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Abstract

Purpose—Our objective was to compare observed and expected genotype proportions from
newborn screening surveys of structural hemoglobin variants.

Methods—We conducted a systematic review of newborn screening surveys of hemoglobins S
and C in Africa and the Middle-East. We compared observed frequencies to those expected
assuming Hardy-Weinberg equilibrium (HWE). Significant deviations were identified by an exact
test. The fixation index Fjg was calculated to assess excess homozygosity. We compared newborn
estimates corrected and uncorrected for HWE deviations using demographic data.

Results—Sixty samples reported genotype counts for hemoglobin variants in Africa and the
Middle-East. Observed and expected counts matched in 27%. The observed number of sickle-cell
anemia (SCA) individuals was higher than expected in 42 samples, reaching significance (p<0.05)
in 24. High Fs were common across the study regions. The estimated total number of newborns
with SCA, corrected based on F s, were 33,261 annual births instead of 24,958 for the 38 samples
across sub-Saharan Africa and 1,109 annual births instead of 578 for 12 samples from the Middle
East.
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Conclusion—Differences between observed and expected genotype frequencies are common in
surveys of hemoglobin variants in the study regions. Further research is required to identify and
quantify factors responsible for such deviations. Estimates based on HWE might substantially
underestimate the annual number of SCA affected newborns (up to one third in sub-Saharan
Africa and one half in the Middle East).

sickle hemoglobin; hemoglobin C; newborn screening; Hardy-Weinberg equilibrium; deviation

INTRODUCTION

Hemoglobin S (HbS) is a structural variant of normal adult hemoglobin (HbA) caused by an
amino acid substitution at position 6 of the f-globin gene (HBB ¢.20A>T; p.Glu6-Val).1
Individuals who have inherited HbS are usually asymptomatic when heterozygous (AS),
while homozygous individuals with HbS (SS) suffer from sickle cell anemia (SCA), a
disease associated with severe clinical complications (including recurring pain, vaso-
occlusive crises, and inflammation, all of which can lead to organ damage) and high
mortality rates in low-income, high-burden countries.2 Compound heterozygosity with other
B-globin polymorphisms, the most common of which are hemoglobin C (HbC) and p-
thalassemia, can also cause sickle cell disease (SCD); individuals with SB°-thalassemia
suffer from a form of SCD that is clinically indistinguishable from SS. HbS is most
prevalent in sub-Saharan Africa and parts of the Mediterranean, the Middle East and India,
because of natural selection for heterozygous individuals through a survival advantage
against Plasmodium falciparum malaria.3 Sickle hemoglobin is often considered to be the
most common pathological hemoglobin variant worldwide. Globally, it has been
conservatively estimated that 305,800 (confidence interval [Cl]: 238,400-398,800) babies
were born with SS in 2010, in addition to infants with other variants that cause sickle cell
disease.? Due to population growth, this number increases every year and could reach more
than 400,000 by 2050.4

HbC is another structural variant of HbA caused by a different amino acid substitution at the
same position of the B-globin gene (HBB ¢.19G>A; p.Glu6Lys).> Heterozygous individuals
(AC) are asymptomatic while homozygosity (CC) causes mild hemolytic anemia due to the
reduced solubility of the red blood cells that can lead to crystal formation. HbC is mainly of
clinical significance when inherited in combination with HbS (SC), causing chronic
hemolytic anemia and intermittent sickle cell crises, slightly less severe or frequent than in
SS individuals, and when co-inherited with -thalassemia (hemoglobin C-f thalassemia),
causing moderate hemolytic anemia with splenomegaly. HbC provides near full protection
against complicated P. falciparum malaria in homozygous (CC) individuals and
intermediate protection in heterozygous (AC) individuals.® This variant has been under
positive selection across West Africa, particularly in Burkina Faso, Ghana and Togo, where
it reaches frequencies of up to 15%.’

The Hardy-Weinberg (HW) principle defines the relationship between allele frequencies and
genotype counts in successive generations and predicts that in a random mating population
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of infinite size, allele and genotype frequencies should remain constant from one generation
to the next in the absence of any disturbing factors.8:9 The HW non-evolutionary model is
commonly referred to as the Hardy-Weinberg equilibrium (HWE) and represents one of the
most basic hypotheses in population genetics and evolutionary biology.19-11 The estimate of
305,800 infants born with SS disease in 2010 is derived from a model that assumes HWE
and projects the frequency of SS based on the frequency of the S allele in population
studies.*

Multiple factors can result in deviations from HWE in population samples. The two primary
factors traditionally assumed to account for significant deviations from HWE are inbreeding
or consanguinity due to mating among close relatives (endogamy), and population
admixture or stratification due to short- and/or long-distance migration (gene flow).10
Additional factors that can lead to deviation from HWE include the occurrence of new
mutations, genetic drift in small populations, natural selection, cryptic relatedness in isolated
populations,1! as well as several methodological artifacts, including selection bias,12
genotyping errors,!3 and non-randomly missing genotypes.1# The most important of these
factors, in addition to the two traditional factors of inbreeding and population stratification,
appears to be genotyping errors and selection bias.1® In countries where consanguinity is
uncommon, deviation from HWE is used for quality control in gene association analyses.18

Several factors can cause deviations from HWE at the same time in a given population,
either with cumulative effects or with opposite evolutionary trends. For example, one factor
(e.g. inbreeding or improved fitness of homozygotes) may tend to increase the allele
frequency of the gene studied while another tends to reduce it (e.g. termination of affected
pregnancies or elimination of malaria selective pressure, either naturally or through human
control interventions). Furthermore, some of these disturbing factors have an immediate
effect on allele or genotype frequencies (e.g. migrations) while others will cause slow
changes over multiple generations (e.g. natural selection). Importantly, neglecting factors
causing deviations from HWE can lead to an incorrect interpretation of the data from
screening studies and to an under- or over-estimation of the number of individuals affected
at local, national, regional or global scales.

In theory, data from universal newborn screening studies offer the unique advantage that
they represent the best measure of true genotype frequencies. At ages beyond infancy,
excess mortality is likely to reduce the frequency of individuals homozygous for deleterious
mutations such as HbS. Furthermore, in areas endemic for malaria, survival among
heterozygous individuals (with HbAS) is greater than that among normal individuals (with
HbAA) due to their protection against severe malaria. Two main national, regional and
global estimates of newborns affected by sickle cell anemia have been published in the last
decade. In 2008, Modell and Darlison published conservative newborn estimates for all
common hemoglobinopathies using the Hardy-Weinberg equation corrected by national
population coefficients of consanguinity obtained from Bittles’s database and Murdock’s
ethnographic atlas.1” In 2013, we published newborn frequency estimates for HbSS, HbAS,
HbCC and HbAC based on a Bayesian geostatistical framework and on HWE that accounted
for spatial heterogeneities in the frequency of hemoglobin variants and in the distribution of
human populations within countries.*” Although we considered consanguinity as a potential
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confounder in the previous studies, it was not incorporated in our modelling framework due
to the unavailability of a coefficient of consanguinity for many countries and to the lack of
data on subnational variations for this covariate for all countries. We therefore assumed that
the use of such a covariate in a framework designed to account for spatial heterogeneities
would potentially introduce more biases than corrections. Our published estimates of HbSS
and HbCC annual births, calculated using allele frequencies assuming HWE, likely represent
underestimates of the prevalence of newborns affected by these genotypes in regions in
which consanguinity is common. Because our modelling frameworks were independently
developed for HbS and HbC, estimates of HbSC annual births were not calculated. Despite
not correcting for consanguinity, our global HbSS and HbCC estimates were generally
higher than those of Modell & Darlison, even when correcting for demographic changes.
Those findings suggested that the global health burden of hemoglobin variants - HbS in
particular - might be substantially higher than was believed at the time.

In the present study, we aim to assess the frequency and magnitude of deviations from HWE
for HbS and HbC in Africa and the Middle East by reviewing existing data from newborn
screening surveys conducted in these regions and discuss the impact of such deviations on
estimates of affected newborns at various geographical scales.

MATERIAL AND METHODS

Newborn screening data

We conducted a systematic search of the published literature using PubMed, Web of Science
and Scopus using the following search string: ““sickle AND newborn AND screening AND
(Africa OR Bahrain OR Iran OR Irag OR Israel OR Jordan OR Kuwait OR Lebanon OR
Oman OR Palestine OR Qatar OR “Saudi Arabia” OR Syria OR “United Arab Emirates”
OR Yemen OR India)”. While the use of the term “Africa” seemed conservative, individual
names of countries were used for the Middle East as the inclusion of this more generic term
missed several key references. Searches, last updated on 26 January 2015, returned 159,
121 and 127 references, respectively in each of the above resources. After duplicate
removal, 247 references remained, of which 30 contained relevant newborn screening data
(see Supplementary Table S1). Six studies which did not appear in our systematic search but
which had already been identified during preliminary manual searches,8 were also
included.

The inclusion criteria for studies were: i) that subjects were tested at birth or within the first
28 days of life, either randomly or as part of a universal screening program and ii) that they
reported detailed genotype counts for HbS. No minimum sample size cut-off value was used
(accepting that results from small studies need to be considered with caution because of a
likelihood of large differences in ratios due to chance). The diagnostic methods used in each
screening study were also recorded (Supplementary Table S2). Because our search criteria
revealed only two relatively small newborn screening studies from India, 1920 we excluded
these studies and restricted our focus to Africa and the Middle East. Where more than one
publication reported overlapping data, only the most recent or comprehensive report was
included. Updated data for the Kumasi survey from Ghana were presented during a CDC
webinar in March 2014 and were therefore used in place of the numbers published in 2008.
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Deviation from HWE

HWE equations have been described in detail in several classic textbooks of population
genetics'221 and are only briefly presented in the Supplementary Information. Various tests
have been designed to measure deviation from HWE. Although such a test is relatively
straightforward for two alleles, it is more complex for multiple alleles (n>3).22 Tests of
HWE are often performed using Pearson’s y2 goodness-of-fit test. It is now well established
that this asymptotic method is unreliable for small samples and is associated with substantial
errors in large samples with a low-prevalence of mutant alleles. As a result, exact tests are
usually preferable.15:22 Here, we use the likelihood ratio full-enumeration exact test, as
implemented in the “HWxtest” package in R.23 In this test, all possible tables with the same
allele numbers as in the observed counts are examined. While this approach is
computationally intensive, it does result in a robust P value. We use 0.05 as the standard cut-
off for statistical significance (Supplementary Table S3).

Fixation index

The fixation index F|s (often referred to as Wright’s inbreeding coefficient) is used with
genomic data on the distribution of alleles in population samples to identify gaps between
the relative frequencies of homozygous or compound heterozygous individuals and those
predicted on the basis of heterozygous individuals.24 Although typically interpreted as a
measure of consanguinity at the population level, it can also indicate potential quality
problems in a genetic study due to issues such as selection bias or genotyping errors. A high
F|s index can be interpreted as a measure of consanguinity or inbreeding only in a
population with direct evidence of high levels of consanguinity as well as reliable data on
admixture and population structure.

The following equation, defining the proportionate reduction in heterozygosity relative to
HWE, was used to calculate Fg in each population survey included in this study
(Supplementary Table S3):,25

oo > Gigyi<jFig
s+ 1 _ 2
P

g

Equation 1

where pj is the proportion of allele i, and Py is the observed frequency of genotype AjA;.

Newborn estimates at population level

In order to assess the influence of deviations from HWE on population-level estimates of
newborns with Hb variants, we calculated the predicted number of HbSS newborns based on
expected (HWE) and observed (HWE corrected using F,s) allele frequencies for study
samples or subsamples stratified based on locality, citizenship, or place of origin. Due to
high heterogeneities in Fjs within countries, national estimates would be misleading even for
those few studies with samples from multiple localities within a country.

As in previous studies,’26 demographic data included local population and national crude
birth rate (CBR). Population data were extracted from one of the following sources,
investigated according to the sequence: UN Demographic Yearbook 2013 (Table 8), the
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CIA’s World Factbook, national census data, the study publication itself or Wikipedia. CBR
data were extracted from the UN World Population Prospects 2012 Revision. HWE
uncorrected (Equation 2) and corrected (Equation 3) newborn estimates were calculated as
follows:

HbSS,,,n=N; x CBR; X p? Equation 2a

HbSCyyyyy=N; x CBR; X (2 X p; X ¢;) Equation 2b
HbSSHWEJrFIS =N; x CBR; x (p;%+FISipiqi) Equation 3a
HbSCHWE+FIS =N; x CBR; x [2 X pi X g X (1 - FIS,L»)] Equation 3b

where N; is the local population; CBR;j is the crude birth rate; p; is the allele frequency of
HbS; g, the frequency of HbC, is equal to 1-p;; and £} is the fixation index at place i.

Newborn screening surveys

We identified 36 published surveys of newborns tested for structural hemoglobin variants
(HbS and HbC) in the study regions matching our inclusion criteria. These surveys included
60 samples or subsamples; 40, 5, and 15 of which were from surveys conducted in sub-
Saharan Africa, North Africa and the Middle East, respectively. Sample sizes ranged
between 30 newborns in a survey conducted in Tanzania to more than half a million
newborns tested over a decade in the United Arab Emirates. 57% of samples or subsamples
had a size smaller than 1,000 newborns (Figure 1).

HbS allele frequencies within individual study samples ranged between 1.4% (Rwanda) and
14.6% (infants of DRC-origin living in Burundi & DRC) in sub-Saharan Africa, between
0.3% and 2.8% in Tunisia, and between 0.5% (UAE) and 13.2% (Saudi) in the Middle East
(Supplementary Table S2). HbC was observed in 20 population samples out of 38 that tested
for HbC, covering an area extending from Senegal to Oman. Reported HbC frequencies in
those studies that detected HbC ranged between 0.1% (Rwanda) and 10.4% (Burkina Faso)
(Supplementary Table S2).

Deviation from HWE

While observed and expected genotype counts matched exactly in 16 study samples (27%),
the observed number of HbSS individuals was higher than expected in 42 of them. The
observed number of HbCC individuals was higher than expected in 29% (n=8) of study
samples in which HbC was found (Figure 2). A statistically significant difference (p<0.05)
between observed and expected HbS counts was found in 24 of 60 samples or subsamples: 1
in Burkina Faso, 6 out of 15 in the DRC, 1 in Gabon, 1 in Ghana, 1 out of 2 in Nigeria, 1 out
of 4 in Senegal, 1 out of 5 in Tunisia, 1 out of 3 in Bahrain, 1 in Lebanon, 1 in Oman, 5 out
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of 5 in Saudi Arabia, and 3 out of 3 in the UAE (Supplementary Table S3). Among 29
samples or subsamples with >1000 newborns tested, 20 (69%) revealed differences between
observed and expected frequencies of homozygotes that were statistically significant.

F|s coefficient

A positive Fg reflects an excess of homozygotes, while a negative value indicates an excess
of heterozygotes. The highest F|ss in sub-Saharan Africa were found in study samples from
Senegal (25.7%) and Gabon (28.9%). In the Middle East, F|5 reached values up to 18.8% in
Saudi Arabia and 21.2% in Bahrain (Supplementary Table S3). For most countries,
substantial differences in F|g were observed between various national population samples
(Supplementary Table S3). For example, F|s ranged from -11.1% to 2.4% in Burundi,
-5.7% to0 6.4% in Tanzania -and from —0.9% to 21.2% in Bahrain.

Impact on estimates of prevalence of affected newborns

As most Fg were positive for the samples surveyed, estimates of the prevalence of HbSS in
newborns corrected for the fixation index (i.e. based on Equation 3) were higher than the
uncorrected estimates calculated using the simple HWE equation. In three large (n>30,000)
studies from sub-Saharan Africa, the corrected to uncorrected HbSS prevalence estimate
ratios were approximately 1.4 in the DRC and Ghana and 1.0 in Angola (Table 1). In the
Middle East, the ratios were considerably higher in screening studies conducted in Lebanon
(11.4) and the United Arab Emirates (up to 17.7) while in Bahrain and Saudi Arabia, ratios
have fallen from 3.4 or greater during the 1980s to 1.0-1.5 in studies conducted more
recently.

Across all surveys, the estimated total number of HbSS newborns, corrected based on Fis,
were 33,261 instead of 24,958 in sub-Saharan Africa and 1,109 instead of 578 in the Middle
East. Corrected and uncorrected estimates of annual births with HbCC and HbSC are
presented in Supplementary Table S4 for the 20 samples for which the frequency of HbC
was reported and not null. Although most of these estimates need to be considered with
caution due to the relatively small number of births affected by HbCC or HbSC (compared
to HbSS), they suggest that uncorrected estimates based on HbC alleles assuming HWE
could substantially underestimate the number of HbCC births and slightly overestimate the
number of HbSC births.

DISCUSSION

This study, which to our knowledge includes all relevant published studies across the study
regions, reveals a striking lack of newborn screening surveys in the areas most affected by
sickle cell disorders. Universal newborn screening programs for sickle cell disorders have
long been implemented in the United States of America and the United Kingdom, where it
has led to substantial improvements in childhood mortality.2728 More generally, universal
newborn screening can contribute to the reduction of health disparities.2? Ghana is the only
African country which has so far implemented a large scale newborn screening program,
with data so far published from Kumasi and a neighboring community. Local screening
efforts have begun in a number of African countries, but those often lack financial and
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political support to be scaled up to subnational or national levels.39 This is reflected by the
rather small sample sizes of most newborn screening studies conducted in sub-Saharan
African countries, with 30 of 40 samples or sub-samples (75%) having tested less than 1,000
newborns and only three studies reporting results for more than 30,000. With the ongoing
increase of the health burden of hemoglobinopathies, the implementation of large-scale
newborn screening programs could contribute to saving millions of lives in the coming
decades.*

In countries for which several newborn screening studies have been published, the present
study highlights heterogeneities in the allele frequencies of hemoglobin variants and the
magnitude of deviation from HW expectations. Although the former can to some extent be
taken into account using geostatistical methods?%, to date the latter has been under-
appreciated in the calculation of national, regional and global burden estimates.

Differences between observed and expected frequencies of genetic disorders based on allele
frequencies within a study sample are common in newborn screening surveys of structural
hemoglobin variants in Africa and the Middle East. Various factors can explain an excess of
homozygosity, including consanguinity and population structure, but their respective effects
are difficult to dissect. These results give insight into the relative magnitudes by which
current national and regional estimates based on extrapolations from the frequencies of HbS
alleles might represent underestimates of the birth prevalence of sickle cell disease. The
magnitude of underestimation may be as much as one-third in African populations and
almost one-half in Middle Eastern surveys. Regrettably, we did not find substantial data
from screening studies conducted in India and could not, therefore, extrapolate this
conclusion to that country.

Surprisingly high Fig’s found in small study samples from Gabon and Senegal suggest either
quality control issues or chance variation. The threats to quality and potential bias in
estimates of F|g include small sample size, selection bias, and mistaken genotyping. The
Gabon study illustrates the first problem, with fewer than 100 newborns tested, a sample
size that is inadequate for reliable estimates to be made. Despite a larger sample size
(n=479), the high Fs coefficient found in one sample of Senegalese newborns should be
interpreted with caution because the reported frequency of SS (1.9%) is several times higher
than reported in all other studies from Senegal (0.3-0.5%). This finding could potentially be
the result of referral or selection bias or due to diagnostic errors.

An apparent excess of homozygotes is often attributed to consanguinity, which is assumed
to be high in populations living in the Sahel, other parts of West Africa, the Middle East and
Central/South Asia.3! Nevertheless, data availability on consanguinity are very patchy.3!
Existing national estimates of consanguinity may reflect the behavior of specific localized
ethnic groups studied, rather than that of the overall population of a country. In much of sub-
Saharan Africa, however, consanguinity is reported to be widespread, and may be found in
similar frequencies among different ethnic groups in a country.32 Moreover, estimates of the
frequency of consanguineous marriage may differ widely for a single ethnic group. For
example, two published estimates of consanguinity among the Yoruba living in south-
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western Nigeria were 51% in a rural sample in the 1970s and 6% in an urban sample in the
1990s.33

Consanguinity is generally thought to be common in many parts of The Middle East.3! For
example, well over one-half of marriages among Saudi nationals in Saudi Arabia are
consanguineous, with one-third of all marriages between first cousins.3* As illustrated by
Figure 2, we found a marked excess of SS homozygotes in most of the earlier surveys
conducted in Bahrain, Oman, Saudi Arabia, and the United Arab Emirates (UAE).

In Bahrain, data have shown a reduction over time of the excess homozygosity, an
observation that may be accounted for by more recent introduction of wide-spread carrier
testing. The excess of SS homozygotes observed in 1984-1985 had essentially disappeared
in screening data collected in 2002 and 2008-2010. The introduction of prenatal carrier
screening beginning in 1993, student screening beginning in 1998, voluntary premarital
screening and counselling of couples identified as carriers (mandatory for Bahraini citizens
beginning in 2004), appear to have driven this trend. Between 1984-1985 and 2010 the
prevalence of HbSS in Bahraini newborns decreased from 2.1% to 0.4%, while that of
HbAS increased from 11.2% to 14.7%. The public health implication is that the direct
influence of parental consanguinity on high rates of sickle cell disease relative to the
prevalence of the sickle cell allele can be attenuated if carrier testing leads to fewer carrier
couples marrying and having children together. In various Mediterranean countries
programs combining premarital screening, genetic counseling, and prenatal diagnosis for
carrier couples offered during early pregnancy long ago resulted in 90% or more decreases
in live births with thalassemia. More recently, a similar program in parts of coastal Turkey
resulted in similar decreases in births for both thalassemia and sickle cell disease.3 In the
Middle East, attitude towards prenatal diagnosis and abortion are greatly influenced by
religious values. Education about a fatwa which allows the abortion of a diseased fetus
within the first 120 days of a pregnancy can promote the acceptance of genetic counselling
in Islamic societies.38

Ethnographic or genealogical approaches to assessing consanguinity often yield results that
differ markedly from genome-based measures of supposed interbreeding.33 Differences in
the presumed frequency of inbreeding suggested by the F |5 coefficient often reflect the
influences of genetic isolation and genetic drift, including past population bottlenecks and
founder effects rather than consanguineous marriage.3” Differences in the Fg coefficient
may also reflect differences in study quality, including mistaken attribution of genotype due
to testing errors and selection bias. A study that analyzed data from 26 populations around
the world with both F|g coefficients and estimates of consanguinity found that the latter
explained a little more than one-tenth of variation in the former (r = 0.349, p = 0.040).%"

One of the highest ethnographic estimates of consanguineous marriage in Nigeria (56—-61%)
comes from rural Hausa communities in the northern part of the country.38 Although Fg
coefficients are moderately correlated with ethnographic estimates of marital
consanguinity,3” it has not been established that the same association holds true among
studies in sub-Saharan Africa.
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An excess of homozygotes or deficit of heterozygotes can also be explained by population
genetic structure or stratification, also referred to as the Wahlund Effect.3° Population
stratification can result from random mating within sub-populations of distinct ancestral
origins. In population stratification, each sub-population may be characterized by HWE but
an aggregate sample from the stratified population can show deviation from HWE and
apparent inbreeding or assortative mating. Population stratification is particularly likely to
occur in countries or regions in which hemoglobinopathies were historically rare but now
have distinct high frequency sub-populations due to historical or recent population
migrations.*0 In particular, population stratification is present in heterogeneous populations
in North America and Western Europe in which most cases of sickle cell disease occur
among specific sub-populations with a migration history or ancestry from areas in which the
HbS allele has been present for millennia. In African and Middle Eastern countries with
heterogeneous allele frequencies of hemoglobin variants, population stratification can be
expected in large cities to which people migrate. This is illustrated by Tshilolo’s 2009 study
of newborns in Kinshasa in which HbS allele frequencies varied between 4.3% and 11.4% in
different sub-populations, and the Fs ranged from —-4.5 to 6.9. While screening studies
usually provide little information about the actual structure of local populations, the
inclusion in future analyses of data from national censuses and/or genome-wide association
studies*! could potentially contribute to a better understanding of the factors underlying
HWE deviations observed and to improving current and future newborn estimates.

Finally, the sensitivity and specificity of the diagnostic methods used, as well as the main
objectives of screening surveys represent another potential source of deviation. Most
newborn screening programs attempt to minimize the chances of false positives and false
negatives for individuals with sickle cell anemia, leading to strict diagnosis confirmation and
minimal errors, while the limited clinical implications of a misdiagnosis of a heterozygote
carrier as a wild-type homozygote and vice versa might not justify the expenses of further
confirmation, leading to more frequent misclassification of AS and AA than SS. While we
recorded the diagnostic method used in each survey, further work is needed to identify the
precise role of this parameter on deviations from HWE.

In conclusion, taking potential deviation from HWE into account in assessments of the
prevalence of hemoglobinopathies could have several benefits. First, it would help refine
existing estimates of numbers of SCA-affected newborns at national, regional and global
levels. Due mostly to the limited availability of data on consanguinity, the most recent
published global estimates of the prevalence of HbSS* presumed HWE. That could have led
to a substantial underestimation of the number of HbSS annual births in some countries, as
suggested by the present study. Second, the refined model presented here allows for
improved estimation of numbers of SCD-affected newborns, including both HbSS and
HbSC, based on allele frequencies, although other SCD variants are still excluded. Third, the
prevention of these disorders could be improved by the adoption of appropriate policy
measures tailored to the genetic, social and cultural factors responsible for HWE deviation.
Finally, further analyses into the respective contributions of various factors responsible for
deviations from HWE might reveal interesting insights into the evolutionary dynamics of
these genes in different populations across the globe.
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Refer to Web version on PubMed Central for supplementary material.
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Distribution and size of newborn screening surveys of HbS and HbC in Africa and the
Middle East.
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or expected counts for each survey independently. n = number of newborns tested. A *

Genet Med. Author manuscript; available in PMC 2016 March 03.



1duosnue Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnue Joyiny

Piel et al.

Page 16

indicates a population sample for which deviation from Hardy-Weinberg Equilibrium was
found to be statistically significant using the likelihood ratio full-enumeration exact test.
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