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SUMMARY

Semicontinuous data in the form of a mixture of a large portion of zero values and continuously 

distributed positive values frequently arise in many areas of biostatistics. This study is motivated 

by the analysis of relationships between disease outcomes and intakes of episodically consumed 

dietary components. An important aspect of studies in nutritional epidemiology is that true diet is 

unobservable and commonly evaluated by food frequency questionnaires with substantial 

measurement error. Following the regression calibration approach for measurement error 

correction, unknown individual intakes in the risk model are replaced by their conditional 

expectations given mismeasured intakes and other model covariates. Those regression calibration 

predictors are estimated using short-term unbiased reference measurements in a calibration 

substudy. Since dietary intakes are often “energy-adjusted”, e.g., by using ratios of the intake of 

interest to total energy intake, the correct estimation of the regression calibration predictor for each 

energy-adjusted episodically consumed dietary component requires modeling short-term reference 

measurements of the component (a semicontinuous variable) and energy (a continuous variable) 

simultaneously in a bivariate model. In this paper, we develop such a bivariate model, together 

with its application to regression calibration. We illustrate the new methodology using data from 

the NIH-AARP Diet and Health Study (Schatzkin et al., 2001, American Journal of Epidemiology 
154, 1119–1125), and also evaluate its performance in a simulation study.
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1 Introduction

Semicontinuous data in the form of a mixture of a large portion of zero values and 

continuously distributed positive values frequently arise in many areas of biostatistics. This 

study is motivated by the analysis of relationships between disease outcomes and usual, i.e., 

long-term average, intakes of episodically consumed dietary components that are not 

typically eaten daily by nearly everyone. The latter is true of many foods, e.g., fish, red 

meat, whole grains, dark green vegetables, orange vegetables, etc, and some nutrients, e.g., 

vitamin A or B-12.

An important aspect of dietary studies is that true usual diet is unobservable and evaluated 

by dietary-assessment instruments with some degree of measurement error. Due to relatively 

low cost and convenience of administration, large epidemiologic studies of diet and disease 

commonly employ food frequency questionnaires (FFQs) that enquire about the participants’ 

recent dietary intake, usually over the past year. It has long been recognized that FFQs 

contain considerable measurement error, both random and systematic, which may 

substantially bias estimated diet-disease relationships and reduce the statistical power to 

detect a dietary effect (Freudenheim, Marshall, 1988). Moreover, at least in theory, 

conventional statistical tests to detect an effect may become invalid (do not control the Type 

I error rate) in the presence of error-prone covariates (Carroll et al, 2006). It is therefore 

important to adjust the analysis of diet-disease associations for FFQ measurement error.

The most popular method of adjusting for measurement error in nutritional epidemiology 

has become regression calibration, which substitutes for the unknown true dietary exposures 

their conditional expectations (i.e., best mean squared error predictors) given their observed 

values and other covariates in the disease model (Carroll et al., 2006). In practice, regression 

calibration predictors are estimated in a calibration substudy that includes (often repeated) 

short-term reference measurements assumed to be unbiased for individual true usual intakes.

Currently, large cohort studies are designed with a calibration substudy that includes as 

reference measurements reported intakes from a 24-hour dietary recall (24HR) that queries 

all foods and their amounts eaten on the previous day, or sometimes a multiple-day food 

diary. The working assumption is that such short-term measurements are unbiased for true 

usual intake, even though they may fall somewhat short of this ideal. Although the 

methodology in this paper is developed for any short-term reference instrument, it is 

exemplified using the 24HR.

Short-term reference measurements of episodically consumed dietary components are 

semicontinuous variables with excess zeros and positive values with a usually skewed to the 

right distribution. Even if otherwise precise, as a measure of usual intake they contain 

substantial within-person measurement error due to daily variation of intake. Modeling such 

reference data and using them to compute regression calibration predictors is therefore 

challenging.

In the literature, a semicontinuous variable is commonly specified as the result of two 

distinct, although generally correlated, processes: one determines whether the variable takes 

positive or zero values; the other specifies its positive value. Such a two-part model was first 
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introduced by Cragg (1971) who suggested using a logit or probit regression to specify the 

probability of positive values and a linear regression to specify log-transformed positive 

values. The two-part model was extended to longitudinal data by Olsen and Schafer (2001) 

and Tooze, Grunwald, and Jones (2002) by considering mixed effects regressions in both 

parts of the model and allowing random effects to be correlated. Recently, a new 

methodology, called the NCI method, has further extended the two-part model by 

considering the Box-Cox transformation of the positive values to achieve more flexibility in 

addressing skewness and by allowing for measurement error (Tooze et al, 2006, Kipnis et al., 

2009).

The application of such models to nutritional epidemiology presents an additional challenge. 

In many cases, regression calibration may be applied to each error-prone covariate in the 

regression model one by one. But this may not always apply to dietary risk models. To better 

understand the effect of dietary composition, dietary exposures are usually “energy-

adjusted”, e.g., by using ratios of the intake of interest to total energy intake, called 

“densities”. Since intakes of many dietary components and total energy are generally 

correlated, the correct application of regression calibration for each energy-adjusted 

episodically consumed dietary component requires modeling short-term reference 

measurements of the component (a semicontinuous variable) and energy (a continuous 

variable) simultaneously in a bivariate model.

In this paper, we develop such a model, together with its application to regression 

calibration. Although the theoretical development underlying this model has never been 

published, some applications of the model and its multivariate extension to surveillance were 

presented in papers by Zhang et al. (2011a and 2011b). Both papers referenced the preprint 

by Kipnis et al. (an early version of the present paper) for model justification and 

concentrated on fitting the models using the Markov Chain Monte Carlo (MCMC) 

technique. Here, we fully describe the methodology, together with its application to 

nutritional epidemiology, using the maximum likelihood approach. In Section 2 we discuss 

risk models in nutritional epidemiology. We point out that conventional regression models 

with linear predictors may not always produce a good fit and suggest, as a simple 

generalization, models with linear predictors after appropriate covariate transformations. In 

Section 3 we develop the bivariate measurement error model, and in Section 4 we describe 

its implementation in the analysis of diet-cancer relationships. In Section 5 we illustrate the 

method using data from the NIH-AARP Diet and Health Study (Schatzkin et al, 2001). We 

demonstrate that covariate transformation may improve unsatisfactory fit of conventional 

Cox regression and lead to substantially different estimates of the exposure effect. In Section 

6 we present the results of a simulation study to evaluate the performance of the proposed 

method in finite samples. We conclude with discussion in Section 7.

2 Risk Models

The most commonly used risk models in nutritional epidemiology are the generalized linear 

regression (especially logistic regression) and the proportional hazards Cox regression. 

Below, a health outcome is denoted by Y, a vector of true usual intakes of dietary 

components of interest by T = (T1, …, TK)t, and a vector of other exactly measured 
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covariates by Z = (Z1, …, ZL) t. As explained above, some components of T include energy-

adjusted intakes. A risk model can be written generally as

where r(Y | T, Z) is the risk function for outcome Y and η = η(T, Z; α) is a predictor based 

on covariates T, Z and parameters α.

In logistic regression, Y takes values of 0 (no event) or 1 (event), and the risk function is the 

logit of the probability of event, . In standard Cox 

regression, Y is time t to event since entry into the study, and the risk function is the log ratio 

 of the hazard function h(t | T, Z) to the baseline hazard h0(t).

Conventional risk models specify the predictor η(T, Z; α) as a linear function of covariates. 

This is convenient but does not always provide a good fit. To alleviate this problem, 

especially if covariates have skewed distributions (typical of dietary exposures), 

epidemiologists sometimes transform covariates using log or power transformations. In the 

spirit of this approach, in this paper, we will consider more flexible risk models

(1)

, and 

, with predictors that are linear over transformed covariates using the 

Box-Cox family of transformations

(2)

(Box and Cox, 1964). Note that α0 = 0 in the Cox regression.

The slope αTk in model (1) represents the effect of dietary component Tk, k = 1, …, K. Due 

to the Box-Cox transformation, this effect is not a simple function of the additive or 

multiplicative change in exposure (as it would be if intake were expressed on the absolute or 

log scale, respectively) but depends on the baseline comparator value as follows: the effect 

of changing exposure Tk from Tk0 to Tk1 on an outcome Yi is given by 

.

For person i = 1, …, n in the study, denote FFQ-measured intakes by Qi. These are the error-

prone observed values of Ti. Assume that Qi has non-differential measurement error with 

respect to Yi, i.e., that Yi and Qi are independent given true intakes Ti and covariates Zi. 

Denote by Xi a vector of covariates Qi, Zi or their monotonic transformations. Regression 

calibration states that approximately (exactly for a linear regression risk model)
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(3)

For non-linear risk models, the approximation in (3) is derived under the working hypothesis 

that  is small (Carroll et al., 2006); it is usually very good in most 

applications to nutritional epidemiology due to relatively small relative risks.

As noted above, the regression calibration predictor E [T* (λT) | Xi] is estimated using 

repeated short-term reference measurements Rij for individual i, i = 1, …, m, and repeat 

measure j, j = 1, …, Ji in a calibration substudy. We will use the notation E(• | i) below to 

indicate that the expectation is conditional on information for the ith individual. Under the 

assumption that the reference measurements are unbiased for individual true usual intakes, 

i.e.,

(4)

the regression calibration predictor is given by E[T*(λT) | Xi] = E[g{E(Rij | i); λT)} | Xi], 

and its estimation requires modeling of Rij.

3 Bivariate Measurement Error Model

We use subscripts “C” and “E” to denote intakes of the episodically consumed component of 

interest and total energy, respectively. We assume that individual usual intakes TCi and TEi 

are strictly positive continuous variables. This is natural for energy intake; for an episodic 

component, this assumption implies the absence of never-consumers. For the reference 

measurements, we assume that energy is always reported as positive, i.e., REij > 0. However, 

for an episodically consumed component, we allow that RCij = 0 for any finite number of 

short-term periods (days).

For person i = 1, …, n in the main study, the observed data consist of the outcome variable 

Yi and vector Xi of the covariates. Continuous covariates may be monotonically transformed 

to approximate normality thereby improving fit of the measurement error model described 

below. In a calibration sub-study, the data additionally contain repeat short-term reference 

measurements (RCij, REij), i = 1, …, m, j = 1, …, Ji. In models below, generically, β denotes, 

population-level covariate effects (fixed effects), ui denotes random effects representing the 

part of the within-subject mean not explained by the covariates, and εij denotes within-

subject random errors representing longitudinal variation.

A bivariate measurement error model of a semicontinuous (the episodically consumed 

component RCij) and a continuous (total energy REij) variables requires combining the two-

part model for the episodic component with a one-part model for total energy, leading to a 

three-part model. Reflecting the nature of short-term dietary intakes, such a model needs to 

satisfy the following requirements:

i. for each individual i on any single day j, energy intake may be correlated with both 

the fact of reported consumption of the dietary component, and the amount 

consumed (on a consumption day);
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ii. for each individual i, the probability to consume the dietary component may be 

correlated with the usual amount consumed on a consumption day, and both may be 

correlated with usual energy intake.

With the first requirement in mind, we specify a binary indicator ICij of reference 

consumption during a specific period j as follows. Let ICij = I[RCij > 0], where I[x] is the 

indicator function. We model ICij as resulting from dichotomizing a continuous latent 

variable RC1ij, i.e.,

(5)

 and  are independent of each other and of 

Xi. For identifiability, , has to be fixed, and without loss of generality we set 

(Catalano and Ryan, 1992). Note that model (5) is equivalent to specifying the probability of 

consumption on any given day using the mixed effects probit regression. The advantage of 

specification (5) is that it allows for correlation of latent variable εC1ij with its counterpart in 

the model for energy intake (see below).

In the second part of our model, we follow the second part of the two-part model in Kipnis 

et al. (2009) and specify the Box-Cox transformed reference measurements during a 

consumption period as a mixed effects linear model. Define RC2ij = (RCij | RCij > 0) as the 

positive part of the reported intake RCij (if RCij = 0 the value of RC2ij is irrelevant). We 

assume that there is a Box-Cox transformation with parameter λRC such

(6)

 and  are independent of each other and of 

Xi.

In the third part of our model, reference energy intake is specified similarly to sub-model (6) 

as follows. We assume that there is a Box-Cox transformation with parameter λRE such that

(7)

 and  are independent of each other and of Xi.

The random effects (uC1i, uC2i, uEi) in model (5)–(7) are allowed to be mutually correlated 

to satisfy requirement (ii) above. To satisfy requirement (i), within-person errors εEij in sub-

model (7) are allowed to be correlated with their counterparts εC1ij and εC2ij in sub-models 

(5)–(6). We however assume that cov(εC1ij, εC2ij) = 0, so that marginally RCij and REij 

follow the two-part model (5)–(6) and one-part model (7), respectively.

The underlying three-part model (5)–(7) can be expressed more succinctly as the following 

bivariate measurement error model for reference measurements RCij and REij :
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(8)

where ui = (uC1i, uC2i, uEi)t ~ Normal(0, Σu) with an unstructured variance-covariance 

matrix Σu, and {εij = (εC1ij, εC2ij, εEij)t} ~ Normal(0, Σε), with a structured variance-

covariance matrix equal to

(9)

and vectors Xi, εij, and ui are mutually independent. All model (including transformation) 

parameters may be estimated by maximizing likelihood function derived in Web Appendix 

A.

4 Fitting the Risk Model Using Regression Calibration

Our methodology combines a pseudo-likelihood approach with regression calibration and 

may be implemented in three steps. First, the bivariate measurement error model (8)–(9) is 

fitted in the calibration substudy using the maximum likelihood. Second, for any given 

transformation parameters (λTD, λTE), regression calibration predictors are calculated in the 

main study as follows. Under assumption (4), true usual intakes are given by integrating RCij 

and REij over the distributions of εC2ij and εEij, respectively, i.e.,

where Φq (ξ, Σ) denotes the q-dimensional normal cumulative distribution function of a 

random vector ξ with mean zero and covariance matrix Σ. The regression calibration 

predictors of transformed true density TDi = TCi / TEi, and energy intake TEi are given by

(10)

and

(11)
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respectively. These regression calibration predictors are then estimated in the main study by 

substituting the estimated in the calibration substudy model parameters into equations (10)–

(11) and numerically integrating the resulting expressions.

Third, the risk model, with regression calibration predictors as dietary exposures, is fitted in 

the main study by the maximum likelihood (partial likelihood in case of Cox regression). 

Finally, transformation parameters (λTD, λTE) may be estimated by exploring a grid of their 

possible values, fitting the risk models with corresponding calibration predictors and 

choosing transformations that maximize the corresponding profile likelihood.

The standard errors of the estimated parameters in the risk model may be calculated using 

the asymptotic theory outlined in Web Appendix B. Alternatively, they may be estimated 

using the bootstrap approach as we do in our examples in Section 5 below. In implementing 

the bootstrap the whole fitting procedure (see steps 1–3 above) should be applied to each 

bootstrap replication to take into account all the variation due to each step.

The described approach may be carried out in SAS using NLMIXED procedure to fit the 

measurement error model and PHREG or LOGISTC procedures to fit the Cox regression or 

logistic regression risk models, respectively, The SAS code for fitting the measurement error 

model and estimating regression calibration predictors is provided in Supplemental 

Materials.

5 Application to NIH-AARP Diet and Health Study

We apply the above methods to analyses of two diet-cancer relationships based on data from 

the NIH-AARP Diet and Health study (Schatzkin et al, 2001). This is a prospective cohort of 

567,169 participants (340,148 men and 227,021 women) designed to investigate 

relationships between diet and cancer. Study participants completed a baseline FFQ on usual 

intake of 124 different foods and food groups. In addition, a calibration sub-study was 

conducted on 2053 participants (1034 men, 1019 women), who were asked to complete, in 

addition to the FFQ, two unannounced 24-hour dietary recalls on non-consecutive days.

NIH-AARP study investigators have reported small but statistically significant associations 

between orange vegetable intake and lung cancer incidence in men (Wright et al., 2008), and 

between red meat intake and lung cancer incidence in men (Tasevska et al., 2009). These 

reports were based on analyses of FFQ-reported diet that were not adjusted for measurement 

error. We used regression calibration based on the developed methodology to adjust these 

associations for measurement error in the FFQ-reported diet. The analysis included 279,149 

men (4,110 incident lung cancers) in the AARP main cohort, and 986 men in the calibration 

sub-study.

5.1 Diet-Disease Risk Model

In these analyses, TCi denotes true usual red meat intake (g/day) or orange vegetable intake 

(cups/day), TEi true usual energy intake (kcal/day), and TDi = (TCi / TEi) × 1000 denotes true 

red meat density (g/1000 kcal) or orange vegetable density (cups/1000 kcal). Let (QCi, QEi, 

QDi = (QCi / QEi) × 1000) and (RCij, REij, RDij = (RCij / REij) × 1000) denote, respectively, 
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the FFQ- and 24HR-reported values and calculated densities of the corresponding dietary 

components. In accordance with (3), we considered the Cox proportional hazards model

(12)

where Ti = (TDi, TEi)t and Zi is a vector of the following covariates: age at entry into the 

study (continuous) and smoking status (never smoked; quit ≥ 10 years ago; quit 1–9 years 

ago; current smoker or quit < 1 year ago). The original analyses (Wright et al., 2008; 

Tasevska et al., 2009) included more covariates, but to simplify the example we included 

only the most important risk factors for lung cancer.

5.2 Regression Calibration

In regression calibration, we considered Box-Cox transformed FFQ variables, so that

The Box-Cox parameters λQC and λQE were chosen among those in the interval [0,1] to 

minimize the Kolmogorov test statistic for normality in the main study. A small percentage 

of subjects reported zero intakes of orange vegetables (0.4%) and red meat (0.05%) on the 

FFQ. We therefore added a relatively small (with respect to the corresponding distribution) 

value to the FFQ measurements before choosing a transformation. For red meat we added 1 

g/day and for orange vegetables 0.01 cups/day. This allowed us to consider the log 

transformation and also to remove the leverage of zero values in regression models.

After fitting the bivariate model (8)–(9) in the calibration substudy, for any given values of 

transformation parameters λTD and λTE, the calibration predictors E[g(TDi; λTD) | Xi] and 

E[g(TEi; λTE) | Xi] were calculated by numerical integration according to expressions (10)–

(11) for each subject in the main study and used as covariates, together with Zi, in risk 

model (12). Standard errors for the estimated parameters were calculated using the bootstrap 

method with 200 replications.

Following the usual practice, we first fitted the risk model using dietary exposures on the 

original (λTD = λTE = 1) as well as the log (λTD = λTE = 0) scales and, for each set of 

transformations, assessed the proportional hazards assumption of the Cox model and the risk 

model fit using methods based on cumulative martingale residuals (Lin, Wei, and Ying, 

1993) and implemented in the SAS PHREG procedure (version 9.2, SAS Institute). In the 

case that neither model produced an acceptable fit, we planned to explore a grid of possible 

Box-Cox transformation parameters (λTD, λTE) in the interval [−1, 1] and to choose the 

transformation based on the maximization of the corresponding profile likelihood.

In our examples, we compared the results of our proposed method to those without 

correction for measurement error, in which case, for any given transformation parameters 

(λQD, λQE), risk model (12) was fitted to g(QDi; λQD), g(QEi; λQE), and Zi. Note that for an a 

priori chosen scale, such as the original or the log, we considered λQD = λTD, λQE = λTE. If 
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based on maximizing the profile likelihood, the transformation parameters chosen for the 

uncorrected risk analysis and those after regression calibration would generally differ.

Table 1 summarizes the distributions of 24HR-reported orange vegetable and red meat 

intakes for men in the calibration sub-study. Both food groups are episodically consumed, 

although red meat is consumed more frequently than orange vegetables; on average for a 

single day, nonzero consumption of red meat is reported on 70% of the 24HRs, compared to 

only 44% for orange vegetables.

Table 2 displays the estimated parameters in the bivariate model with dietary exposures 

being 1) red meat and energy intake; and 2) orange vegetable and energy intake. As the 

Table shows, for both food groups, FFQ-reported intake is related to both the probability to 

consume and the mean amount consumed on consumption days. It also follows that current 

smokers are more likely to eat red meat and less likely to eat orange vegetables than never 

smokers. In addition, the variances of within-person errors are εij larger than the variances of 

the random effects ui, and the within-person errors for energy intake, εEij, are statistically 

significantly correlated with εC1ij and εC2ij for red meat intake, but not for orange vegetable 

intake. This is to be expected since, unlike orange vegetables, red meat contributes a 

substantial amount of energy.

5.3 Red Meat Intake and Lung Cancer Risk

Table 3 presents the results of an analysis of red meat density intake and lung cancer risk. 

The risk model did not fit with dietary exposures on the original scale for the unadjusted 

analysis (goodness-of-fit p = 0.041), although the regression calibration method produced an 

acceptable fit (p = 0.136). With dietary exposures on the log scale, both the unadjusted and 

the regression calibration methods produced a good fit. The p-values for the tests of the 

proportional hazards assumption were greater than 0.05 for all covariates in both models, 

indicating no serious violation of the assumption. The estimated hazard ratios shown in the 

table correspond to a change in red meat density intake from 10 g/1000 kcal to 60 g/1000 

kcal, intakes that are close to the 10th and slightly smaller than 90th percentiles, respectively, 

of the population distribution. As expected, the unadjusted estimates of the hazard ratio for 

red meat density are closer to 1.0 than are the measurement error corrected estimates. It is 

interesting to note that for the regression calibration method, where the model fit using 

either the original or log-transformed scales was acceptable, the estimated hazard ratios were 

very similar.

5.4 Orange Vegetable Intake and Lung Cancer Risk

Table 4 presents estimated hazard ratios for lung cancer when orange vegetable density 

intake changes from 0.08 cups / 1000 kcal to 0.10 cups/1000 kcal, which are again close to 

the 10th and slightly smaller than 90th percentiles of the population distribution, respectively. 

When checking goodness-of-fit, the p-values for the tests of the proportional hazards 

assumption were greater than 0.05 for all covariates in both unadjusted and adjusted for 

measurement error models, indicating no serious violation of the assumption. However, the 

goodness-of-fit tests indicated that both adjusted for measurement error and unadjusted risk 

models with dietary exposures on the original scale did not fit the data (p = 0.002 and 
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p<0.001, respectively). When we considered the log scale for dietary exposures, both models 

produced a more acceptable fit. As in the previous analysis, the unadjusted estimate of the 

hazard ratio was closer to 1.0 than the estimate adjusted for measurement error. In this 

example, choosing a more appropriate scale for dietary exposures produced substantially 

different results compared to the original scale where the model fit was very poor.

6 Simulation Study

We carried out two simulation studies to evaluate the performance of regression calibration 

using the bivariate episodic component and energy model in finite samples, and to compare 

it to unadjusted results. The two simulation studies were based on the examples given in the 

previous section. For simplicity, the risk models were chosen to be logistic regressions with 

only the corresponding food group density and energy intakes as covariates. For each 

simulation study, we performed 2 sets of 200 simulations. The first set was based on the 

logistic regression with true linear predictor on the original scale, and the second on the log 

scale. For each simulation, we generated two independent datasets. The first was a main 

study with 200,000 subjects, while the second was a calibration sub-study with 1,000 

subjects. The details of the simulations are provided in Web Appendix C. For each 

simulation, we assumed that the correct scale for energy intake was known and chose λTD by 

considering different values between −1 and 1 with step 0.1, fitting the logistic regression 

risk model with calibrated covariates and choosing λTD that maximized the corresponding 

profile likelihood.

Tables 5 and 6 show the results of the first and second simulation studies, respectively. 

Regression calibration based on the bivariate model performed well. The increase in 

standard errors of the estimated odds ratios was more than compensated for by the negligible 

biases, producing estimates with smaller root mean squared errors (RMSEs) than the 

unadjusted method. Note that when the true linear predictor was on the original scale, 

regression calibration led to a better estimated transformation parameter λ than the 

unadjusted method, but when the true linear predictor was on the log scale, the scales chosen 

by each method were on average similar and close to the true scale.

7 Discussion

The presented bivariate measurement error model addresses major challenges for 

simultaneous modeling of longitudinal error-prone semicontinuous (short-term reference 

measurements of an episodically consumed component) and continuous (short-term 

reference measurements of energy intake) variables. During a given short-term period, 

energy intake is allowed to be correlated with the binary indicator of episodic component 

consumption as well as with its positive intake if it is consumed. Allowing correlations 

among random effects in the model induces correlations between usual probability to 

consume an episodic component, usual consumption amount, and usual energy intake. 

Bivariate modeling of short-term reference intakes of an episodically consumed dietary 

component and energy leads to a rigorous application of regression calibration when the risk 

model contains energy-adjusted dietary exposures. As we demonstrate in applications to real 

data from the NIH-AARP Diet and Health Study, conventional risk models with linear 
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predictors may fail to produce a good fit to the data. A generalization to predictors that are 

linear over appropriately Box-Cox transformed covariates generally improves model fit. In 

our analysis of orange vegetables and lung cancer, the conventional Cox regression did not 

fit the data. The log transformation of the exposure not only led to an acceptable model fit, 

but also produced a substantially different estimated hazard ratio. The results of our 

simulations indicate that the developed methodology works well in finite samples, providing 

unbiased or nearly unbiased estimated exposure effects.

The presented bivariate model is easily extendable to handle longitudinal (time-dependent) 

covariates, and to include random slopes in addition to random intercepts. In addition, one 

could apply an enhanced regression calibration by including additional covariates in the 

measurement error model (5)–(7). As shown in Kipnis et al. (2009), under the condition that 

those covariates are related to true dietary exposure but, given truth, are not related to the 

outcome, the enhanced regression calibration may lead to more efficient estimates of the 

regression coefficients in the risk model. Note that additional covariates may differ for each 

part of the episodic component model as well as the model for energy intake.

The considered risk models may be also generalized. For example, it is straightforward to fit 

models of general form such as r(Y | T, Z) = α0 + αT g(T, Z; θ) for any function g. 

Regression calibration simply substitutes E{g(T, Z; θ) | Z, Q} for g(T, Z; θ), with the 

expectation calculated only once by numerical integration.

As mentioned above, regression calibration in nonlinear risk models provides an 

approximate adjustment for measurement error, and the excellent quality of this 

approximation under rare disease and/or relatively small exposure effect assumption may 

deteriorate if the assumption is violated. To reduce potential bias in Cox regression, there 

have recently been suggested the use of risk set calibration (Xie, Wang, and Prentice, 2001) 

or a computationally less excessive follow-up time regression calibration (Zhao and 

Prentice, 2014). Applying our approach with those methodologies is rather straightforward. 

It requires fitting the measurement error model in the calibration substudy to those still at 

risk within a given time interval (for follow-up calibration) or every time there is an event in 

the main study. In our applications, since cancer is a rare disease, the results would be very 

close to “usual” regression calibration as was demonstrated by simulations in both papers by 

Xie et al., 2001 and Zhao and Prentice, 2014.

In our applications to real data as well as in simulations, we considered risk models with 

only two dietary exposures, the density of an episodically consumed dietary component of 

interest and energy. In practice, risk models often contain energy-adjusted intakes of several 

dietary components as well as energy intake. Using the bivariate model, regression 

calibration may be applied to each pair of the dietary component and energy intakes one by 

one. Although not fully efficient, such a procedure does not jeopardize asymptotic properties 

of the estimated exposure effects. The only additional issue arises with respect to the final 

estimate of calibrated energy intake, since it may be estimated somewhat differently in each 

bivariate model. One option is to use the calibrated predictor with the greatest variance 

because that would produce the most efficient estimate of energy effect on health outcome 
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(Kipnis et al., 2009). Another option may be based on estimated calibrated energy intake 

from the marginal energy model.

In general, the most efficient regression calibration adjustment for measurement error would 

be based on a multivariate modeling of all dietary components and energy simultaneously. 

Such a multivariate model is specified as a straightforward extension of the suggested 

bivariate model. Each episodically consumed dietary component is specified using the two-

part model (5)-(6), and each regularly consumed dietary component (including energy) is 

specified using model (7). All random effects in the model are allowed to be correlated with 

an unstructured covariance matrix Σu. The within-person errors have a structured covariance 

matrix Σε where, for each episodically consumed component Ck,  and σεCk1εCk2 = 

0, and other elements are unrestricted.

Although the extension to a multivariate model with several semicontinuous and continuous 

variables is straightforward in theory, in practice it leads to difficulties in maximum 

likelihood estimation, since the likelihood quickly becomes very complicated, involving 

multivariate normal distribution functions. As a result, available software, such as the SAS 

NLMIXED procedure, can handle only a limited number of random effects. Recently, Zhang 

et al. (2011b) suggested a MCMC method of fitting such a multivariate model. This 

technique holds promise for more efficient application of regression calibration to risk 

models that include several, possibly energy-adjusted, episodically and daily consumed 

dietary components.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 1

24-hour dietary recall reported consumption of red meat and orange vegetables in men1; NIH-AARP Diet and 

Health Study.

Red Meat
(g/day)

Orange Vegetables
(cups/day)

Mean reported intake (s.e.) 82.8 (2.3) 0.14 (0.01)

Mean amount on consumption days (s.e.) 117.7 (2.6) 0.32 (0.01)

Mean probability to consume on any single day (s.e.) 0.70 (0.01) 0.44 (0.01)

Percentage of subjects who consumed food:

  0 out of 2 days 14.7 33.5

  1 out of 2 days 29.9 44.9

  2 out of 2 days 55.4 21.6

1
Based on the 886 males in the calibration substudy who completed two 24-hour dietary recalls.
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Table 2

Estimated bivariate model parameters for red meat and orange vegetables; NIH-AARP Diet and Health Study.

Red Meat
(g/day)

Orange Vegetables
(cups/day)

Parameter Estimate (s.e.)1 Estimate (s.e.)

Box-Cox parameter for food intake 0.376 (0.023) 0.173 (0.025)

Box-Cox parameter for energy intake 0.272 (0.050) 0.267 (0.051)

Fixed effects in part I of food model:

  FFQ-reported food intake 0.212 (0.018) 0.239 (0.039)

  FFQ-reported energy intake −0.184 (0.040) −0.034 (0.029)

  Age at Baseline 0.003 (0.009) 0.007 (0.006)

  Former Smoker, quit ≥ 10 years ago −0.013 (0.086) −0.076 (0.079)

  Former Smoker, quit 1–9 years ago −0.168 (0.148) −0.208 (0.116)

  Current Smoker or quit < 1 year ago 0.260 (0.156) −0.305 (0.116)

Fixed effects in part II of food model:

  FFQ-reported food intake 0.325 (0.061) 0.249 (0.037)

  FFQ-reported energy intake −0.222 (0.145) −0.112 (0.029)

  Age at Baseline −0.052 (0.028) −0.005 (0.007)

  Former Smoker, quit ≥ 10 years ago 0.674 (0.355) 0.072 (0.070)

  Former Smoker, quit 1–9 years ago 1.230 (0.552) 0.086 (0.129)

  Current Smoker or quit < 1 year ago 1.280 (0.466) −0.105 (0.132)

Fixed effects in energy model:

  FFQ-reported food intake −0.010 (0.029) −0.248 (0.104)

  FFQ-reported energy intake 0.571 (0.085) 0.600 (0.070)

  Age at Baseline −0.046 (0.014) −0.043 (0.014)

  Former Smoker, quit ≥ 10 years ago 0.199 (0.194) 0.171 (0.184)

  Former Smoker, quit 1–9 years ago 0.045 (0.294) 0.022 (0.294)

  Current Smoker or quit < 1 year ago −0.216 (0.293) −0.367 (0.290)

Random effects:

Var(uF1) 0.370 (0.101) 0.087 (0.056)

Var(uF2) 3.940 (1.059) 0.057 (0.049)

Var(uF3) 3.165 (0.308) 2.929 (0.306)

Corr(uF1,uF2) 0.562 (0.229) 0.333 (0.559)

Corr(uF1,uF3) 0.171 (0.109) 0.060 (0.291)

Corr(uF2, uF3) 0.307 (0.104) 0.564 (0.270)

Whithin-person errors:

Var(εF2) 18.765 (1.144) 0.773 (0.064)

Var(εF3) 4.847 (0.265) 4.538 (0.263)

Corr(εF1,εF3) 0.223 (0.043) 0.055 (0.049)

Corr(εF2,,εF3) 0.281 (0.036) −0.057 (0.064)

1
Standard errors are calculated using the bootstrap method.
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Table 3

NIH-AARP Diet and Health study: Red meat intake and lung cancer risk in men; estimated hazard ratios1 for 

red meat (g / 1000 kcal) intake.

Measurement Error
Correction Method

Estimated
Log Hazard
Ratio (s.e.)2

Estimated
Hazard Ratio

(95% CI)2

Goodness-of-fit
p-value3

Untransformed Intakes:

  No correction 0.225 (0.035) 1.252 (1.169, 1.341) 0.041

  Regression calibration 0.392 (0.077) 1.480 (1.273, 1.721) 0.136

Log Transformed Intakes:

  No correction 0.241 (0.041) 1.273 (1.174, 1.379) 0.438

  Regression calibration 0.389 (0.080) 1.476 (1.261, 1.726) 0.524

1
Cox proportional hazards model adjusted for total energy intake, age and smoking status; hazard ratio compares intake of 60 g/1000 kcal to 10 g/

1000 kcal.

2
Standard errors and 95% confidence intervals are calculated using the bootstrap method.

3
P-value for testing that the functional form of red meat or energy intake is correctly specified; test based on cumulative martingale residuals.
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Table 4

NIH-AARP Diet and Health study: Orange vegetable intake and lung cancer risk in men; estimated hazard 

ratios1 for orange vegetable (cups / 1000 kcal) intakes.

Measurement Error
Correction Method

Estimated
Log Hazard
Ratio (s.e.)2

Estimated
Hazard Ratio

(95% CI)2

Goodness-of-fit
p-value3

Untransformed Intakes:

  No correction −0.076 (0.021) 0.927 (0.889, 0.966) < 0.001

  Regression calibration −0.265 (0.086) 0.767 (0.648, 0.908) 0.002

Log Transformed Intakes:

Orange Vegetable Intake

  No correction −0.180 (0.030) 0.835 (0.788, 0.886) 0.264

  Regression calibration −0.376 (0.085) 0.687 (0.581, 0.811) 0.052

1
Cox proportional hazards model adjusted for total energy intake, age and smoking status; hazard ratio compares intake of 60 g/1000 kcal to 10 g/

1000 kcal.

2
Standard errors and 95% confidence intervals are calculated using the bootstrap method.

3
P-value for testing that the functional form of red meat or energy intake is correctly specified; test based on cumulative martingale residuals.
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