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Congenital hearing impairment affects nearly 1 in every 1000 live births and is the most frequent birth defect in developed societies.
Hereditary types of hearing loss account for more than 50% of all congenital sensorineural hearing loss cases and are caused by
genetic mutations. HL can be either nonsyndromic, which is restricted to the inner ear, or syndromic, a part of multiple anomalies
affecting the body. Nonsyndromic HL can be categorised by mode of inheritance, such as autosomal dominant (called DFNA),
autosomal recessive (DFNB), mitochondrial, and X-linked (DFN). To date, 125 deafness loci have been reported in the literature:
58 DFNA loci, 63 DFNB loci, and 4 X-linked loci. Mutations in genes that control the adhesion of hair cells, intracellular transport,
neurotransmitter release, ionic hemeostasis, and cytoskeleton of hair cells can lead to malfunctions of the cochlea and inner ear.
In recent years, with the increase in studies about genes involved in congenital hearing loss, genetic counselling and treatment
options have emerged and increased in availability. This paper presents an overview of the currently known genes associated with
nonsyndromic congenital hearing loss and mutations in the inner ear.

1. Introduction

Hearing loss (HL) is a common disorder, and congenital
hearing impairment affects nearly 1 in every 1000 live births; it
is one of themost distressing disorders and themost frequent
birth defect in developed societies [1]. Hearing impairment
affects speech development, language acquisition, and edu-
cation in children and, as a result, often leads to decreased
opportunities in work life as those with hearing loss move to
isolating themselves from society. In the US, it is estimated
that the social costs of untreated hearing loss over the course
of a lifetime can reach up to $1.1 million for every untreated
person [2].These costs could be decreased by 75 percent with
early intervention and treatment [3].

Hereditary hearing loss accounts for almost 50% of all
congenital sensorineural hearing loss cases, and it is caused
by genetic mutations [4]. Deafness can be the result of a
mutation in a single gene or a combination of mutations of
different genes; it can also be a result of environmental causes
such as trauma, medications, medical problems, and envi-
ronmental exposure or the result of an association between
environmental factors and genetics [5].

HL can be either nonsyndromic, which is restricted to the
inner ear, or syndromic, a part ofmultiple anomalies affecting
the body. Nonsyndromic HL can further be categorised by its
mode of inheritance. Approximately 20% of nonsyndromic
sensorineural hearing loss (NSSHL) is inherited as autosomal
dominant, which is also referred to as DFNA; this type
of hearing loss is usually delayed onset. Eighty percent
of inherited HL is autosomal recessive (DFNB), in which
hearing loss is generally congenital, but some forms may
emerge later in life. The inheritance of the remaining types
of HL is either mitochondrial or X-linked (DFN) (less than 1
percent) [2]. To date, 125 deafness loci have been reported in
the literature: 58 DFNA loci, 63 DFNB loci, and 4 X-linked
loci (http://hereditaryhearingloss.org/) [6].

Many genes are involved in inner-ear function, and the
ear is very sensitive to mutations in genetic loci. This is
because the physiology and structure of the inner ear are
unique and unlike other anatomical locations. Mutations in
genes that control the adhesion of hair cells, intracellular
transport, neurotransmitter release, ionic hemeostasis, and
cytoskeletons of hair cells can lead to malfunctions of the
cochlea and inner ear.
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In recent years, with the increase in studies of genes
involved in congenital hearing loss, genetic counselling and
treatment options have emerged and increased in availability.
In diagnostic tests, genes that are common causes of hearing
loss, such asGJB2,GJB6, SLC26A4, andOTOF, are frequently
involved [7].The results of these tests can be usedwhen coun-
selling parents about the prognosis of a child’s hearing loss,
predicting recurrence in the future offspring and taking into
consideration therapeutic options like cochlear implantation
[2]. In recent studies, some viral vectors were delivered into
the inner ear to replace the normal copy of the gene with the
defective gene causing hearing loss. In an animal study, an
adenovirus-delivered SLC17A8 (VGLUT-3; vesicular gluta-
mate transporter 3) was found to restore hearing in the mice.
In another study, hair cell development and regenerationwere
induced by delivering the ATOH1 gene [8, 9].

Thisminireview has presented an overview and described
the currently known genes associated with nonsyndromic
congenital hearing loss and mutations that cause malfunc-
tional proteins in the inner ear (Table 1).

2. Genes and Proteins Related to
Nonsyndromic Hearing Loss

2.1. Adhesion Proteins. The stereocilia of hair cells in the
cochlea are linked and interconnected to the tectorial
membrane by different adhesion proteins. Hair bundles
are stabilized by a set of temporary links such as transient
lateral links and ankle links. These links also induce growth
and maturation with signalling complexes [10]. In mature
hair cells, stereocilia are connected by tectorial attachment
crowns, horizontal top connectors, and tip links [2]. To date,
several genes related to the linking apparatus have been
reported. These are DFNA4 (CEACAM16 (carcinogenic
antigen-related cell adhesion molecule 16)) [11], DFNB12
(CDH23 (cadherin 23)) [12], DFNB16 (STRC (stereocilin))
[13], DFNB18 (USH1C (harmonin)) [14, 15], DFNB22 (OTOA
(otoancorin)) [16], DFNB23 (PCDH15 (protocadherin 15))
[17], DFNB31 (WHRN (whirlin)) [18], DFNB66/67 (TMHS
(tetraspan membrane protein)) [19], and DFNB84 (PTPRQ
(tyrosine phospate receptor Q)) [20].

The PTPRQ and TMHS genes, as well as cadherin 23
and protocadherin 15, are parts of the transient lateral
link. During development, they prevent the fusion of each
stereocilium themselves [2]. Inmature hair cells, they become
the main parts of the tip link and act as a gate, channelling
mechanotransduction and providing stability, taking a cen-
tral role in auditory function [21].

Whirlin and harmonin regulate the link complexes and
serve as scaffolding proteins. Mutations in these proteins
cause autosomal recessive type hearing loss, but Sans,which is
a third scaffolding protein, is related to a complex syndromic
hearing loss, Usher syndrome. The other genes, USH2𝛼 and
VLGR1b, are also associated with Usher syndrome, and they
are part of the stereocilial ankle link [22].

Stereocilin is an extracellular matrix protein that attaches
the tallest stereocilia of the outer hair cells to the tecto-
rial membrane [13]. The attachment site of this tectorial

membrane is generally formed by CEACAM16. In a similar
way, otoancrin also attaches nonsensory cells to the tectorial
membrane [16].

2.2. Transport Proteins. In the inner ear, all parts of the
myosin family can be used for the transportation of different
proteins. When using ATP, these myosin proteins bind to the
actin cytockeleton and move forward. Binding sites for car-
ried proteins are on the carboxyl-terminal tails of the trans-
port proteins [23]. The myosins related to hereditary hearing
loss are myosin Ia (DFNA48) [24], myosin IIIa (DFNB30)
[25], myosin VI (DFNA22/DFNB37) [26, 27], myosin VIIa
(DFNA11/DFNB2) [28, 29], nonmuscle myosin heavy chain
IX (DFNA17) [30], nonmuscle myosin heavy chain XIV
(DFNA4) [31], and myosin XVa (DFNB3) [32]. They all have
their own unique functions in the inner-ear hair cells [2].

2.3. Proteins of Synapses. VGLUT3, which is a vesicular
glutamate receptor, plays a role in the inner hair cells’
synapses. It is encoded by SLC17A8 in the DFNA25 locus
and related to autosomal recessive hearing loss [33]. This
protein regulates both the exocytosis and the endocytosis of
glutamate. Otoferlin (encoded by OTOF) is a protein that
works with myosin VI at the synaptic cleft of the inner hair
cell and plays a role in the calcium-dependent fusion of
vesicles to the plasma membrane. As a result, glutamate is
released and the afferent neuron is excited [34]. In an animal
study with OTOF and SLC17A8 knockout mice, there was a
reduction in the number of postsynaptic ganglion cells, and
it was concluded that these proteins are very important for
the preservation and development of normal hearing [35].

2.4. Electromotility. The cochlea is sensitive and selective to
sounds delivered by the outer hair cells. This is introduced
with a process called electromotility, and a protein called
Prestin is thought to be responsible for this [2]. It changes
the membrane’s potential and enables the outer hair cell
length to be altered. When this occurs, the outer hair cell
becomes longer upon hyperpolarization and shorter upon
depolarization, so it amplifies its sensitivity to the sound [36].
This protein is encoded as SLC26A5 and was first described
by Zheng et al. in 2000 [37]. Mutations in SLC26A5 are the
cause of DFNB61 hearing loss [38].

2.5. Cytoskeleton. Mutations in some genes associated with
the organisation of the cytoskeleton can cause NSSHL;
these are ESPN (espin), RDX (radixin), TRIOBP (trio-
binding protein), ACTG1 (𝛾-actin), TPRN (taperin),DIAPH1
(diaphanous), and SMPX (small muscle protein, X-linked).

The protein espin provides stability to the stereocilial
cytoskeleton. A mutation in ESPN can cause DFNB36 and
autosomal dominant hearing loss [39]. More steriocillia
stability can be achieved with radixin. It links actin fil-
aments to the plasma membrane and presents along the
stereocilia. Mutations in RDX can cause DFNB24 and auto-
somal recessive deafness [40]. 𝛾-actin acts as a building
block for the stereocilia of hair cells. These stereocilia are
constantly undergoing depolymerisation at the base and
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actin polymerisation at the tip [41]. Mutations in ACTG1
can cause DFNA20/26 and autosomal dominant hearing loss
[42, 43]. Via a constant remodelling process, other proteins
are also important for continuity. Diaphanous 1 regulates the
reorganisation and polymerisation of actin monomers into
polymers. It is encoded as DIAPH1, and mutations in this
gene can cause DFNA1 and autosomal dominant hearing loss
[44]. The binding and organisation of 𝛾-actin at the base of
stereocilia are provided by two isoforms of the TRIOBP gene.
Mutations in isoforms that are TRIOBP4 and TRIOBP5 can
cause DFNB28 and autosomal recessive type hearing loss [45,
46]. Another protein, taperin, is localised in the base of the
stereocilia and associated with DFNB79 [47]. Small muscle
protein X-linked, encoded as SMPX (DFN4), has a function
in stereocilial development and maintenance in response to
the mechanical stress to which stereocilia are subjected [48].

2.6. Ion Homeostasis and Gap Junctions. The cochlea has
two types of fluids: perilymph, which is high in sodium
and low in potassium, and endolymph, which is high in
potassium and low in sodium; this condition makes a highly
positive potential (+80mV) called endocochlear potential.
Potassium influx into the hair cells causes depolarisation
and, after that, the hair cell repolarises and moves cations
back into the endolymph.This ion homeostasis involves tight
junction protein 2 (TJP2), tricellulin (MARVELD2/TRIC),
claudin 14 (CLDN14), KCNQ4 (KCNQ4), Barttin (BSND),
ATP2b2 (ATP2b2/PMCA2), some connexins (GJBs), and
pendrin (SLC26A4), and they are all related to hereditary
hearing loss [2].

In a mutation of CLDN14 in DFNB29, claudin 14 protein
will be absent or dysfunctional, and the space of Nuel that
surrounds the basolateral surface of outer hair cells is affected
and might change its electrical potential [49]. Similarly,
tricellulin, which is encoded as MARVELD2/TRIC, causes
DFNB49whenmutated, and it is functioning as tight junction
that connects the cells together [45]. Tight junction protein 2,
encoded as the TJP2 gene, binds tight junctions to the actin
cytoskeleton, and mutations cause DFNA51 and autosomal
dominant type hearing loss [50].

KCNQ4 encodes a protein forming a voltage-gated potas-
sium channel. It is expressed in outer hair cells and, if
mutated, causes an autosomal dominant type HL, DFNA2a
[51]. It aids in the repolarisation of outer hair cells and
regulates the sensitivity to sound.

Barttin and pendrin, encoded as BSND and SLC26A4,
respectively, are involved in both nonsyndromic and syn-
dromicHL. Pendrin is an anion exchanger and plays a crucial
role in the acid-base balance. Both syndromic (Pendred’s
syndrome, associated with goiter) and nonsyndromic HL
(DFNB4) are related to the extent of themutation in SLC26A4
[52]. Barttin protein is one of the subunits of the chloride
channel. Mostly, mutations in BSND can cause Bartter syn-
drome, associated with hearing loss and renal abnormalities,
but DFNB73 has also been attributed to a mutation in BSND
and causing nonsyndromic deafness [53].

A gap junction is a channel extending over two adjacent
membranes that enables the exchange of various molecules
and ions in the cochlea. These junctions are made up of

proteins called connexins. These junctions also play a role in
the recycling of potassium ions needed for normal hearing.
it is the most common cause of nonsyndromic HL and was
the first identified gene is GJB2; it is encoded as connexin
26 (DFNA3a/DFNB1a) [54]. Other connexins related to non-
syndromic HL are connexin 30 (GJB6, DFNA3b/DFNB1b)
[55, 56] and connexin 31 (GJB3, DFNA2b/DFNB91) [57, 58].

2.7. Others. There are also extracellular matrix proteins, that
is, TECTA (𝛼-tectorin), COL11A2 (type XI collagen 𝛼2), and
COCH (cochlin), and transcription factors, such as POU4f3
(class 4 POU), POU3f4 (class 3 POU), MIR96 (microRNA
96), GRHL2 (grainy-head-like 2), ESRRB (oestrogen-related
receptor 𝛽), and EYA4 (eyes absent 4) involved in hereditary
HL.

3. Conclusion

This review presents an overview and description of the
currently known genes related to hereditary NSSHL. The
functions of these genes will be better understood with time,
and more genes leading to hearing loss will be discovered
soon. With new studies and continued examination, the
function of the cochlea will be better understood, and novel
molecular and gene therapies for human sensorineural HL
will hopefully be developed.
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