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Abstract

The corneal endothelium plays a primary role in maintaining corneal homeostasis and clarity, and
must be surgically replaced with allogenic donor corneal endothelium in the event of visually
significant dysfunction. However, a worldwide shortage of donor corneal tissue has led to a search
for alternative sources of transplantable tissue. Cultured human corneal endothelial cells (HCEnC)
have been shown to restore corneal clarity in experimental models of corneal endothelial
dysfunction in animal models, but characterization of cultured HCEnC remains incomplete. To
this end, we utilized next-generation RNA sequencing technology to compare the transcriptomic
profile of ex vivo human corneal endothelial cells (evHCENC) with that of primary HCEnC
(pHCENC) and HCENC lines, and to determine the utility of cultured and immortalized corneal
endothelial cells as models of in vivo corneal endothelium. Multidimensional analyses of the
transcriptome datasets demonstrated that primary HCEnC have a closer relationship to evHCEnC
than do immortalized HCENC. Subsequent analyses showed that the majority of the genes
specifically expressed in HCENC (not expressed in ex vivo corneal epithelium or fibroblasts)
demonstrated a marked variability of expression in cultured cells compared with evHCENC. In
addition, genes associated with either corneal endothelial cell function or corneal endothelial
dystrophies were investigated. Significant differences in gene expression and protein levels were
observed in the cultured cells compared with evHCENC for each of the genes tested except for
AGBL1and LOXHDI, which were not detected by RNA-seq or gPCR. Our transcriptomic
analysis suggests that at a molecular level pHCENC most closely resemble evHCENC and thus
represent the most viable cell culture based therapeutic option for managing corneal endothelial
cell dysfunction. Our findings also suggest that investigators should perform an assessment of the
entire transcriptome of cultured HCENC prior to determination of their potential clinical utility for
the management of corneal endothelial cell failure.
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INTRODUCTION

The human cornea comprises several anatomically distinct layers. The most posterior layer
is the corneal endothelium, a monolayer of endothelial cells that separates the fibrous
structure of the cornea from the aqueous humor. The endothelium is a mosaic of mitotically
inactive endothelial cells (23,47) that demonstrate hexagonal morphology and strong basal-
apical polarity, features conserved in various vertebrate species (8,56). The hexagonal
morphology is an optimal cell geometry that maximizes cell packing (i.e., cell density),
minimizes light scatter, and is an outcome of the interplay between distinct biomechanical
forces and cellular processes (e.g., cell adhesion and proliferation) that may confer the most
favorable physical properties to the endothelium (29). Functionally, the endothelium plays
an important role in maintaining hydration of the corneal stroma by selective transport of
solutes and water (3,20). Together, these characteristics enable the corneal endothelium to
maintain the optical clarity of the cornea.

Corneal endothelial dysfunction secondary to inherited disorders of the endothelium is the
most common indication for corneal transplantation in the United States (12). Several
clinically distinct corneal endothelial dystrophies have been described, but all are
characterized by varying degrees of reduced endothelial cell density (1,55). The most severe
cases demonstrate an inability of the endothelium to compensate for the loss of endothelial
cell function, resulting in corneal edema and a significant reduction in vision. Surgical
management is then required, and is performed via selective replacement of the corneal
endothelium with the posterior lamellar keratoplasty techniques Descement stripping
endothelial keratoplasty (DSEK) and Descemet membrane endothelial keratoplasty
(DMEK). While it is generally agreed that these techniques provide superior outcomes when
compared to full-thickness penetrating keratoplasty (PK) (10,30) a recent study
demonstrated poorer endothelial cell survival for DSEK compared to penetrating
keratoplasty (9). Additionally, surgical intervention carries inherent risks, and accelerated
post-operative endothelial cell loss compared to normal corneas limits the survival of all
corneal transplants. Moreover, there remains a significant worldwide shortage of suitable
donor corneal tissue due to a myriad of cultural, social, religious and legislative barriers to
donation. Thus, there is great interest in alternative approaches to the management of
corneal endothelial failure that would obviate the need to recover, process and transplant a
donor cornea with good endothelial viability for each individual with endothelial
compromise. The isolation and establishment of donor cornea-derived primary human
corneal endothelial cell (pHCENC) cultures offers the potential for endothelial cells from a
single donor to be transplanted into multiple recipients, which could significantly increase
the number of both primary and repeat corneal transplants worldwide (21,28,39,44).

Prior to the use of cultured HCENC for transplantation, these cells will need to be shown to
possess similar morphologic and functional characteristics as in vivo HCEnC (with ex vivo
HCENC being used as a proxy). Several HCENC lines have been established with the
expectation that their use in cell-replacement therapy would be realized (2,17,26,46,50).
These cell lines were reported to show prototypical HCEnC morphology and the expression
of a limited number of genes believed to be functional biomarkers of corneal endothelium.
Similarly, protocols for the isolation and maintenance of pHCENC cultures have been
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established and characterization of these cells (34,37,41,43,59), including their suitability for
use in cell-replacement therapy (44), have been performed. While several whole-genome
expression studies of evHCENC have been published (4—6,14—16,24), only limited
transcriptomic analyses for pHCEnC (6) and HCENC lines (19) have been reported.
Therefore, we performed a comprehensive transcriptomic analysis of several HCENC lines
and pHCENC to determine the validity of using cultured HCEnC as a model for in vivo
endothelial cell gene expression and to determine the suitability of using cultured HCEnC
for management of endothelial cell dysfunction.

MATERIALS AND METHODS

Primary and Cell Line Cultures

Primary cultures of human corneal endothelial cells were isolated from six corneas (from
both eyes of three donors) obtained from various eye banks affiliated with the Vision Share
consortium of eye banks (Vision Share, Apex, NC, USA) (Table 1) using a technique that we
have adapted for ex vivo donor tissue (14,45). Stripped Descemet membrane with attached
endothelium was transferred into complete F99 medium (1:1 ratio of Ham’s F-12 Nutrient
Mixture and M199 medium (Life Technologies, Carlsbad, CA, USA), 5% (v/v) fetal bovine
serum (Atlanta Biologicals, Flowery Branch, GA, USA), 20 pg/mL ascorbic acid (Sigma-
Aldrich, St. Louis, MO, USA), 20 ug/mL insulin (Life Technologies), 10 ng/mL bFGF
(PeproTech, Inc., Rocky Hill, NJ, USA), 100 U/mL penicillin and 100 ug/mL streptomycin
(Life Technologies)), and allowed to acclimate to the new growth conditions overnight. The
endothelial cells were subsequently detached from Descemet membrane with 0.25%
Trypsin-EDTA (Life Technologies) for 5 minutes followed by trituration via gentle passing
through a 1 mL pipette tip ten times. Single cell suspensions of pHCENC and the corneal
endothelial cell lines, HCEnC-21T, HCEC-12 (German Collection of Microorganisms and
Cell Cultures GmbH, Braunschweig, Lower Saxony, Germany) and HCEC-B4G12 (German
Collection of Microorganisms and Cell Cultures GmbH), were grown on tissue culture
treated, non-pyrogenic polystyrene plastic coated with 40 pug/cm? chondroitin sulfate A
(Sigma Aldrich) and 40 ng/cm? laminin (Sigma Aldrich) in phosphate buffered saline (PBS)
for 2hrs (2,46,52). The pHCENC, HCENnC-21T and HCEC-12 were grown in F99 medium,
while the HCEC-B4G12 were maintained in Human Endothelial-SFM (Life Technologies)
supplemented with 10 ng/mL bFGF. All cells were maintained at 37°C in 5% CO,. When
the cells achieved an intact and confluent monolayer, they were incubated overnight in
serum-free F99 medium containing only ascorbic acid and antibiotics (pHCENC,
HCENC-21T and HCEC-12) or in Human Endothelial-SFM containing antibiotics (HCEC-
B4G12). Cultures of pHCENC were collected for experiments at passage one.

Total RNA Isolation

Ten corneas from seven donors were obtained from various eye banks affiliated with the
Vision Share consortium of eye banks (Table 1). Descemet membrane (with the attached
endothelial cells) was stripped from the donor corneas in preparation for RNA isolation.
Where applicable, donor corneas from a single donor were combined into a single tube.
Homogenization and total RNA isolation from evHCENC and cultured cells were performed
using TRI Reagent (Life Technologies). TRI Reagent RNA preparations were subsequently
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purified with the RNeasy Clean-Up Kit (Qiagen, Valencia, CA, USA). The integrity of the
isolated RNA was analyzed using the Agilent 2100 Electrophoresis Bioanalyzer System
(Agilent Technologies, Inc., Santa Clara, CA, USA), with RNA integrity numbers of 8.1, 8.6
and 9.1 obtained for the three evHCENC samples.

Next-Generation RNA Sequencing (RNA-seq)

Total RNA was submitted to the UCLA Clinical Microarray Core for processing and
sequencing. Briefly, enrichment for poly(A) RNAs was performed using the NEBNext
Poly(A) mRNA Magnetic Isolation Module (New England BioLabs, Inc., Ipswich, MA,
USA), followed by library preparation using the PrepX Complete ILM DNA Library Kit
(WaferGen Biosystems, Inc., Fremont, CA, USA). High-throughput sequencing was
performed on the Illumina Hi-seq 2500 (lllumina, Inc., San Diego, CA, USA). Single-end 50
bp reads were obtained and compiled in FASTQ files. A mean of 12,330,531 reads per
sample (range, 9,497,109 — 15,392,285 reads) was obtained, which is sufficient for gene
expression analysis (31). The FASTQ files and quantitative results are available from the
GEO DataSets database (accession number GSE65991; National Center for Biotechnology
Information [NCBI], Bethesda, MD, USA).

Next-Generation Sequencing Data Analyses

The FASTQ files containing the RNA-sequencing data were uploaded to the Partek Flow
servers (Partek Incorporated, St. Louis, MO, USA) for alignment to the hg38 genome using
the TopHat aligner, which output the results in BAM files. The BAM files were uploaded to
the Partek Genomics Suite software and the reads and read-depth were transformed to reads
per kilobase per million (RPKM) values, a normalized quantity that accounts for gene size.
These data were annotated using the Ensemble 77 transcript database. Principle component
analysis (PCA) and hierarchical clustering were performed in the Partek Genomics Suite
software. The gene expression threshold level for positive detection of a transcript was set to
a value of 1 RPKM. Differential expression analysis was performed and p-values calculated
with a one-way ANOVA model using method of moments. Genes expressed specifically in
evHCENC were identified by their absence in ex vivo human corneal epithelial cells
(evHCEPpC) and ex vivo human corneal fibroblasts cells (evHCFC) and meeting the
following statistical criteria : fold-change = 5 and a false-discovery rate (step-up) adjusted p-
value < 0.05.

Quantitative Polymerase Chain Reaction

Quantitative polymerase chain reaction (qQPCR) was used to validate the level of expression
as determined by RNA-seq for genes associated with corneal endothelial cell function
(AQP1, ATP1A1, CD200, CDHZ, GPC4 and Z0O1) and the corneal endothelial dystrophies
(AGBL1, COL8A2, LOXHDI, SLC4A11, TCF4and ZEBI). Complementary DNA (cDNA)
was synthesized from 100ng of total RNA isolated from evHCENC, pHCENC and the
HCENC-21T, HCEC-12 and HCEC-B4G12 cell lines using the SuperScript Il First-Strand
kit (Life Technologies). Subsequently, gPCR was performed on the LightCycler 480 System
(Roche, Basel, Switzerland) using the KAPA SYBR FAST gPCR Kit (Kapa Biosystems,
Boston, MA, USA) and transcript-specific oligonucleotide primers that were obtained from
the Harvard Primer Bank database (http://pga.mgh.harvard.edu/primerbank/index.html)
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(Table 2) (48,49,54). Reaction conditions were as previously described (27). Relative
expression was obtained by comparison to the housekeeping gene RAB7A and calculated
using the comparative Ct (2722CT) method (32). Relative expression levels were plotted as
27ACT values.

Western Blotting

Four corneas from three donors were used for Western blotting (Table 1). Protein lysates
from the five different HCEnC sources were prepared by homogenizing tissue in
radioimmunoprecipitation assay (RIPA) buffer (100mM Tris pH 7.6 (Sigma-Aldrich),
150mM NaCl (Sigma-Aldrich), ImM EDTA (Sigma-Aldrich), 1% deoxycholic acid (Sigma-
Aldrich), 1% Triton X-100 (Sigma-Aldrich), 0.1% SDS (Sigma-Aldrich)) and supplemented
with fresh 20mM phenylmethylsulfonyl fluoride (PMSF), 50mM sodium fluoride (NaF),
protease and phosphatase inhibitors (Life Technologies). A total of five ug of whole cell
lysate was resolved on a precast NUPAGE Novex 4-12% gradient gel (Life Technologies) by
electrophoresis at 40 mA per gel. Following overnight electrotransfer to Immobilon-P
(Millipore, Billerica, MA, USA) polyvinylidene fluoride (PVDF) membranes, the
membranes were then blocked with 5% milk in TBS-T (100 mM Tris-HCI (Sigma-Aldrich),
pH 7.5, 90g/L NaCl (Sigma-Aldrich) and 1% Tween 20 (Sigma-Aldrich)) for 1 hr at RT.
Incubation with primary antibodies (Table 3) was performed overnight at 4°C in 0.1% milk
in TBS-T followed by 3 washes in TBS-T, then 1 hr incubation at RT with peroxidase-
coupled secondary antibody. The immunocomplex was detected using Luminata Forte
Western HRP Substrate (Millipore) and visualized on Amersham Hyperfilm ECL (GE
Healthcare Bio-Sciences Corp., Piscataway, NJ, USA). Detection of the RAB7 protein, a
housekeeping gene that regulates vesicular transport, was used as a loading control (11).

Statistical Analyses

RESULTS

The mean and standard error of the mean (SEM) were graphed for each of the transcript
abundance values determined by RNA-seq (RPKM) and gPCR (272CT). Statistical testing
was performed using one-way ANOVA followed by a post ioc Dunnett’s multiple
comparison test. Dunnett’s multiple comparison test was used to detect a significant (p <
0.05) difference in the mean expression level for each gene in the cultured HCENnC groups
versus the mean expression level in evHCENC. All statistical analyses were performed using
a minimum of n = 3, unless otherwise stated. GraphPad Prism version 5.0f (GraphPad
Inc.,La Jolla, CA, USA) for Mac was used for generating graphs and for statistical analysis.

Cultured Human Corneal Endothelial Cells Demonstrate Prototypical Morphology

The cultured HCENC were imaged by phase-contrast microscopy before being collected for
RNA and protein isolation (Fig. 1). While in vivo corneal endothelium is comprised of flat
cells with primarily hexagonal morphology, the pHCENC and cell lines demonstrated fewer
hexagonal cells and flat (pHCENC) or cobblestone (HCEC-12 and HCEC-B4G12)
morphology. These results are consistent with published reports for the pHCENC and the two
HCENC cell lines (2,46,52).
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Multidimensional Analyses of Transcriptome Data Sets

Principle component analysis (PCA) and hierarchical clustering (HC) were performed on
RNA-seq data sets from HCENC (Fig. 2). Gene expression data obtained by RNA-seq
technology demonstrated a strong association amongst replicates of the same RNA source
by PCA. The samples clustered into distinct groups, which is illustrated along the first three
principle component axes (PC #1 (26.3%), PC #2 (16.7%) and PC #3 (11.2%)) and represent
the majority of the variation (54.1%) in the samples (Fig. 2A). Primary HCEnC samples
showed a close relationship with ex vivo HCEnC (evHCENC) samples, while the
immortalized cells demonstrated a more distant relationship. Similarly, hierarchical
clustering of the HCENC groups also demonstrated a strong association amongst replicates
of the same RNA source (Fig. 2B). Because the HCEC-B4G12 cell line is a clone of the
HCEC-12 cell line, they showed a close relationship by both PCA and HC.

Comparative Analysis of Whole-Genome Gene Expression in evHCENC versus Cultured

HCENnC

To determine the genes that are shared and unique between evHCENC and the cultured
HCENC groups, we defined any gene across the genome with a mean RPKM value = 1 as
being expressed. These expressed genes were compiled into gene lists for each of the
HCENC groups (data not shown). Subsequently, the gene lists for the cultured HCEnC were
each compared separately to the gene list for the evHCENC (Fig. 3 and Table 4). Compared
with evHCENC, primary HCEnC demonstrated the greatest percentage of commonly
expressed genes (88.3%; 11684/13234), followed by HCENC-21T (86.3%; 11424/13234),
HCEC-12 (84.1%; 11133/13234) and HCEC-B4G12 (83.5%; 11053/13234) (Fig. 3).
Analysis of unique genes in the cultured cells showed that in pHCENC de novo gene
expression or the change in total genes expressed was 12.0% (1583/13,234) compared with
the total genes expressed in evHCENC, while a de novo gene expression of 24.0%
(3172/13234), 19.8% (2620/13234) and 19.4% (2571/13234) was observed for HCEnC-21T,
HCEC-12 and HCEC-B4G12, respectively (Table 4). In addition, the total number of unique
genes (unique to either evHCENC or to each HCENC group) is lowest in pHCENC (21.1%;
3133/14817) and about the same (approximately 30%) for each of the HCENC lines.

Identification of evHCENC-specific Genes by Absence of Expression in evHCEpC and

evHCFC

Endothelium-specific gene expression was determined for evHCENC (Table 5). All three
main corneal cell types (epithelial, fibroblast and endothelial) were isolated from ex vivo
cornea tissue and the transcriptome profile for each cell type was obtained (data not shown).
The genes specific to evHCENC were determined by: 1) filtering out genes with an RPKM
value below 1; 2) filtering out genes expressed (>1RPKM) in evHCEpC and/or evHCFC;
and 3) by performing differential gene expression analysis under the criteria described
above. One hundred thirty eight genes were identified as specific to evHCENC, of which
77% (106/138) were protein-coding (Table 5).
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Analysis of evHCENC-specific Gene Expression in Cultured HCEnC

The percent of the evHCENC-specific genes expressed in each of the cultured HCEnC
groups was determined by gene list comparison and hierarchical clustering analysis (Fig. 4).
Comparison of the 138 evHCENC-specific genes with the expressed genes (>1 RPKM) in
each of the cultured cells demonstrated that 67% (93) of the 138 evHCENC-specific genes
were expressed in pHCENC, 38% (53/138) were expressed in HCEnC-21T, 30% (41/138)
were expressed in HCEC-12 and 28% (39/138) were expressed in HCEC-B4G12 (Fig. 4A
and Table 5). Nineteen percent (26/138) of the evHCENC-specific genes were expressed in
all of the cultured HCENC groups, while 25% (34/138) were not expressed in any of the
cultured HCENC groups (Fig. 4A and Table 5).

HC analysis of the expression profile of the 138 evHCENC-specific genes compared to the
expression profile of these genes in primary and immortalized cells was performed as well
(Fig. 4B). Primary HCENC demonstrated an expression profile that was more closely related
to evHCENC than those of the cell lines, reflecting the results obtained by gene list
comparison (Fig. 4B). Of the immortalized cells, HCEnC-21T demonstrated an expression
profile that was more closely related to evHCENC than the HCEC-12 and HCEC-B4G12
(Fig. 4B).

Evaluation of the Expression of Genes Associated with HCEnC Function or Disease Genes
Associated with Corneal Endothelial Cell Function

The transcription of six genes that are considered to be functional markers of HCEnC
(AQP1, ATP1A1, CD200, CDHZ, GPC4 and ZO1)was initially assessed by RNA-seq (Fig.
5), and subsequently validated by gPCR (Fig. 5) and Western blotting (Figure 7A). In
evHCENC, the expression of AQP1, ATP1A1, CDHZ, GPC4and ZO1 was detected above
the threshold of 1 RPKM by RNA-seq, with CD200being detected below this threshold.
While the expression of all six genes was detected by qPCR, CD200was detectable only at
relatively high cycles (~33 cycles), suggesting weak or no expression. Western blotting
demonstrated detectable levels of AQP1, ATP1A1, CDH2, GPC4 and ZO1 but failed to
detect CD200. In pHCENC, transcripts for all of the functional marker genes were detected
by RNA-seq, with expression levels of CD200, CDH2 and GPC4 significantly greater and
ATPI1AI significantly less than that in evHCENC. Quantitative PCR confirmed statistically
significant differential expression for ATP1A1, CD200and GPCH4, but not for CDHZ.
Western blotting demonstrated detectable levels of all six encoded proteins. In HCEnC-21T,
the expression of ATP1A1, CDHZ, GPC4and ZO1 was detected above the threshold of 1
RPKM by RNA-seq, with CD200and AQPI being detected below this threshold. Only
ATP1A1 showed a significant difference in expression compared with that in evHCENC,
which was confirmed by qPCR. Although the expression of AQPI was approximately 1000
fold less than in evHCENC, the difference was not statistically significant (although it was
by gPCR). In HCEC-12 and HCEC-B4G12, the expression of ATP1A1, CDHZ, and Z01
was detected by RNA-seq, while GPC4 demonstrated detectable levels (>1 RPKM) only in
HCEC-B4G12, and AQPI and CD200were not detected in either cell line. The expression
levels of ATP1A1 were significantly lower and ZO1 significantly greater than in evHCENC
for both HCEC-12 and HCEC-B4G12, while the expression level for CDHZ2 was
significantly lower in HCEC-B4G12 only. Quantitative PCR confirmed significant
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differential expression for A7P1A1 in both HCEC-12 and HCEC-B4G12 and CDHZin
HCEC-B4G12 but not ZO1 in either cell line. Western blotting demonstrated detectable
levels of ATP1A1, CDH2 and ZO1 in each cell line, but no detection of AQP1, CD200 or
GPC4 in any of the three cell lines.

Genes Associated with Corneal Endothelial Dystrophies

The transcription of genes associated with corneal endothelial dystrophies (AGBL1,
COL8AZ L OXHD1, S| C4A11, TCF4, and ZEBI) was assessed by RNA-seq (Figure 6) and
the levels validated by qPCR (Figure 6) and Western blotting (Figure 7B). In evHCENC, the
expression of four of the genes (COL8AZ, SLC4A11, TCF4 and ZEBI) was detected by
RNA-seq above the 1 RPKM threshold. Expression of each of the four genes was confirmed
with gPCR and Western blotting. The AGBL 1 transcript was not detected by either RNA-seq
or gPCR, while transcript levels for LOXHDI were only detected at an average cycle of ~38
in two of the three samples. As neither gene was detected by qPCR, Western blotting for the
encoded proteins was not performed. In pHCENC, transcripts for COL8AZ, SLC4A11,
TCF4 and ZEBI were detected by RNA-seq, with expression levels of 7CF4 being
significantly greater and SLC4A11 significantly less than in evHCENC. While these results
were confirmed with gPCR, Western blotting failed to detect TCF4. In HCEnC-21T,
HCEC-12 and HCEC-B4G12, RNA-seq demonstrated expression for SLC4A11 and ZEBI
in all three cell lines, COL8AZ2in HCEC-12 and HCEC-B4G12, and TCF4 expression in
HCENC-21T and HCEC-12. AGBL1and LOXHD1 were not expressed in any of the three
cell lines. The expression levels of COL8AZ, SLC4A11and TCF4 were significantly lower
and ZEB1 significantly greater in all three cell lines compared with evHCENC, which was
confirmed by gPCR. Western blotting demonstrated detectable levels of COL8A2 in
HCEC-12 and HCEC-B4G12 and ZEBL in all three cell lines.

DISCUSSION

The investigation of the functional mechanisms responsible for normal and pathologic
corneal endothelial cell function remains hampered by the lack of available robust
techniques in culturing corneal endothelial cells. The recent establishment of corneal
endothelial cell lines using the SV40 TAg (HCEC-12 and HCEC-B4G12) and telomerase
expression (HCEnC-21T) for immortalization has presented a unique opportunity for
investigators to perform biologically significant experiments in easy to maintain cell lines
(2,46,52). The initial characterization of these cell lines was performed by assessing the
expression of genes considered markers of endothelial cell function, such as AQPZ,
ATPIA1, CDHZand ZO1. However, we demonstrate significant differences in the
expression of these genes, and the proteins they encode, in pHCENC and HCENC lines
compared to their expression in evHCENC. Thus, while cell lines remain a valuable tool in
the absence of robust primary cell culturing techniques (7), investigators should be aware of
these differences, and plan experiments using these cell lines accordingly.

More recently, GPC4 and CD200were reported as distinctly expressed only in the corneal
endothelium (5), leading to interest in their use as corneal endothelial cell markers.
However, we found that CD200and its encoded protein were not detected in evHCENC or
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any of the cell lines, but was detected in pHCENC. In addition, GPC4 expression in
evHCENC was significantly lower than in pHCENC by both RNA-seq and qPCR, with no
GPC4 detected by Western blot in the cell lines. There is a myriad of reasons for these
differences, but they may be due to differing experimental protocols, including the age of the
cornea donor, tissue processing techniques and the method utilized to detect expression.
Because of these conflicting results, further investigation is warranted to determine whether
CD200 is in fact expressed in the corneal endothelium. Similarly, the genes implicated as
playing a pathogenic role in the corneal endothelial dystrophies demonstrated significant
differences in expression between the cultured and evHCENC. Subsequent characterization
of pHCENC and endothelial cell lines will involve determining whether these cells possess
any aberrant characteristics that could complicate elucidation of the molecular basis of
HCENC function and dysfunction. For example, an investigator interested in the role of
AQP1 in corneal endothelial cell function would be unable to utilize HCEC-12, HCEC-
B4G12 and HCENC-21T given the absence of AQP1. Thus, it is not always possible to
extrapolate from what is observed in cultured endothelial cells what would be expected in
vivo, which has important implications in terms of the research utility and therapeutic
potential of cultured HCENC.

Our results indicate that the transcriptome of pHCENC is more similar to that of evHCENC
(and thus presumably to the transcriptome of /n vivo HCENC) than are the transcriptomes of
the endothelial cell lines. However, use of pHCENC for research and for potential clinical
applications is restrained by phenotypic alterations and limited growth using commonly
employed cell culturing techniques. ldentifying the growth conditions that support the
growth of cells with a transcriptome profile similar to evHCENC will provide researchers
with a more accurate model of in vivo HCENC and a potential source of endothelial cells for
management of endothelial dysfunction. Optimization of HCEnC culturing techniques
should take into consideration several anatomic and physiologic features of in vivo HCEnC
(60), such as: 1) adherence to a complex milieu of extracellular matrix proteins
(13,18,22,38,40,51,57); 2) contact with physiological proteins and other factors present in
aqueous humor (25,33,36,42,53); 3) exposure to appropriate biomechanical forces
(35,40,57); and 4) maintenance of a confluent semipermeable layer of cells with strong
apicobasal polarity. Replication of each of these features in a single culturing method would
be challenging, but would represent a significant advance in the development of cultured
HCENC that closely resemble in vivo HCENC.

In addition, our findings caution researchers against reaching the conclusion that the
expression of a few functional marker genes may be relied upon to characterize cultured
HCENC. This point is particularly salient given the recent report by Chng et al. suggesting
that a panel of three genes (COL8AZ, SLC4A11and CYYRI) is sufficient to ascertain the
clinical viability of stem cell-derived HCEnC (6). They identified CYYRI as the most robust
marker for ascertaining the HCENC type, but our analysis did not confirm this since we
observed CYYRI expression in evHCFC at an average level of 2.4 RPKM (above our 1
RPKM expression threshold) as well as evHCENC (13.6 RPKM). A more sound expression-
based assessment may include each of the 106 protein-coding genes specific to evHCEnC
(Table 5) or the 22 protein-coding genes specific to evHCENC that are expressed in pHCENC
and each of the three endothelial cells lines tested. A more recent study identified five genes
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(CLRN1, MRGPRX3, HTR1D, GRIPIand ZP4) that demonstrated high HCENnC-specificity,
but our analyses identified only MRGPRX3and GRIPI as expressed only in evHCENC (58).

We have identified a set of evHCENC-specific genes that can be utilized in a panel for
ascertaining the nature of cultured HCEnC. We expect that some of these genes may be
removed from the panel due to inconsistent results being obtained in future studies.
However, we believe that the use of such a panel is essential to more thoroughly characterize
cultured HCENC than is possible using only a few functional markers of HCEnC. An
expression panel including the 106 protein-coding genes specific to evHCENC represents
only about 0.5% of known protein-coding genes, and thus represents a reasonable balance
between being both comprehensive and specific. Although a single (or several) biomarker is
informative and valuable in, for example, targeted gene therapy or antibody mediated
purification of HCEnC from a mixed population of cells (i.e., positive selection), we do not
believe that this number of biomarkers are sufficient to accurately characterize cultured
HCENC for use in cell transplantation therapy. Thus, the identification of these HCEnC-
specific genes is an important step in the characterization of cultured HCEnC and validation
of their experimental and potential clinical utility.
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Figure 1.
Morphology of cultured HCENC visualized using phase-contrast microscopy. (A) Specular

microscopic imaging of human corneal endothelium demonstrates a uniform mosaic of
hexagonal cells. (B) Primary HCEnC demonstrated primarily polygonal rather than
hexagonal morphology (representative of eleven primary cultures). The cell lines, (C)
HCENC-21T, (D) HCEC-12 and the (E) HCEC-B4G12, also demonstrated a polygonal
morphology.
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Figure 2.
Multidimensional analysis shows distinct clustering of the five HCEnC groups by RNA

source. Principle component analysis (PCA) and hierarchical clustering (HC) were used to
determine the relationships between the transcriptome datasets from the different HCEnC
groups. (A) PCA of the transcriptomic datasets demonstrated that samples clustered into
distinct groups defined by their RNA source. (B) Hierarchical clustering of the HCEnC
groups using the transcriptome datasets demonstrated a similar association pattern observed
with PCA.
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Gene expression comparison between evHCENC and cultured HCENC identifies common
and distinct gene expression patterns. Genes were compiled in a list for each of the HCEnC
groups that met the criterion of being expressed at a level 21 RPKM. Comparisons were
made between the genes expressed in evHCENC and in each of the cultured HCEnC groups:
(A) pHCENC, (B) HCEnC-21T, (C) HCEC-12 and (D) HCEC-B4G12. Percentage =
[number of common genes]/[number of evHCENC expressed genes] x 100.
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Figure 4.
Expression of the 138 evHCENC-specific genes in cultured HCENC. (A) Comparison of the

genes specific to evHCENC with the expressed genes in four different cultured HCEnC
groups. Twenty-six genes (large bolded font, center) were common to all five HCEnC
groups, and 34 (large bolded font, lower-right) genes were only expressed in the evHCENC
group (Table 5). The numbers that are of medium bolded font represent those expressed in
evHCENC and at least one of the cultured HCENnC groups. The numbers that are small and
not bolded are those that are expressed in the corresponding cultured HCEnC group(s), but
are otherwise not a focus of the current study. (B) Hierarchical clustering of the HCEnC
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groups using the 138 evHCENC-specific genes demonstrated distinct expression profiles in
cultured HCENC.
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Figure5.
Transcript abundance of genes associated with HCEnC function was measured using RNA-

seq and validated by qPCR. The dashed line in the RNA-seq graph for CD200 denotes the
RPKM threshold (RPKM = 1) above which a gene is considered expressed. The evHCEnC
are represented as black-filled bars (n = 4), the pHCENC are represented as white-filled bars
(n = 3), and the three cell lines are represented as grey-filled bars (n = 3). Error bars
represent mean + SEM of RPKM (RNA-seq) or 27ACT (qPCR) values; *p < 0.05, **p <
0.01, ***p < 0.001.
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The transcript abundance of genes associated with corneal endothelial dystrophies was
measured using RNA-seq and validated by gPCR. The dashed line in the RNA-seq graph for
AGBL 1, L OXHD1 and ZEBI1 denotes the RPKM threshold (RPKM = 1) above which a
gene is considered expressed. Statistical testing was performed using one-way ANOVA
followed by a post hoc Dunnett’s multiple comparison test. The evHCENC are shown as
black-filled bars (n = 4), the pHCENC are represented as white-filled bars (n = 3), and the
three cell lines are represented as grey-filled bars (n = 3). Error bars represent mean + SEM
of RPKM (RNA-seq) or 27ACT (gPCR) values; *p < 0.05, **p < 0.01, ***p < 0.001.

Cell Transplant. Author manuscript; available in PMC 2017 January 01.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuepy Joyiny

1duosnuely Joyiny

Frausto et al.

Page 21

AQP1

COL8A2
TCF4
CDH2|

Figure7.
Proteins encoded by the genes associated with HCEnC function and corneal endothelial

dystrophies were assessed by Western blotting. (A) Proteins from 5/6 (AQP1, ATP1AI,
CDHZ2and Z0J), 6/6 (AQPI1, ATP1A1, CDH2, GPC4and ZO1) and 3/6 (ATP1A1, CDHZ2
and Z0OJ) genes associated with HCENnC function were detected in evHCENC, pHCENC and
the three HCENC lines, respectively. (B) Proteins from 4/4 (COL8AZ, SLC4A11, TCF4and
ZEBI), 314 (COL8AZ, SLC4A11and ZEBI), 1/4 (ZEBI) and 2/4 (COL8AZ2and ZEBI)
genes associated with corneal endothelial dystrophies were detected in evHCENC, pHCENC,
HCENC-21T and the two (HCEC-12 and HCEC-B4G12) related cell lines, respectively.
These are representative blots from three independent samples for each HCEnC group
(Table 1). The detection of the RAB7 protein was used as a loading control.
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