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Traditional Chinese medicine (TCM) still needs more scientific rationale to be proven for it to be accepted further in the West.
We are now in the position to propose computational hypotheses for the mode-of-actions (MOAs) of 45 TCM therapeutic action
(sub)classes from in silico target prediction algorithms, whose target was later annotated with Kyoto Encyclopedia of Genes and
Genomes pathway, and to discover the relationship between them by generating a hierarchical clustering. The results 0of 10,749 TCM
compounds showed 183 enriched targets and 99 enriched pathways from Estimation Score < 0 and > 5% of compounds/targets in
a (sub)class. The MOA of a (sub)class was established from supporting literature. Overall, the most frequent top three enriched
targets/pathways were immune-related targets such as tyrosine-protein phosphatase nonreceptor type 2 (PTPN2) and digestive
system such as mineral absorption. We found two major protein families, G-protein coupled receptor (GPCR), and protein kinase
family contributed to the diversity of the bioactivity space, while digestive system was consistently annotated pathway motif, which
agreed with the important treatment principle of TCM, “the foundation of acquired constitution” that includes spleen and stomach.
In short, the TCM (sub)classes, in many cases share similar targets/pathways despite having different indications.

1. Introduction

Traditional Chinese medicine (TCM) has been practiced for
thousands of years for the prevention and treatment of dis-
eases using a unique system of theory, diagnosis, and treat-
ment [1, 2]. The philosophical background of TCM is based

on Yin and Yang, as well as the Five Elements (agents) the-
ories. The Yin and Yang are the harmony of two opposite
energies and the Five Elements describe the five interde-
pendent functional organs, heart, liver, spleen, lung, and
kidney, with each organ’s own Yin and Yang [3, 4]. When
a human body suffers from a disease, the dynamic balance


http://dx.doi.org/10.1155/2016/2106465

and the relationship of the Five Elements are disturbed;
hence, to rectify the disturbance, TCM applies a holistic
approach with the key therapeutic principles being “Zheng”
(meaning syndrome or pathological patterns seen in patients)
and “Fufang” or “Fang Ji” (meaning compound formulations
consisting of materia medica) [5-11]. The Chinese medicines
can be organized into several classifications such as thera-
peutic actions, source of the medicine, and internal organs
[12]. In this study, the classification of the Chinese medicines
follows the therapeutic actions, of which some also possess
subclassifications based on clinical applications recorded by
TCM monographs (Table 1) [13]. A combination of two or
more Chinese medicine categories makes up a treatment
formula, which then contains a considerable number of
chemical compounds [14].

The mixture of compounds in the formula works through
the therapeutic principle Jun-Chen-Zuo-Shi, by maximizing
the therapeutic effects and minimizing the side effects [1,
15, 16]. Based on the healing/pharmacological properties and
constituents of each medicine, the Jun (emperor) component
is the principal phytocomplex targeting the major symptom
of the disease. There are only a few varieties of Jun medicinal
that are administered as a single formula, usually in large
doses. The Chen (minister) components synergize with Jun
to strengthen its therapeutic effects and may also treat sec-
ondary symptoms. The Zuo (assistant) medicinal reduces or
eliminates possible adverse or toxic effects of the Jun and/or
Chen components, while also enhancing their effects and
sometimes treating secondary symptoms. Finally, the Shi
(courier) components facilitate delivery of the principal com-
ponents to the lesion sites or facilitate the overall action of the
other components [17, 18]. Therefore, at the molecular level,
a TCM formula, which is a multicomponent and multitarget
agent, is assumed to modulate a series of protein targets in
an integrative manner to harmonise the body system [19].
In brief, TCM is a well-structured system from diagnosis to
healing, whose theories and medicines are rationally con-
nected and interdependent. Note that a TCM Fufang is
primarily based on medicinal plants but may also contain
tungi (e.g., Ganoderma lucidum), mineral (realgar), and occa-
sionally animal products (e.g., Calculus bovis).

TCM compounds derives from the biodiversity of natural
products, of which is a rich resource for discovering new
TCM-based drugs. However, to develop a novel TCM-
based drug still remains challenging. One of the factors that
contributes to making it a challenge is an undefined medicine
concoction, where characterising the complex formulation
by using methods to isolate the compounds is an exhaustive
task that is very time-consuming [20, 21]. Although many
compounds have been isolated from Chinese herbals [22, 23],
their modes-of-action (MOAs), in many cases, are still not yet
understood at the molecular level [21]. Another challenging
issue in TCM is measuring the efficacy, pharmacokinetic-
pharmacodynamic profiles, and dose-efficacy relationship of
multiple compounds simultaneously, both in vitro and in vivo
[20, 21, 24]. However, as shown in this work, particularly
related to MOAs, it is now possible to suggest the MOA of
TCM compounds using in silico target prediction, hence
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providing testable hypotheses to guide towards finding new
molecular entities.

Various methods are available for in silico target pre-
diction such as chemical similarity searching [25], analysis
of “bioactivity spectra” [26, 27], data mining in annotated
chemical database [28, 29], and protein panel docking [30,
31]. Protein panel docking is one of the earliest tools that
has been widely used in TCM, where a compound is docked
to a wide panel of potential proteins and the proteins are
subsequently ranked based on calculated binding affinity
scores [32]. Ehrman et al. employed pharmacophore-assisted
docking to screen TCM compounds active against inflamma-
tion against four protein targets, which were cyclooxygenases
(COX) 1and 2, p38 MAP kinase (p38), c-Jun terminal-NH2
kinase, and type 4 cAMP-specific phosphodiesterase (PDE4)
[33]. In a different study, where the in silico target prediction
was further validated experimentally, Zhang et al. identified
putative targets of 19 natural products from two medicinal
plants in TCM which were used for the treatment of dia-
betes and inflammation using a reverse docking approach,
TarFisDock server [34]. The natural products showed mod-
erate inhibitory activities against the most frequent target
candidate, dipeptidyl peptidase IV (DPP-IV), with ICs,
values ranging from 14.14 yuM to 113.76 uM in an in vitro
enzyme assay [34]. Although protein panel docking method
requires only the chemical structures of the putative active
ingredients, it is limited to high quality protein structures and
the accuracy of the docking programs used [35].

In this study, the methodology opted for was the ligand-
based target prediction based on large bioactivity database
avaijlable. Data mining in annotated chemical databases was
used to predict the protein targets of TCM compounds to
suggest their MOAs. This method becomes viable due to
the increasing availability of bioactivity databases [36, 37].
The target prediction algorithm consists of small molecule
databases annotated with bioactivity data to map “chemical
space” onto “biological activity space.” Based on the principle
of molecular similarity, the method, by generating a statistical
model using the available data, measures the likelihood of an
orphan compound to modulate a target [38]. The model infers
the ligand-target modulation based on the molecular similar-
ity, which can suggest the MOA of an orphan compound of
TCM by associating the target with the known phenotypic
effects of the compound (Figure 1).

Related methods have been developed before and applied
in various different settings. One of the earliest studies
published on target prediction is the Prediction of Bioactivity
Spectra for Substances (PASS) method [39]. This method,
which was developed using structure-activity relationships
for more than 300,000 biological active compounds in its
training set, allows the prediction of more than 4,000 bio-
logical activities, based on the structural formula of a com-
pound, with an average accuracy above 95% in the internal
model evaluation. Nidhi et al. used a large chemogenomic
dataset to develop the in silico target prediction [28]. In this
work, compound-target pairs from the WOrld of Molecular
BioAcTivity (WOMBAT) database were extracted and mod-
els trained on extended-connectivity fingerprints to predict
the most likely targets for all compounds from a different
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TaBLE I: The list of therapeutic action classes, subclasses, and their number of respective Chinese medicines and compounds. A total of 10,749
compounds from 46 therapeutic action subclasses were included in the analysis presented in this work.

Chinese medicine

Chinese medicine

class Chinese medicine subclass (sub)class (Chinese names) Abb. NoH NoC
terto elasing Wind cold dispersing Sa_rz%l;%%% %Z%)y ‘ao ER-wind cold 21 538
Wind heat dispersing Qn&g%r%é% %la_g%;’ao ER-wind heat 22 413
Heat—cleecizi:l%nagnd blood Lién(% j;?ﬁji {hEuJ(I)[L )_;j}; yao HC-blood cool 14 99
Uzl icam n
Heat-clearing Deficiency Q({%grﬁm%) HC-def 10 186
o and O e HC-detox 541029
Heat—cl;a;;ril;gl gand fire Qir&gﬁ r‘% );%ejl(u_é% ;réo HC-fire purge 18 234
Laxative medicinal R(L?I% )%é_z%g;o Purg-lax 3 27
Purgative medicinal Offensive purgative G(;)%zg%%y)‘ao Purg-oft 6 54
Dij;gi-(e};;zglﬁtr?gle) ]l‘m( ﬂi%?%;]? _g% )y a0 Purg-water expel 14 206
Watz;?ir_?irtlei?igé and L ?}%i” ;%;ﬁg%%;’éo Damp-antiicteric 6 189
Dampness resolving Zt\]r?ﬁ;j;;igi)gl‘zig = ?%i%z%l%%;’éo Damp-stran 15 133
1 e e S
Qi regulating (L}‘E‘%Yg) Qi 36 699
Digestant medicinal Xé?% %élé%r;ao Digest 8 146
Astringent hemostatic Shou lién zhi )Eié yao Hemo-astringent 5 92

(e diatlis))
Blood cooling hemostatic Lié?%:xﬁéé}ﬁ)gg)yéo Hemo-blood cool 13 198
Hemostatic medicinal Mer}iiir?:) :::trircning Wé? J%li?}f Elliﬂf%é)yéo Hemo-meridian 2 146
Stasis resolving hemostatic Hl(l?g’%ﬁ})ﬁi%%éo Hemo-stasis 6 245
Blood activating analgesic Hué( {)gﬂ?lij:m;% zr%g)yéo BASR-analgesic 7 487
Blood activating and Bloojli};rﬁil:t?fgmass " T%eﬁ)ﬁ?ﬁ%%g) - BASR-break ’ 77
stasis resolving Blood a;ctivating. Huo6 xue t‘iéo jiﬂrkg yao BASR-menstrual 15 457

menstruation resolving (& MLF 22 24)
Blood athiZ:itri;g trauma Hué é%?ﬂlll}; 139}31%?;5 yao BASR-trauma i 261
Clearingr:(c)il‘}fliiagt phlegm Qir(l% }}T;irx%%% gféo CSPC-heat 30 237
fﬁ;iﬂ;ﬁﬁgfﬁgﬁl . Cold phlfg:: IIrleijl(;lving and Wér(lygl?i %agg tg'%l)yéo CSPC-cold 19 147
Coughsuppresing and 7hi ke ping chuinyio CSPCpanting 16 34
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TaBLE 1: Continued.

Chinese medicine

Chinese medicine

i ici Abb. H
class Chinese medicine subclass (sub)class (Chinese names) bb No NoC
Heat nourishing Yéng xin an shén yao .
nan shen T l-heat 1 145
- i tranquilizing (FRLZHZ) ranquiea
ranquiizing . - Zhong zhén an shén yao .
Settling tranquilizing (B L) Tranquil-settle 6 1
Orifice opening K?;:I%%%; 0 Orifice 7 68
Extinguishing wind to Xi féng zhi jing yao .
2 LPWE- 1 8 85
Liver-pacifying and resolve convulsion (BIREEZ) convuision
ind extineuishi L
Wind extmgHishing Liver yang calming Pln(g%}%%l%ggzg)yao LPWE-liver 7 22
Blood tonifying l?;ﬁll*x[lﬂfl:g%) TR-blood 7 388
S Bu qi yao .
Tonifying and Qi tonifying RS2 TR-qi 15 474
replenishing o Bit véne vio
Yang tonifying ?%%E%%I; TR-yang 23 559
Yin tonifying B(l%l I‘Y é)%lg.?; TR-yin 17 259
R Gu bido zhi han yao .
Anhidrotic (% 1T 25) Ast-anhidro 3 17
. . . Lian fei se chang yao
Lung- ; Ast-lun 8 145
Astringent ung-intestine astringent R g
naton and checking. GUMEOMRO AV e s 1
> Bk é;—» JeTH 7
vaginal discharge (EIRARIR LLH25)
Bone (sinew) strengthening Qa f(e;f);kh{é%g%% %nz%? yao WD-bone 5 44
Wind-dampness v Qi féng shi re yao WD-heat 8 175
dispelling Heat-clearing (REXIEFAZ) “
Cold dispersing Q“(%“J%}%?ﬁ%)‘/ a0 WD-cold 13 309
Interior warming V(\;Zni!‘g%o Warm 13 457
5 L7
Worm expelling Qu choéng yao
medicinal (IR H 7)) Worm 0 %3
Emetic medicinal Y&%gﬂiu%;lo Emetic 3 9
Parasite destroying, Gong di sha chong zhi
dampness ing vio Parasite 8 81
eliminating, and Ij(iyx iﬁk%?ﬁ)
itchiness relieving (A =
Antimalarial Kang niie yao .
3 Malarial 4 30
medicinal HE) alaria
Total compounds 10,749

Abb.: abbreviation.

NoH: number of Chinese medicines.

NoC: number of compounds.

database, the MDL Drug Database Report (MDDR). The
results showed that, on average for 10 test cases, the top three
targets were predicted correctly for 77% of the compounds. In
the Similarity Ensemble Approach (SEA), the target predic-
tion was developed by grouping and relating the protein tar-
gets based on chemical similarity among their ligands, which

were quantitatively measured using an algorithm adapted
from BLAST [40]. The study discovered that the chemical
structure of methadone showed close structural similarity to
ligands for the M3 muscarinic receptor, and the prediction
was validated experimentally. In TCM, this method has also
been applied to study either TCM compounds in general



Evidence-Based Complementary and Alternative Medicine

Stigmasterol ~ *,_J

TCM
therapeutic
action class

>

o »
I~
/ prediction

Chemogenomic
database

Compound 1 — target 1

Compound 2 — target 2
Target

Compound 3 — target 2

CYP17A1 hsa00140  Steroid hormone
SRD5A2 biosynthesis
SRD5A1 * |hsa01100  Metabolic pathways

. hsa04976  Bile secretion
Targets predicted
for compound Annotated
stigmasterol pathways

FIGURE 1: Visualization of the link between orphan compounds taken from TCM databases, predicted targets, and TCM medicinal subclasses.
The mode-of-action of compounds in TCM can be hypothesised via an in silico target prediction algorithm. A predicted target can
furthermore be annotated with pathways, which could provide a better insight into the compound’s MOA.

or, specifically, compounds from TCM formulations. I silico
target prediction was developed by integrating chemical,
genomic, and pharmacological approaches using Random
Forest and Support Vector Machine with sensitivity of 81.33%
and specificity of 93.62% for internal validation [41]. This
model was applied by Li et al. to study the MOA of Chi-
nese herbs for the treatment of cardiovascular disease, with
the predicted targets being further validated by molecular
docking approach [42]. The model was also applied to predict
proteins for TCM formulations, Xiao-Chaihu-Decoction and
Da-Chaihu-Decoction, with their MOAs being verified by
building network pharmacology [43].

The motivation of the current study is prompted by the
success to link TCM and Ayurveda compounds to the pre-
dicted targets that were relevant for the indications of various
therapeutic action classes in TCM and cancer in Ayurveda
[44]. In the study, an in silico target prediction method using
the Naive Bayes Classifier was able to associate TCM com-
pounds from the “tonifying and replenishing” therapeutic
action class, for example, with their known phenotype, hypo-
glycaemic effect, through the predicted targets such as
sodium glucose cotransporter 1 (SGLT1), SGLT2, and protein
tyrosine phosphatase to explain their MOA. In addition,
in few cases, the predicted targets led to novel MOA and
side effects being G-protein bile acid receptor 1 (GPBARI),
predicted from Ayurveda compounds, which contributes to
cancer pathogenesis through the apoptosis and cell prolifera-
tion signalling pathway. The aim of the study was to extend
the analysis of the targets prediction compounds of TCM
therapeutic action classes including their subclasses by first
generating hierarchical clustering. The first part of the study
was to understand the MOAs of the subclasses from the

predicted targets as well as from annotated KEGG pathways
because target alone is insufficient to provide a full biological
profile towards the effect of the ligand on a biological sys-
tem [45, 46]. In the second part, bioactivity spaces of all
therapeutic action (sub)classes were compared in order to
understand relationships between the clusters. Hence, the
global mapping of TCM compounds explored in this work,
based on the therapeutic action (sub)classes, not only does
provide better insight of the MOAs of the TCM compounds
but also describes for the first time the relationship between
the therapeutic action (sub)classes.

2. Materials and Methods

2.1. Dataset and Dataset Preparation. TCM compounds were
obtained from TCM Database@Taiwan [13] in SD format.
A total of 13,091 compounds from 46 different therapeutic
action (sub)classes were imported into MOE [47]. To prepare
structures for further analysis, covalently bound Group I met-
als were disconnected into ionic representation, while keep-
ing only the largest molecular fragments, neutralising the
compound, and adjusting the hydrogen and partial charges
using MMFF94 (modified) partial charges. The duplicates
from each therapeutic action (sub)class were removed, result-
ing in a total number of 10,749 distinct compounds. The
list of classes with the final number of compounds for each
(sub)class is provided in Table 1.

2.2. Target Prediction. The processed molecular data was
then subjected to target prediction that was modelled using
the Laplacian-modified Naive Bayes Classifier; the details of
the target prediction algorithm can be found in [48]. Briefly,



this model contained 189,147 ligand-protein pairs extracted
from CHEMBL [49] v.14.0 across 477 human targets which
was used as the training set. The training set contained active
compounds with reported activities (K;/K,;/IC5,/ECs,) of at
least 10 uM with a confidence score of 8 or 9 and at least 20
compounds were available to associate the chemical features
with a target class.

The molecular descriptors of the compounds were repre-
sented by Molprint2D circular fingerprints which have been
shown to relate chemical structural space and bioactivity
space well with each other [50]. The targets predicted for the
new compound use the Naive Bayes Classifier as a method for
classification as follows [51]:

_P(xl @) P(w,)

P00 @

P(w, | %)

Here, the probability of a new compound belonging to a target
class, w,, with a given vector molecular feature, %, is calcu-
lated. The prior target class probability, P(w,), is assumed to
be equal in proportion to the molecules, Nw, which modulate
that class from the total number of molecules, N, in the
training set. Hence,

Now

P(C=w)= N

= 2)

The denominator, P(), calculates the sum of the fractions of
molecules from each class from 3 = 1 to L in the training
set multiplied by the probability of the vector of molecular
feature given the target class:

L Nw
Y P lelag). (3)
p=1

The posterior probability, P(x | w,), is the likelihood of the
feature, 1, given the class, w,.

The internal validation of the in silico target prediction
was measured using the 5-fold cross validation with a recall
of correct targets larger than 80% in the top 1% of predictions.
In the external validation, the algorithm showed a recall of

Average Ratio =

F (random setl) /F (test set) + F (random set2) /F (test set) + - - - + F (random set10000) /F (test set)
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63.6% in the top 1% of predictions using dataset extracted
from WOrld of Molecular BioAcTivity version 2011.1 (WOM-
BAT) [52].

Only target scores above a confidence score, which are
defined individually for each target class, were taken as the
output. The confidence score for each class was calculated by
the optimal balanced accuracy (precision and recall tradeoft)
on a per-target class basis and was used to retain protein tar-
gets likely to interact with the compounds in the dataset [53].

2.3. Pathway Annotation. Each predicted target was anno-
tated with its full set of pathways from KEGG biological path-
ways (release 58.1) [54]. It was possible to annotate 405 out of
477 targets with KEGG biological pathways [55, 56].

2.4. Enrichment Calculations. To normalise the classification
results from target prediction/pathway annotation, enrich-
ment calculations were performed by normalising frequen-
cies of the target prediction/pathway annotation of each
therapeutic action subclass of compound to a background
of 10,000 compounds that were selected randomly from
PubChem [57] and ZINC [58], which consists of 194,849
compounds in total. Two methods were used to perform
enrichment calculation in this step, namely, Estimation Score
and Average Ratio. The calculation of the scores was per-
formed as follows [55, 56].

2.4.1. Estimation Score. 'The Estimation Score is based on the
frequency on the number of predicted targets/pathways in the
random dataset larger than or equal to the frequency on the
number of predicted targets/pathways in the test dataset. The
absolute frequency (C in (4)) was divided by the total number
of random datasets, giving a value between 0 (enriched) and
1 (random). Hence,

Estimation Score = L (4)
1000

2.4.2. Average Ratio. The Average Ratio is calculated by the
ratio of the frequency (F) of predicted target/annotated path-
way in each random dataset with the frequency (F) of pre-
dicted targets in the test dataset:

(5)

In this study, enriched targets/pathways were considered if
they showed an Estimation Score < 0.01, and descending
Average Ratio was used to further discriminate important
targets in agreement with previous work by Liggi et al. [55,
56]. The relative cutoft of both target frequency (TF)/pathway
frequency (PF) that was >5% of the highest predicted tar-
get/pathway frequency was used after ranking the targets
using the Estimation Score and Average Ratio methods to
determine which targets were considered to be enriched in
particular therapeutic action (sub)classes.

10000

2.5. Hierarchical Clustering Based on the Bioactivity Space
of the Therapeutic Action (Sub)classes. The frequencies of
compounds across 477 targets for each therapeutic action
(sub)class were subjected to agglomerative hierarchical clus-
tering [59, 60]. The clustering method involved two steps as
follows.

2.5.1. Selecting Measures of Dissimilarity or Similarity. The
dissimilarity distance between two therapeutic action
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(sub)classes was calculated using the “dist” function in R [61]
using the “Euclidean” method after scaling the frequencies.

2.5.2. Clustering. Clustering was performed using the
“hclust” function in R [61] based on the previously calculated
Euclidean distance and Ward’s clustering method [62]. In
this method, two clusters were merged if the sum square
Euclidean distance was minimal.

A cutoff dissimilarity distance of approximately 20 was
applied in order to obtain a manageable number of clusters,
defining 14 groups of therapeutic action (sub)classes, namely,
clusters I to XIV.

2.6. Targets and Pathways Analysis. The top three enriched
targets/pathways were inspected with regard to their ability
to explain the MOA of the compounds classified in the
therapeutic action (sub)classes. To improve the mechanistic
understanding of the MOA, the top three enriched targets/
pathways were linked to the phenotypes of the (sub)classes
with supporting evidence from the literature and supporting
in vitro or in vivo studies of the Chinese medicines” extracts
or isolated compounds. However, supporting in vitro and in
vivo studies were excluded in the pathway analysis because, in
many (sub)classes, no information was found. The 14 clusters
were grouped based on the number of (sub)classes in a cluster,
which ranged from ten (sub)classes to only one (sub)class that
derived from different classes. Three clusters were analysed
in detail in the next section. Cluster VII was the only cluster
composed of (sub)classes with the same TCM vital substance
of its meridian system, blood. Cluster X was picked as a
representative of a cluster of different classes while cluster
XII was selected as a representative of a cluster with only one
type of (sub)class. The top three enriched targets/pathways
per selected (sub)classes were summarized in Tables 3 and 4
and the top three enriched targets/pathways of all (sub)classes
can be found in the Supplementary Material available online
at http://dx.doi.org/10.1155/2016/2106465.

To compare the bioactivity spaces among the clusters, all
enriched targets in a cluster were classified according to their
protein family as derived from UniProt [63]. The enriched
pathways for all clusters were also classified according to
KEGG ortholog groups, which are derived by comparing
sequence similarity of individual genes and defining the
functional group from the list of genes in the respective group
[45]. The KEGG ortholog group will be called a pathway motif
onwards. All the enriched targets were annotated from 59
protein families and the enriched pathways were annotated
from 33 pathways motifs. A major protein family/pathway
motif for a cluster was defined if the number of enriched
targets/pathways was at least 5% of the total number of
enriched targets/pathways in the respective cluster and it was
present in at least eight clusters. Only five major protein
families and eight major pathway motifs were identified. The
frequencies of enriched targets/pathways per cluster were
normalised before constructing two different heatmaps using
heatmap.2 function of gplots package in R [61], in order to
visualize whether the major protein families/pathway motifs
were equally important across clusters.

3. Results

3.1. Target Prediction and Pathway Annotation. The in silico
target prediction of 10,749 TCM compounds yielded 409
unique targets, of which 183 were enriched targets. In the
pathway annotation, the total number of unique pathways
was 171, of which 99 were enriched pathways. The results
discussed from here onwards cover 45 of the 46 therapeutic
action (sub)classes only. One therapeutic action subclass is
not included because no target was retained from the “Tran-
quilizing-Settling” (Tranquil-settle) subclass, which con-
tained only one compound. This subclass was therefore omit-
ted from hierarchical clustering and all subsequent analyses.

3.2. Hierarchical Clustering. In Figure 2,a dendrogram shows
the hierarchical clustering of 45 TCM therapeutic action
(sub)classes based on their bioactivity fingerprints. The
cluster tree generates diverse spread of the 45 therapeutic
action (sub)classes, which is defined into 14 clusters. In many
instances, branches of the dendrogram paired up from dif-
ferent types of classes or subclasses. Based on the molecular
similarity principle [64], this observation indicates that many
similar compounds are present in both (sub)classes despite
having different therapeutic actions. The link of the top
three enriched targets of the therapeutic action (sub)classes
is discussed in the next sections as well as their top three
enriched pathways.

3.3. Target Analysis

3.3.1. Clusters with Four Therapeutic Action (Sub)classes (Clus-
ter X). Only cluster X represents this group. The subclasses
in cluster X are “wind-dampness dispelling, bone (sinew)
strengthening” (WD-bone), “tonifying and replenishing, qi
tonifying” (TR-qi), “cough suppressing and panting-calming,
clearing and heat phlegm resolving” (CSPC-heat), and “tran-
quilizing, heat nourishing tranquilizing” (Tranquil-heart).
The top three enriched targets from cluster X are mainly
implicated in immunomodulation, namely, steryl-sulfatase
(STS) [65], tyrosine-protein phosphatase nonreceptor type
2 (PTPN2) [66], and peptidyl-prolyl cis-trans isomerase
FKBP1A (FKBI1A) [67], glucose homeostasis, such as sodium
glucose transporter 1 (SGLT1) and sodium glucose trans-
porter 2 (SGLT2) [68], cancer, such as DNA topoisomerase
1 (TOPOL) [69], reproductive system, such as testosterone
17-beta-dehydrogenase 3 (17-beta-HSD 3) [70], and central
nervous system (CNS), such as glutamate carboxypeptidase
2 (CGPII) [71].

Dissecting the in silico target prediction per subclass,
starting from the “wind-dampness dispelling, bone strength-
ening” (WD-bone), the top three enriched targets are TOPO1
(Estimation Score (ES) = 0, Average Ratio (AR) = 0.0144),
SGLT1 (ES = 0, AR = 0.0342), and STS (ES = 0, AR = 0.0370).
From the in silico target prediction, acankoreosides A-C
derived from Acanthopanax gracilistylus were suggested to
modulate TOPO1 and SGLTI in the subclass, while com-
pounds from Homalomena occulta such as asperpenoid, bul-
latantriol, and homalomenol were suggested to modulate
STS, as well as compound such as quercetin of Taxillus
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FIGURE 2: Hierarchical clustering analysis of TCM classes and subclasses is based on the similarity of the bioactivity fingerprint of each class.
The “Tranquil-settle” subclass was not included here (and in the further analysis) since it only contained a single compound for which no
reliable targets could be predicted. The (sub)classes were defined into 14 clusters, where clusters VII, X, and XII were selected for further

analysis based on the top three enriched targets/pathways.

chinensis. The target prediction of compounds from Acan-
thopanax gracilistylus is supported by an in vitro study where
the herb’s extract inhibits cell proliferation of several types of
cancer cells [72]. It is also reported that the extract of Taxillus
chinensis exhibits significant anti-inflammatory activity in
vitro [73]. The herbs from this class are used to relieve pain,
relax muscle and tendons, open channels and collaterals, and
strengthen tendons and bones [12, 74]. The actions of the
herbs are related to the disturbance of muscular function in
diabetes [75] and cancer cachexia which affects protein and
lipid metabolism in skeletal muscle [76].

The top three enriched targets for “tonifying and replen-
ishing, qi tonifying” (TR-qi) subclass are PTPN2 (ES = 0, AR
= 0.0174), SGLT2 (ES = 0, AR = 0.0282), and SGLT1 (ES = 0,
AR =0.0321). Many compounds from Glycyrrhiza glabra, Gly-
cyrrhiza uralensis, Dolichos lablab, Panax ginseng, and Astra-
galus membranaceus were predicted to modulate PTPN2
and SGLT1. In particular to PTPN2 [77], a compound, gly-
cyrrhizin from Glycyrrhiza glabra and Glycyrrhiza uralensis,
is supported by an in vivo study that suggests the compound
ameliorates all established chronic histopathologic changes
of lung tissue in the mouse model of asthma [78]. TCM
describes the notion that the medicines from this subclass act
on the spleen and lung, in which the deficiency of lung qi is
characterised by shortness of breath like in asthma [12].

A subcluster consists of two therapeutic action subclasses
seen to have highly similar bioactivity space. The first subclass
is “cough suppressing and panting-calming, clearing and heat
phlegm resolving” (CSPC-heat) with the top three enriched
targets being PTPN2 (ES = 0, AR = 0.0112), TOPOL (ES =0,
AR =0.0236), and 17-beta-HSD 3 (ES =0, AR = 0.0341). Com-
pounds from Platycodon grandiflorum such as platycosides
A-M were suggested to be modulated by all the top three

enriched targets and compounds from Bambusa tuldoides,
Peucedanum decursivum, and Trichosanthes kirilowii were
mostly predicted to modulate 17-beta-HSD 3. Although Platy-
codon grandiflorum [79] and Trichosanthes kirilowii [80] are
reported to exhibit anticancer properties, the reports do not
support the link between the top three enriched targets and
the indication of therapeutic action subclass to rationalise the
MOA of the compounds.

The second subclass, “tranquilizing, heart nourishing
tranquilizing” (Tranquil-heart), lists FKBIA (ES = 0, AR =
0.0077), PTPN2 (ES = 0, AR = 0.0167), and CGPII (ES = 0,
AR = 0.0209) as its top three enriched targets. Compounds
of three different herbs were predicted to modulate FKBIA
and PTPN2 and only compounds of Ganoderma lucidum,
such as ganoderic acid and lucidenic acid derivatives, were
predicted to modulate CGPII. The prediction of CGPII from
triterpenoids of Ganoderma lucidum such as ganoderic acids
is supported by Zhang et al., where triterpenoids exhibit
nerve growth factor or brain-derived neurotrophic factor
activities in vitro, which has the therapeutic potential in
neurodegenerative diseases [81]. The therapeutic actions of
the herbs from the subclass are described to have effects on
central nervous system [12]. In conclusion, the MOAs of the
compounds for three subclasses in cluster X can be suggested
from their top three enriched targets.

3.3.2. Clusters with Three Therapeutic Action (Sub)classes
(Cluster VII). Cluster VII is one of the clusters that consists of
three therapeutic action subclasses, in which two subclasses,
“hemostatic, stasis resolving” (Hemo-stasis) and “tonifying
and replenishing, blood” (TR-blood), show highly similar
bioactivity space. The third subclass is “heat-clearing, blood
cooling” (HC-blood cool). Overall the top three enriched
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targets in the cluster can be classified into immunomodula-
tion, which are PTPN2 [66], protein kinase C beta type (PKC-
B) [82], protein kinase C eta type (PKC-#) [83], and protein
kinase C gamma type (PKC-y) [84], cancer, namely, TOPO1
[69], and glucose homeostasis, such as SGLT2 [68]. The
top three enriched targets in “hemostatic, stasis resolving”
(Hemo-stasis) and “tonifying and replenishing, blood” (TR-
blood) are PTPN2 (ES =0, AR =0.0089), PKC-# (ES=0, AR =
0.0182), PKC-y (ES = 0, AR = 0.0209), and PTPN2 (ES =
0, AR = 0.0140), PKC-f3 (ES = 0, AR = 0.0230), and PKC-¢
(ES = 0, AR = 0.0240), in which all of them are implicated
in immunomodulation. In the “hemostatic, stasis resolving”
(Hemo-stasis) subclass, compounds such as ginsenosides
and notoginsenosides of Panax notoginseng were predicted
to modulate all top three enriched targets. The target pre-
diction also showed that anthraquinone compounds from
Rubia cordifolia such as purpurin, ruberythric acid, and
soranjidiol modulate PKC-f and PKC-¢. In support of the
target prediction of anthraquinone compounds of the second
herb, a study reported that the herb’s ethanol extract shows
wound healing activities in mice, which from histological
evaluations indicate marked infiltration of the inflammatory
cells, increased blood vessel formation, and enhanced cells
proliferation [85]. This finding agrees with the description of
the subclass to stop bleeding [12].

In the “tonifying and replenishing, blood” (TR-blood)
subclass, compounds from Paeonia lactiflora such as albi-
florin, gallotannin, and casuarictin were predicted to mod-
ulate PKC-$ and PKC-#. PTPN2 and PKC-# were both fre-
quently predicted to be modulated by compounds from
Panax notoginseng such as notoginsenoside and ginsenoside.
It is found that ginsenoside Rgl of Panax notoginseng amelio-
rates liver damage and suppresses proinflammatory cytokines
secretion in concanavalin A-induced hepatitis in mice [86].
This subclass is described to have pharmacological effects on
the liver, heart, and spleen and prevent failures of the organs
[12]. The top three enriched targets for “heat-clearing, blood
cooling” (HC-blood cool) subclass are PKC-f (ES = 0, AR =
0.0100), TOPOLI (ES = 0, AR = 0.0123), and SGLT2 (ES = 0,
AR = 0.0137). In this subclass, compounds from Paeonia lac-
tiflora such as albiflorin, isopaeoniflorin, and benzoylpaeoni-
florin were predicted to modulate both PKC-f and TOPO1,
while SGLT2 was predicted to be modulated by compounds
from Rehmannia glutinosa such as rehmanniosides A and B.
We found that the target prediction of SGLT?2 is supported
by a study on stachyose extract from Rehmannia glutinosa,
which shows a significant hypoglycaemic effect in diabetic
mice [87]. TCM views the notion that the action of the
subclass is to promote the generation of body fluids from
excessive heat [12, 74] where the consumption of body fluid is
one of the symptoms in diabetes [88] and cancer patients [89].
Altogether, in many instances, the MOAs of the compounds
can be explained from the enriched targets and can also be
linked to the indications of the (sub)classes.

3.3.3. Cluster with One Therapeutic Action (Sub)class (Cluster
XII). One out of five clusters that has only one therapeutic
action class is cluster XII, “parasite destroying, dampness
eliminating, and itchiness relieving” (Parasite). The top three

enriched targets are dihydrofolate reductase (DHFR), which
plays a role in bacterial infection and cancer [90] (ES = 0, AR
= 0.0532), DNA-dependent protein kinase catalytic subunit
(DNA-PKCs), which is implicated in cancer [91] (ES=0, AR =
0.0644), and tumour necrosis factor (TNF), which is found
to exert activities in cancer, inflammation, and bacterial
infection [92, 93] (ES = 0, AR = 0.0687). From the target
prediction, compounds from Allium sativum were predicted
to modulate DHFR, such as allicin, allithiamine, and allyl
disulphide. This prediction agrees with a study by Adetumbi
et al., from which the extract of Allium sativum is found to
inhibit the synthesis of proteins, nucleic acids, and lipids in
Candida albicans where the major component of the herb
was allicin [94]. The finding relates to the phenotypes of the
subclass, which is to kill and expel parasites and subsequently
relieve pain [12, 74]. In brief, the MOAs of the class can
be linked to the enriched targets and the indications of the
subclass. Table 2 summarises the top three enriched targets
of the therapeutic action (sub)classes.

The above analysis can be summarized into two different
views, namely, biological space and chemical space. From
the biological space’s view, many of the top three enriched
targets, regardless of therapeutic action (sub)classes in any
of the clusters, are implicated in immunomodulation such as
PTPN2, PKCs, FKBP1A, and STS, in which PTPN2 and PKCs
were frequently predicted. Both PKC family and PTPN2
are implicated in immunomodulation. The frequency of
immune-related targets can be related when TCM balances
the immune system regulation by either promoting or sup-
pressing the immune factors [95]. The PKC isoenzymes act
as important mediators in immune cellular signalling in T-
and B-lymphocytes in acquired immune system [96]. PTPN2
also plays a major role in the transmission of immune cell
signalling events [66]. From the chemical space’s view, triter-
penoid is the most frequent phytochemical (Table 3), which
was predicted to modulate few of the top three enriched
targets, such as TOPOL, PTPN2, and PKCs. The compounds
are found in different herbs such as Acanthopanax gracilisty-
lus, Glycyrrhiza glabra, Platycodon grandiflorum, Ganoderma
lucidum, and Panax notoginseng. To validate the result
from the chemogenomic principle that similar targets share
similar compounds, a compound, CHEMBL 1986122, from
CHEMBL database [49] is most similar to acankoreoside A,
with Tanimoto coefhicient (TC) value of 0.91 (Table 4). The
GI;, value of CHEMBL 1986122 was 43.05nM in tumour
cell line growth inhibition assay. Hence, the chemogenomics
principle appears to stand (at least for acankoreoside A)
because both compounds are implicated in cancer and are
structurally similar.

3.4. Pathway Analysis

3.4.1. Clusters with Four Therapeutic Action (Sub)classes (Clus-
ter X). The top three enriched pathways in cluster X are
mainly implicated in digestive system (carbohydrate diges-
tion and absorption, bile secretion, and mineral absorption).
In this cluster, only one pathway, from the top three enriched
pathways, is not classified in digestive system, which is ter-
penoid backbone biosynthesis.
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TABLE 2: The top three enriched targets in clusters VII, X, and XII. It can be seen that, in many cases, the top three enriched targets are
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implicated in immunomodulation. Estimation Score = 0, for all top three enriched targets.

TCM therapeutic
action class

TCM therapeutic
action subclass

Top three enriched targets

Target function
reported by literatures

Average Score

) . DNA topoisomerase 1 Cancer 0.0144
Wind-dampness Bone (sinew) Sodium/el
dispelling strengthening C(())trlal::p(g;rl:gfie Glucose homeostasis 0.0342
Steryl-sulfatase Immunomodulation 0.0370
Tyrosine-protein
Tonifvi d phosphatase nonreceptor Immunomodulation 0.0174
on1fy} T8 an Qi tonifying type 2
replenishing Sodium/elucose
cgtrlal;r?pgr ter 2 Glucose homeostasis 0.0282
igg ;L:;l}:ilrlgfie Glucose homeostasis 0.0321
Cluster X Tyrosine-protein
hosphatase nonreceptor Immunomodulation 0.0112
Cough suppressing Clearing and heat fype g P . .
and panting-calming phlegm resolving
DNA topoisomerase 1 Cancer 0.0236
Testosterone
i 0.0341
17-beta-dehydrogenase 3 Reproduction system
. Peptidyl-prolyl cis-trans Immunomodulation 0.0077
. Heat nourishing isomerase FKBP1A
Tranquilizing e . .
tranquilizing Tyrosine-protein
phosphatase nonreceptor Immunomodulation 0.0167
type 2
Glutamate CNS 0.0209
carboxypeptidase 2
. . Protein kinase C beta type Immunomodulation 0.0100
Heat-clearing Heat-clearing and
medicinal blood cooling DNA topoisomerase 1 Cancer 0.0123
igi ;i?;gﬁ:fsze Glucose homeostasis 0.0137
Tyrosine-protein
Stasi vi phosphatase nonreceptor Immunomodulation 0.0089
Hemostatic medicinal as18 TESOIVINg type 2
hemostatic o .

Cluster VII Protein kinase C eta type Immunomodulation 0.0182
Protein kinase C gamma Immunomodulation 0.0209
type
Tyrosine-protein

o phosphatase nonreceptor Immunomodulation 0.0140
Tomfy'l 8 and Blood tonifying type 2
replenishing o )
Protein kinase C beta type Immunomodulation 0.0230
Protein kinase C eta type Immunomodulation 0.0240
Dihydrofolate reductase i(rll'flle(:cég:acterlal 0.0532
Parasite destroying, devend )
dampness DNA-dependent protein Cancer 0.0644
Cluster XII  eliminating, and kinase catalytic subunit
itchiness relieving Tumour necrosis factor Cancer, bacterial 0.0687

infection

In the “wind-dampness dispelling, bone strengthening”
(WD-bone) subclass, the top three enriched pathways are
mineral absorption (ES = 0, AR = 0.0342), carbohydrate
digestion and absorption (ES = 0, AR = 0.1427), and bile
secretion (ES = 0, AR = 0.2050). To link the mineral absorp-
tion pathway to the indication of the subclass, it has been

reported that minerals such as calcium are important for
bone remodelling to strengthen the bone [97]. In the second
pathway, carbohydrate digestion and absorption are associ-
ated with the indication of the subclass. Here, a study shows
that the low carbohydrate-high fat (LH-FC) diets reduced
the bone growth, bone structures, and mechanical properties
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TAaBLE 4: Compound from CHEMBL database that is most similar to acankoreoside A (Table 3) and its activity profile.

Reference compound

Closest similarity

Reported activity profile

no” Y "ou

O

Acankoreoside A

OH

o)
The GI;, value of CHEMBL
OH 1986122 was 43.05nM in
o CCREF-CEF leukaemia cell
line growth inhibition
assay.
0 OH Tanimoto coefficient = 0.91
HO OH
(@)
(@)
HO
OH
HO

CHEMBL 1986122

in mice [98]. However, no study can be found to link bile
secretion to the indication of the subclass.

“Tonifying and replenishing, qi tonifying” (TR-qi) sub-
class has mineral absorption (ES = 0, AR = 0.0321), carbo-
hydrate digestion and absorption (ES = 0, AR = 0.1251),
and bile secretion (ES = 0, AR = 0.2678) in the top three
enriched pathways. Minerals play vital roles in maintaining
the cell functions to optimise health and prevent diseases.
The first enriched pathway, mineral absorption, the process
of recycling iron in erythrocytes, is materialized in splenic
macrophages in the red pulp [99] which agrees with the indi-
cation that the subclass which is qi tonifying is related to the
maintenance of blood flow within the vessels which is impli-
cated directly from spleen’s activity [100]. In the second path-
way, no study can be found to link carbohydrate digestion and
absorption to the indication of the subclass. Relating to the
third enriched pathway, bile secretion, it has been reported
that the major components of bile acid, chenodeoxycholic
acid and glycochenodeoxycholic acid, can induce cyclooxy-
genase 2 expression and cell proliferation in esophageal squa-
mous cells, suggesting that bile acids may contribute to the
inflammation and mucosal thickening [101]. Another paper
demonstrates that bile acids may induce airway fibrosis
through the production of TGF-f1 and fibroblast prolifera-
tion [102]. These findings can be associated with the indica-
tion of the subclass, which is related to lung deficiency [12].

The top enriched pathways of “cough suppressing and
panting-calming, clearing and heat phlegm resolving”
(CSPC-heat) subclass are minerals absorption (ES = 0, AR =
0.0380), carbohydrate digestion and absorption (ES=0, AR =
0.1572), and bile secretion (ES = 0, AR = 0.1958). Relating to

the first enriched pathway, mineral absorption, the abnormal
distribution of trace elements such as zinc, selenium, and
copper has been reported to aggravate oxidative damage and
inflammation in the airways and subsequently decreased the
lung’s function in asthmatic patient [103], where an asthmatic
condition is described as retention of heat phlegm in the
lung [104]. In the second enriched pathway, carbohydrate
digestion and absorption, the ingestion of carbohydrate is
reported to attenuate the migration of T-lymphocytes to the
bronchial epithelial cell line when it is infected with the com-
mon respiratory pathogen human rhinovirus during stren-
uous exercise [105]. This effect agrees with the phenotype of
the subclass which is to dissolve phlegm upon infection in
the lung [12, 74]. However, no strong evidence can be found
to link bile secretion to the indication of the subclass.

The “tranquilizing, heart nourishing tranquilizing”
(Tranquil-heart) subclass lists mineral absorption (ES = 0,
AR = 0.0387), carbohydrate digestion and absorption (ES =
0, AR = 0.1163), and terpenoid backbone biosynthesis (ES =
0, AR = 0.2166). In the first enriched pathway, mineral
absorption, it is reported that selenium plays an important
role in the brain where its deficiency is implicated in senility
and Alzheimer’s disease [106]. In the third enriched pathway,
terpenoid backbone biosynthesis includes mevalonate and
nonmevalonate pathway. The mevalonate pathway is a path-
way implicated in cholesterol biosynthesis in the brain and
deficiencies in cholesterol metabolism can lead to diseases
of the central nervous system (CNS) [107]. Both findings
agree with the indication of the subclass, which is the phar-
macological effects that are on the central nervous system
[12]. Although there is no strong evidence to support
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the second enriched pathway, carbohydrate digestion and ab-
sorption, the two enriched pathways can be linked to the
indication of the subclass. In short, in many instances, the
top three enriched pathways can be associated with the
indications of the (sub)classes to explain their MOAs.

3.4.2. Cluster with Three Therapeutic Action (Sub)classes
(Cluster VII). The top three enriched pathways in the cluster
can be classified into digestive system (carbohydrate digestion
and absorption, bile secretion, and mineral absorption),
cellular communication (tight junction), and membrane
transport (ABC transporters). The top three enriched targets
in “hemostatic, stasis resolving” (Hemo-stasis) subclass are
mineral absorption (ES = 0, AR = 0.0267), carbohydrate
digestion and absorption (ES = 0, AR = 0.0987), and bile
secretion (ES = 0, AR = 0.1872) and “tonifying and replen-
ishing, blood” (TR-blood) subclass lists mineral absorption
(ES=0, AR=0.0329), carbohydrate digestion and absorption
(ES = 0, AR = 0.1055), and tight junction (ES = 0, AR =
0.2053). In “hemostatic, stasis resolving” (Hemo-stasis) sub-
class, the mineral absorption pathway can be related to
zinc deficiency, which has been reported to delay wound
healing [108]. In the bile secretion pathway, bile acids are
implicated in platelet inhibition by solubilizing the platelets,
in which patients with obstructive jaundice were exposed to
abnormal hemostasis due to high level of bile acids [109].
Both enriched pathways are related to the indication of the
subclass, which is to achieve hemostasis [12], and no study can
be found to associate carbohydrate digestion and absorption
pathway with the indication of the subclass. In “tonifying and
replenishing, blood” (TR-blood), the first enriched pathway,
mineral absorption, can be linked to the indication of the
subclass which is to strengthen the heart that controls blood
vessel [12], when selenium is reported to be protective against
cardiovascular disease by contributing to the production of
vasodilatory prostacyclin by the endothelium [106]. No study
can be found to support the link between the second pathway,
carbohydrate digestion and absorption, and the indication of
the subclass. In the third enriched pathway, tight junction,
the presence of tight junctions in the bile epitheliums acts as
barrier to toxic diffusion of bile into hepatic interstitial tissue,
which could impair the organ’s function [110]. TCM enriched
can be associated with the indication of the subclass, which is
to strengthen the function of liver [12].

The top three enriched targets for “heat-clearing, blood
cooling” (HC-blood cool) subclass are mineral absorption
(ES=0, AR =0.0276), carbohydrate digestion and absorption
(ES =0, AR = 0.0753), and ABC transporter (ES = 0, AR =
0.0769). The mineral absorption pathway can be linked to
the subclass when a decrease in intracellular magnesium
concentration is implicated in type 2 diabetes [111] and the
disease, according to TCM, is described as the deficiency of
body liquid due to heat syndrome [112]. Similar to previous
subclass, no study can be found to link the second enriched
pathway, the carbohydrate digestion and absorption, to the
indication of the subclass. In the third pathway, ABC trans-
porter, it is reported that the high expression of ABCG5
and ABG8 in hypercholesterolemic condition of the heart
is involved in cardiovascular protection by lowering plasma
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cholesterol level [113]. The pathway can be linked to the
indication of the subclass when the herbs are described to
act on liver and heart [12]. All in all, in many cases, the top
three enriched pathways can be linked to the indications of
the subclasses to explain their MOAs.

3.4.3. Cluster with One Therapeutic Action (Sub)class (Cluster
XII). In the “parasite destroying, dampness eliminating, and
itchiness relieving” (Parasite) class, the top three enriched
pathways are steroid biosynthesis (ES = 0, AR = 0.2530),
glycerophospholipid metabolism (ES = 0, AR = 0.2941), and
collecting duct acid secretion (ES = 0, AR = 0.3420). The first
two pathways, steroid biosynthesis and glycerophospholipid
metabolism, are part of lipid metabolism, and many reports
have suggested their link to immune response. For instance,
the steroid biosynthesis is downregulated by interferon type
I upon viral infection [114] and the chlamydia exploits the
nutrient-rich host cell cytosol by trafficking the glycerophos-
pholipid from the host cell for survival [115]. In relation to the
collecting duct acid secretion pathway, the bacterial infection
in the kidney is reported to affect the collecting duct acid
secretion because the presence of lipopolysaccharide (LPS) of
the bacteria inhibits HCO; ™ absorption [116]. These pathways
agree with the functions of the subclass, which is to kill and
expel parasites [12, 74]. Altogether, the top enriched pathways
can be linked to the indication of the class to explain the
MOAs. Table 5 summarises the top three enriched pathways
of the therapeutic action (sub)classes.

The above analysis can be summarized into three obser-
vations as follows. Firstly, a type of therapeutic action
(sub)class is implicated in different enriched pathways and
each pathway is involved in a different disease; secondly,
more than one therapeutic action (sub)class is implicated in
a pathway that is involved in multiple diseases; and thirdly,
more than one therapeutic action (sub)class is implicated in
different pathways but involved in only one type of a disease.
The first observation is indicated, in many cases, by the
(sub)classes in any of the three clusters such as bile secretion
and mineral absorption in “tonifying and replenishing” (TR-
qi). The top three enriched pathways in a therapeutic action
(sub)class are implicated in different pathways and diseases.
The modulation of one pathway to a disease could provide
a better insight into the (sub)class MOA in the biological
system. In the second observation, the mineral absorption
in cluster VII and cluster X and carbohydrate digestion and
absorption in cluster VII are implicated in various types of
diseases. The redundancy of a pathway in the pathogenesis of
various diseases implies that a pathway could serve multiple
purposes; for instance, the mitogen-activated protein kinase
(MAPK) signalling pathway was implicated in inflammation,
cancer, cardiovascular dysfunction, and Alzheimer’s disease
[117]. The third observation shows that different pathways
from different therapeutic action subclasses in a cluster
are implicated in a type of physiological function, such as
the ABC transporter and mineral absorption from “heat-
clearing, blood cooling” (HC-blood cool) and “tonifying and
replenishing, blood” (TR-blood), respectively, which is impli-
cated in physiological function of the heart. The different
pathways for a particular physiological function explain that
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TABLE 5: The top three enriched pathways in clusters VII, X, and XII. It can be seen that, in many cases, similar pathways appear in the top
three enriched targets regardless of clusters and subclasses. Estimation Score = 0, for all top three enriched pathways.

TCM therapeutic action TC.M therapeutic Top three enriched pathways Average Score
class action subclass
. hsa04978, mineral absorption 0.0342
Wind-dampness dispellin Bone (sinew) h bohydrate digesti dab ; 0.1427
p pelling strengthening 5a04973, carbohydrate digestion and absorption .
hsa04976, bile secretion 0.2050
hsa04978, mineral absorption 0.0321
Tonifying and replenishing Qi tonifying hsa04973, carbohydrate digestion and absorption 0.1251
Cluster X hsa04976, bile secretion 0.2678
hsa04978, mineral absorption 0.0380
Cough suppressing and Clearing and heat Pv ) ) 157
panting-calming phlegm resolving hsa04973, carbohydrate digestion and absorption 0.157
hsa04976, bile secretion 0.1958
Lo hsa04978, mineral absorption 0.0387
Tranquilizin Heat nourishing b bohvdrate digesti dab ) 01163
q g tranquilizing 5a04973, carbohydrate digestion and absorption .
hsa00900, terpenoid backbone biosynthesis 0.2166
. hsa04978, mineral absorption 0.0276
Heat-clearing medicinal Heat-clearing and h bohvdrate digesti dab i 0.0753
g blood cooling sa04973, carbohydrate digestion and absorption .
hsa02010, ABC transporters 0.0769
Stasi vi hsa04978, mineral absorption 0.0267
. . asis resolvin,
Cluster VII ' Hemostatic medicinal hemostatic § hsa04973, carbohydrate digestion and absorption 0.0987
hsa04976, bile secretion 0.1872
hsa04978, mineral absorption 0.0329
Tonifying and replenishing  Blood tonifying hsa04973, carbohydrate digestion and absorption 0.1055
hsa04530, tight junction 0.2053
Parasite destroying, hsa00100, steroid biosynthesis 0.253
Cluster XII - dampness eliminating, and hsa00564, glycerophospholipid metabolism 0.294
itchiness relieving hsa04966, collecting duct acid secretion 0.342

a pathway does not function alone in the manifestation of
a disease but through the interactions of multiple pathways
[118], which account for the different clinical symptoms. To
put it briefly, the pathways annotation not only is beneficial
to suggest the MOAs of the (sub)classes based on their
indications, but also shows that one pathway could have
manifold functions and multiple pathways contribute to the
pathogenesis of a disease. From the TCM perspective, it
is suggested that the involvement of multiple pathways in
the pathogenesis of a disease explains the complex TCM
formulation, which consists of a set of herbs from various
therapeutic action (sub)classes.

3.5. Comparison of Bioactivity Spaces of Clusters. In this part
of study, the aim was to investigate the differences of bioac-
tivity spaces among all clusters by classifying all the enriched
targets in the cluster to their respective protein families. The
181 enriched targets were classified into 59 protein families.
Out of 59 protein families, five protein families were fre-
quently annotated in all clusters, which are G-protein coupled
receptor (GPCR), protein kinase, nuclear hormone receptor,
carbonic anhydrase, and cytochrome P450. The heatmap in
Figure 3 compares the five major protein families that were
annotated based on the enriched targets in each cluster.

The more saturated colour represents the more significant
protein family across all clusters. The numbers of protein fam-
ilies in the clusters were normalised because the distribution
of enriched targets was not consistent because numbers of
therapeutic action (sub)classes per cluster were different.

What can be seen from the graph is that GPCRs and pro-
tein kinases are the most highly classified protein families in
almost all clusters. The results were expected as both of the
families are the two largest protein families involved in many
physiological processes [119, 120], thus explaining why these
two protein families were observed to be significant in many
of the clusters. In addition, the diversity of the compounds in
the (sub)classes also contributed to the prediction of enriched
targets from these protein families. At least four protein
families were significant across all clusters, except for clusters
VII and X in cytochrome P450. The numbers of enriched
targets in the cluster were among the lowest across all clusters,
and cytochrome P450 was less classified. Nuclear hormone
receptors were found to be annotated in all clusters and
the frequent predictions of the nuclear hormone receptor
family can be explained by the presence of naturally occurring
steroids in natural compounds [121]. For the remaining two
major protein families, the cytochrome P450 family was also
expected to be modulated by most of the subclasses because
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FIGURE 3: The heatmap compares the five major protein families that were annotated based on the enriched targets in each cluster, which were
normalized. The more saturated colour across clusters represents the more significant protein family. GPCR and protein kinase are observed
to be significant protein families in almost all clusters. It appears that all the protein families are heavily implicated in the biological processes
such as cell regulation, sensory system, and steroid metabolism. The significant cluster for a particular protein family can be suggested to be
further explored for a disease with the known protein family such as protein kinase in cancer.

this protein family plays an important role in the degradation
of structurally rather diverse exogenous compounds [122].
The carbonic anhydrase family, which is a ubiquitous enzyme,
is involved in the interconversion between carbon dioxide
and the bicarbonate ion that is important for many physio-
logical processes [123]. All in all, five major protein families
were observed to frequently occur in most of the clusters and
were heavily implicated in the biological processes such as
cell regulation, sensory system, and steroid metabolism. This
analysis has allowed the discovery of the bioactivity spaces
connection between subclasses in TCM based on the sets of
enriched targets from our in silico target prediction in which
the compounds from the significant cluster can be further
explored for diseases associated with the protein family such
as cancer and protein kinase family.

3.6. Comparison of Pathways Annotation of Clusters. In this
part of the study, we aimed to investigate the differences of
pathway motifs among all clusters by classifying the enriched

pathways according to KEGG ortholog. The 99 enriched
pathways were classified to 33 pathway motifs, which were
almost half the number of total pathway motifs available
in KEGG. The major pathway motifs from the classification
were infectious diseases, digestive system, immune system,
signal transduction, lipid metabolism, cancer, and cellular
communication. The heatmap in Figure4 compares the
seven major pathway motifs that were annotated based on
the enriched pathways in each cluster. The more saturated
colour across clusters represents the more significant pathway
motif. The numbers of pathway motifs in the clusters were
normalised due to the differences in numbers of the pathways
that were enriched among all (sub)classes

In Figure 4, the digestive system is consistently classified
in all clusters, where, in many cases, the plots’ colours are
more saturated compared to other pathway motifs. The diges-
tive system includes the digestion and absorption of macro-
and micronutrients and shows that the majority of the
enriched pathways are bile secretion, pancreatic secretion,
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FIGURE 4: The heatmap compares the seven major pathway motifs that were annotated based on the number of enriched pathways in each
cluster, which were normalized. The more saturated colour across clusters represents the more significant pathway motif. The significant
cluster for a particular pathway can be suggested to be further explored for a disease with the known pathway motif such as digestive system

in liver disease.

and gastric acid secretion. The bile secretion controls the
cholesterol homeostasis by routing the elimination of choles-
terol, in addition to harmful exogenous lipophilic substance
[124]. In addition to digestive system, infectious diseases,
signal transduction, and lipid metabolism are significant
pathway motifs in many of the clusters. The significance of
infectious diseases can be deduced from frequently predicted
immunomodulatory targets as the pathogenic factors are
described to attack weakened immune system [125]. The
signal transduction pathway motif can be contributed from
the classification of one of the major protein families, GPCR,
which translates the extracellular signals for the downstream
effectors that produce a physiological response in a target
cell [126]. Many Chinese medicines have been reported to
have lipid regulating effects by influencing the intestinal
lipid absorption and lipid metabolism, to name a few [127].
Also, one of the highly observed enriched pathways in the
lipid metabolism pathway motif was steroid hormone biosyn-
thesis, which the cytochrome P450 protein family is involved
in [128]. It also appears that a few of the pathway motifs are

insignificant for some clusters such as immune system for
cluster IT and excretory system in cluster XIV, which resulted
from low number of compounds to influence the targets pre-
diction and pathways annotation. The list of compounds that
were annotated for the Chinese medicine in the subclasses
might be incomplete to influence the classification of the
immune system as well as the remaining missing pathway
motifs. In addition, only enriched pathways were used in
the classification. Similar to significant clusters for the major
protein families, the compounds from significant clusters for
the major pathway motifs can be further explored for diseases
associated with the protein family such as liver disease and
digestive system.

Altogether, this analysis has allowed the discovery of the
major pathway motifs in all clusters. Despite having the
different therapeutic action (sub)classes in a cluster, in many
cases, all the clusters can be classified of having the seven
major pathway motifs. The classification of the major pathway
motifs was associated with the major protein families anal-
ysed in the previous section.
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4. Discussion

As shown in this study, the global mapping of relationships
between TCM therapeutic action classes and subclasses,
based on their putative bioactivity spaces and annotated path-
ways, provides a novel approach to understand the MOAs of
TCM formulations. The classification of the enriched targets
and pathways according to the protein families and pathway
motifs allows the discovery of the relationship between
therapeutic action (sub)classes across clusters, defined in the
dendrogram. In the first part of the study, we were able
to rationalize the link between the top three enriched tar-
gets/pathways and the description of the respective therapeu-
tic action (sub)classes. In the bioactivity space, in many cases,
the supporting in vitro or in vivo studies of the herbs’ extracts
or isolated compounds were also included to illustrate the
MOA of the compounds. Among the three most enriched
targets, we observed that immunomodulatory targets such as
PTPN2 and PKC family were frequently represented across
selected therapeutic action classes and subclasses. In TCM,
symptoms are usually regarded as the invasion of pathogenic
factors, thus sensitizing the immune system to response,
and this might provide a mechanistic link between TCM
and Western thinking. The other frequently enriched targets
were implicated in glucose homeostasis, namely, SGLT1 and
SGLT?2, as well as cancer, such as TOPOL. The analysis of
the enriched pathways showed that the multiple enriched
pathways were implicated for one type of disease, which was
cardiovascular diseases, and one enriched pathway could be
associated with different pathogenesis of diseases such as car-
bohydrate digestion and absorption and mineral absorption.
This finding is in agreement with the utilisation of different
herbs in one TCM formulation, in order to modulate biology
in the desired polypharmacological manner. In addition, in
many cases, the highly annotated pathway motifs are involved
in digestive system such as bile secretion, carbohydrate
digestion and absorption, and mineral absorption, which
can be linked to a theory of “the foundation of acquired
constitution” that includes stomach and spleen as the source
of production of qi and blood [129].

The dendrogram which was generated based on the in sil-
ico target prediction of TCM therapeutic action (sub)classes
has enabled the visualisation of their bioactivity space, of
which, in most of the clusters, the five major protein families
were observed to contribute the bioactivity space. The GPCR
and the protein kinase family are the two major protein
families that contribute to the diversity of the TCM bioac-
tivity space in all clusters. The major KEGG pathways motifs
annotated, such as signal transduction and lipid metabolism,
were annotated from major protein families, GPCR and
cytochrome P450, found in the previous analysis.

Although this study has successfully explained the link of
the enriched targets/pathways to their respective therapeutic
action (sub)classes and provided a global overview of their
bioactivity space, this study is still limited to targets that
are only available in the in silico target prediction, while
the entire human proteome is much larger than 477 targets.
Thus, extending the biological space of the in silico target
prediction could provide a more comprehensive overview of
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targets that are involved in the therapeutic effects. Secondly,
the chemical space in the chemogenomic database is limited
to the version used when the model was developed and
in this ChEMBL [49] v.14.0 database, natural compounds
only represent approximately 3.85% of the total compounds
available [130]. Thus, the limited coverage of chemical space
from natural compounds led to zero prediction for targets
in the subclass “tranquilizing, settling.” Thirdly, as TCM’s
therapeutic principle works through Jun-Chen-Zuo-Shi, our
in silico target prediction could only predict the putative
targets and the top three enriched targets/pathways might
not be modulated by the Emperor compounds of the herb,
which play the leading role in treating the disease. In this
study, similar top three enriched targets/pathways frequently
appeared, which did not represent the actual therapeutic
actions described in TCM’s philosophy per therapeutic action
classes because the definition of the (sub)classes could be
limited to the English translation [131]. Although compounds
in a TCM formula are known to work synergistically, the
algorithm is unable to report whether a compound either
activates or inhibits the predicted targets, which can be
experimentally influenced by ADMET (Adsorption, Dis-
tribution, Metabolism, Excretion, and Toxicity) properties
[55]. Therefore, only a general justification could be estab-
lished between the enriched targets/pathways and therapeu-
tic action (sub)classes.

Despite the limitations, our in silico target prediction
was able to describe the putative MOA of the compounds
from the selected therapeutic action (sub)classes by providing
target- and pathway-based MOA hypotheses. With the global
overview of the bioactivity space of the therapeutic action
(sub)classes, we could observe the similarity and the differ-
ences between them, which are not apparent from the name
given to the (sub)class itself. Hence, this analysis hopefully
helps to bridge the gap between TCM and Western medicine
a bit further.
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