0.0086

Drug metabolism - cytochrome P450 0.0162 0.0421

Fatty acid activation 0.0053

Fructose and mannose metabolism 0.0301

Glycolysis and Gluconeogenesis 0.0282

Glycerophospholipid metabolism 0.0035

Glycosphingolipid metabolism 0.0049

Histidine metabolism 0.0451

Hyaluronan Metabolism 0.0300

Linoleate metabolism 0.0098

Methionine and cysteine metabolism 0.0035 0.0042

N-Glycan biosynthesis 0.0063

Pentose phosphate pathway 0.0248

Phosphatidylinositol phosphate metabolism 0.0145

Phytanic acid peroxisomal oxidation 0.0163

Porphyrin metabolism 0.0046 0.0029 0.0057 0.0035

Purine metabolism 0.0240 0.0263 0.0135 0.0029 0.0012 0.0030 0.0005

Pyrimidine metabolism 0.0183 0.0084

Squalene and cholesterol biosynthesis 0.0041 0.0475 0.0209

TCA cycle 0.0191 0.0040 0.0079

Tryptophan metabolism 0.0242

Tyrosine metabolism 0.0131

Vitamin B3 (nicotinate and nicotinamide) metabolism 0.0021 0.0025

Vitamin B9 (folate) metabolism 0.0163 0.0204
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Increase with age

Pathway June 2012 October 2012 November 2013 Longitudinal

Females Males Females Males Females Males Females Males

Vitamin E metabolism 0.0020

Xenobiotics metabolism 0.0320 0.0034 0.0476
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Table 3
Pathways associated with a decrease with age

Metabolic pathways enriched for individual time points and the longitudinal analysis. Values reported are 

adjusted p-values from the metabolic pathway enrichment program mummichog. Pathways were considered 

significant if their adjusted p-values were less than 0.05. Tables of actual metabolites detected increasing with 

age and in the entire annotated metabolome shown in Table S2.

Decrease with age

Pathway June 2012 October 2012 November 2013 Longitudinal

Females Males Females Males Females Males Females Males

Biopterin metabolism 0.0014 0.0025

Chondroitin sulfate degradation 0.0025

Dynorphin metabolism 0.0004 0.0014 0.0025

Fatty acid activation 0.0218

Glycerophospholipid metabolism 0.0319

Glycine, serine, alanine and threonine metabolism 0.0131 0.0118

Glycosphingolipid biosynthesis - ganglioseries 0.0112 0.0192

Heparan sulfate degradation 0.0025

Histidine metabolism 0.0235

Leukotriene metabolism 0.0035 0.0122

Methionine and cysteine metabolism 0.0215

Prostaglandin formation from arachidonate 0.0123

Prostaglandin formation from dihomo gama-linoleic 
acid

0.0025 0.0042

Purine metabolism 0.0118

Pyrimidine metabolism 0.0072

Sialic acid metabolism 0.0389

Starch and Sucrose Metabolism 0.0394 0.0126

TCA cycle 0.0093 0.0389

Tryptophan metabolism 0.0111 0.0032 0.0036 0.0287

Tyrosine metabolism 0.0332 0.0218 0.0287

Valine, leucine and isoleucine degradation 0.0160

Vitamin A (retinol) metabolism 0.0319

Vitamin E metabolism 0.0046 0.0389
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