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The objectives of this study were to design a pharmacokinetic (PK) study by using information about adults and evaluate the
robustness of the recommended design through a case study of mefloquine. PK data about adults and children were available
from two different randomized studies of the treatment of malaria with the same artesunate-mefloquine combination regimen.
A recommended design for pediatric studies of mefloquine was optimized on the basis of an extrapolated model built from adult
data through the following approach. (i) An adult PK model was built, and parameters were estimated by using the stochastic
approximation expectation-maximization algorithm. (ii) Pediatric PK parameters were then obtained by adding allometry and
maturation to the adult model. (iii) A D-optimal design for children was obtained with PFIM by assuming the extrapolated de-
sign. Finally, the robustness of the recommended design was evaluated in terms of the relative bias and relative standard errors
(RSE) of the parameters in a simulation study with four different models and was compared to the empirical design used for the
pediatric study. Combining PK modeling, extrapolation, and design optimization led to a design for children with five sampling
times. PK parameters were well estimated by this design with few RSE. Although the extrapolated model did not predict the ob-
served mefloquine concentrations in children very accurately, it allowed precise and unbiased estimates across various model
assumptions, contrary to the empirical design. Using information from adult studies combined with allometry and maturation
can help provide robust designs for pediatric studies.

Pediatrics have long been poorly investigated in drug develop-
ment for ethical, practical, and methodological reasons (1).

Given these limitations, the dose given to children is often derived
mostly from the adult dose by linear adjustment for body weight.
However, a number of studies have shown that this crude ap-
proach could be misleading, prompting scientists and physicians
to consider children less as small adults (2, 3) and more as a spe-
cific population with different drug metabolism and sensitivity.
Recognizing this challenge, regulatory authorities have sought to
bolster the efforts of the industry through the pediatric investiga-
tion plan (PIP) (4), and drug development for children has be-
come an independent field, creating new challenges in medicine.
An increasing number of clinical trials are being performed to
allow the proper evaluation of drug pharmacokinetics (PK) in
children, holding the promise that a better balance between tox-
icity and efficacy may be found for drugs in pediatrics (5). How-
ever, the precise characterization of a drug’s PK is a difficult task
that requires careful choice of the dose regimen and the time to
sample observations, which together form the design of the study.
This is particularly problematic in pediatrics, where ethical con-
straints dramatically reduce the number of measurements possi-
ble, making PK parameter estimation a particularly difficult en-
deavor and the choice of an appropriate design a decision even
more critical than for adults (6). Contrary to the first-in-humans
trials, where no prior clinical information is available, the first
study of children is often performed after studies with adults have
been performed. When properly leveraged, the data from adults
could be used to build an appropriate design for a pediatric study,
and they are often the only information available at this early stage
(7). Within the PIP, incorporating prior knowledge from adults is
also a way of streamlining pediatric drug development in the
global development program (8).

To optimize the available information, PK are often analyzed
by using nonlinear mixed-effect (NLME) models, an approach
that allows the use of sparse and heterogeneous designs (9). In that
framework, design optimization based on the Fisher information
matrix (FIM) has become an increasingly popular tool to maxi-
mize the information collected in a study and determine the times
for sampling measurements that are most likely to provide precise
estimation of PK parameters (10, 11).

In the present work, we investigated the process of designing a
pediatric study by using information about adults. Mefloquine, an
antimalarial drug, served as a case study, with data from two clin-
ical trials with adults and children (12). We used adult data to
obtain the PK model of mefloquine in adults and leveraged this
information for children through allometric and maturation
functions while taking into account changes in body size and met-
abolic processes that occur with age (13). We then used the ex-
trapolated model to design a study for a pediatric population with
different age groups. We show that this approach provides a
framework that may dramatically improve the design of a study of
PK in children, allowing precise estimation of PK parameters
while limiting the number of sampling measurements.
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MATERIALS AND METHODS
In the present work, we considered the following methodological work-
flow, which is summarized in Fig. 1. First, on the basis of data collected
from an adult population, we built a PK model. Extrapolation using al-
lometry and maturation was then applied to the resulting model in order
to derive the PK model and parameters for children. The extrapolated
model was then used to optimize the design for children. The perfor-
mance of the optimized design was evaluated by assessing its ability to
estimate the population parameters correctly through a simulation study
under different model assumptions to assess its robustness. The evalua-
tion process is illustrated separately in Fig. 2. The optimized design was
compared to the design of the pediatric database, which we call an empir-
ical design. Simulations were performed for four different models to en-
sure robustness. An external evaluation was also performed by fitting the
pediatric data with the different models used for simulations and compar-
ing their predictive abilities.

Adult data. The first study included data from adults taking part in a
phase I-II clinical trial in India (http://www.isrctn.com/ISRCTN70618692).
This multicenter, single-arm clinical trial was carried out to assess the safety,
efficacy, and population PK of a fixed-dose combination of artesunate-me-
floquine in Indian adults infected with acute uncomplicated Plasmodium
falciparum malaria. Seventy-seven patients were included. Subjects re-
ceived two tablets containing 100 mg of artesunate and 200 mg of meflo-
quine orally once daily for 3 consecutive days. Blood samples for the
analysis of mefloquine PK and laboratory evaluation were collected before
the first dose, within 72 h of the first dose, and on study days 7, 28, 35, and
42.

Child data. The second study included children under 15 years old
enrolled in a phase I-II clinical trial in Thailand (14). This randomized
trial was carried out to assess the safety and efficacy of a new artesunate-
mefloquine coformulation for the treatment of acute uncomplicated P.
falciparum malaria in children. A total of 101 children under 15 years old
were included in this study. Pediatric patients were administered a weight-
related dose, approximately 4 mg/kg/day, of artesunate for 3 days of treat-
ment and 25 mg/kg of mefloquine split into 15 mg/kg on the second day
and 10 mg/kg on the third day. The following PK samples were scheduled
from the first day of administration and during follow-up: three or four
samples randomly selected from day 1, 2, or 3 or days 7 to 14 and one or
two additional samples taken on day 21, 28, 35, 42, 49, 56, or 63.

Modeling of the PK of mefloquine in adults. The PK of mefloquine in
adults were analyzed by using NLME. Designating yi � (yi1, yi2,. . .yini

)T

the ni vector of observations for individual i (i � 1. . .N) collected at
sampling times ti � (ti1, ti2,. . .tini

)T, we have the statistical model yi � f(�i,
ti) � εi, where f is a mathematical function representing the evolution
of the concentration with time. The vector �i is the vector of individual
parameters of i and εi, a ni vector of random errors distributed as εi�N(0,
�i). We assume that the distribution of the parameters can be described
through a log-normal distribution. For the kth component of �, k � 1. . .K,
we write the individual parameter �(k) as a function of a fixed effect �(k) and
an individual i random effect bi

(k): �(k) � �(k)ebi(k).
The distribution of the random effects was assumed to be multivariate

normal, with a variance-covariance matrix designated �2.
The parameters of the NLME model were estimated by using the sto-

chastic approximation expectation-maximization algorithm (15) imple-
mented in the Monolix software (version 4.2.2) (16). The likelihood was
computed by using importance sampling. Model building was based on
the likelihood ratio test for nested models and the Bayesian information
criteria for nonnested models. We investigated first the structural model
by comparing different compartment models, then interindividual vari-
ability by testing whether �2 could be assumed to be diagonal or not, and
finally residual variability. Different residual error models were consid-
ered, i.e., a constant-error model, Var(εij) � a2; a proportional-error
model, Var(εij) � b2 	 f(�i, tij)

2; and a combined-error model, Var(εij) �
[a � b 	 f(�i, tij)]2. To evaluate the stability of the estimates, the run
assessment feature in Monolix was used; this consists of performing the
evaluation five times while changing the initial conditions and seed for the
random number generators and comparing the estimates of the parame-
ters and the log likelihood across the five runs.

The final adult PK model was called Mad, and the adult population PK
parameters were called �adult. The model was evaluated through good-
ness-of-fit plots, including visual predictive checks (VPC), predictions of
individual concentration profiles, plots of observations versus predic-
tions, and residual scatterplots involving normalized prediction distribu-
tion errors (NPDE) (17). Empirical Bayesian estimates of the individual
parameters were obtained for each subject as the conditional mean of the
individual conditional distribution and used for diagnostic plots. VPC
and NPDE were obtained by using 1,000 data sets simulated under the
model tested with the design of the original data set (18). Estimates of the
standard errors and residual standard errors were obtained through a
linear approximation of the FIM. The predictive ability of Mad was eval-
uated by computing the bias and root mean square errors (RMSE) be-
tween predicted and observed concentrations:

Bias � �
i�1

N 1

ni
�
j�1

ni

�yij � f��̂, tij�� (1)

RMSE � �Bias2 � Var�f��̂, tij�� (2)

where �̂ are the estimated population parameters and

Var�f��̂, tij�� � �
i�1

N 1

ni � 1 �
j�1

ni

�yij � f��̂, tij��2 (3)

is the variance of the predicted concentrations.
Extrapolation from adults to children. Mad, the PK model developed

for adults, was then modified for the child population. The structural
model was left unchanged, but we scaled the values of the parameters by
using either allometry alone (Mallo) or both allometry and maturation
(Mallo�mat) as detailed in the rest of this section.

Body size is a major determinant of metabolic rates, diffusion and transfer
processes, and organ size throughout the animal kingdom and beyond. Allo-
metric theory models these processes throughout fractal geometry and pro-
poses a general scaling for many processes (19). Designating BW body size,
the parameter � would vary as � � 
 	 BW�, where 
 is a constant charac-
terizing the type of organism and � is a scaling component. In particular,
volumes of distribution tend to increase linearly with size (� � 1) while
clearances, which are related to blood flow, increase nonlinearly with a coef-
ficient of 3/4 (� � 0.75) derived from geometric considerations.

FIG 1 Framework used to design a pediatric study by using adult information.
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The Mallo model was derived from Mad by introducing allometry into
the population value of the parameters to account for size through the
relationship �child,allo � �adult 	 (BWchild/BWadult)

�, where BWadult is the
mean adult body weight, BWchild is the mean body weight of a child, and �
is 0.75 for clearances and 1 for volumes.

However, size differences do not explain all of the differences between
adults and children. Many physiological processes evolve slowly toward
adult functionality during childhood. The Mallo�mat model was developed
from the Mallo allometric model by introducing the maturation factor
Kmat,child into the previous equation as follows: �child,allo�mat � �adult 	
(BWchild/BWadult)

� 	 Kmat,child.
Maturation is highly correlated with age and has been studied for

many physiological processes, including absorption, first-pass effect, me-
tabolism, and transport. We derived maturation equations for meflo-

quine and used them to adjust the individual clearances and volumes of
each child. These equations are described in Appendix 1.

For both Mallo and Mallo�mat, we assumed the same interindividual
variability for all parameters, as well as the same residual errors as those
estimated for adult populations. Because we had access to pediatric data in
this work, we used them as an external evaluation data set to assess the
extrapolation process for both Mallo and Mallo�mat. The predictive capac-
ity of these two models was evaluated by computing bias and RMSE on the
pediatric data. We also evaluated the predictive capacity of the model
without extrapolation (Mad). For comparison, we also performed a pop-
ulation PK analysis of the pediatric data alone by using the same approach
as for the adults. This led to the Mch model.

Optimal design for a pediatric population. Optimization of the
model design was performed by using both allometry and maturation

FIG 2 Schema of simulation study. For both the optimal design and the empirical design from the pediatric database and for each model tested, 100 data sets are
simulated. For each data set, PK parameters are estimated and then compared to the theoretical value of the original model with bias and RMSE. Mad is the adult
model, Mallo�mat is the maturation model using the adult model with allometry and maturation, Mad,abs is the adult model with a modified absorption of 1, and
Mch is a model resulting from the PK of the pediatric data.
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(Mallo�mat). Design optimization consists of selecting the best dose regi-
men and sampling times, given constraints such as the total number of
samples or the times when samples can be taken, in order to allow precise
estimation of the parameters. In this work, we will focus on sampling
times only because the doses were fixed for children. This is generally
achieved through D optimality, which consists of maximizing the deter-
minant of the FIM (6). Although the FIM in NLME has no closed-form
solution, it can be approximated by first-order linearization around the
mean of the random effects. This method is implemented in PFIM, which
we used here (PFIM version 4.0, running in R version 3.0) (20), and in
most software for design optimization.

Because the design may be different depending on age, optimization was
performed for four different age groups that were represented in the Thai
study: an infant-toddler group (up to 3 years old) that included only one
infant in the actual study, a preschool child group (4 to 5 years old), a school
age group (6 to 11 years old), and an adolescent group (12 to 15 years old).

We therefore first performed optimization for these four different
groups by using the parameters �child,allo�mat with the average weight and
age of each group in the real pediatric study. For each group, the dose was
set to the average dose for the group, yielding fixed parameters for
Mallo�mat for each group. We used the Fedorov-Wynn algorithm (21),
which optimizes over a discrete set of times, by using the sampling times
from the original pediatric protocol (0.1, 0.5, 1, 2, 5, 10, 15, 25, 35, 55, and
65 days) in the first step. We also set a constraint on the number of sam-
pling points, performing several optimizations with three to six samples
per subject. We refined this first design by running the Simplex algorithm,
adjusting the set of possible times to include more informative time points
and running the Fedorov-Wynn algorithm again. This led to an optimal
design for each age group, from which we derived the final optimal design
by choosing the closest sample times across groups.

The resulting optimal design is exact, with fixed days, which may be
difficult to implement. We can relax this assumption by using sampling
windows to add flexibility to its practical implementation. As this cannot
be implemented prospectively in PFIM, we derived sensible windows for
the optimized design by assuming that patients can come in at any time of
day and for several days on later visits.

Evaluation of pediatric design. To illustrate the expected performance
and robustness of the optimal pediatric design, we evaluated its ability to
estimate the PK parameters of children across a range of scenarios corre-
sponding to different models and model parameters through a simulation
study. Figure 2 summarizes the different stages of the evaluation.

We evaluated the design over the four different models previously
introduced, (i) the extrapolated model with maturation (Mallo�mat),
which was used to optimize the design; (ii) the adult model (Mad) without
extrapolation; (iii) a model derived from Mad, called Mad,abs, with an
absorption rate constant (ka) modified to a value of 1 to mimic the much
slower drug absorption of children; and (iv) the PK model obtained in the
analysis of the pediatric data alone (Mch).

In each scenario, we simulated L � 100 data sets under the related
model for sampling times corresponding to the optimized design. The
covariate distributions, doses, and number of subjects were kept identical
to those in the real pediatric study. Therefore, the simulated population
was identical to the pediatric population in the database. We then re-
estimated model parameters by using Monolix for each simulation. Fi-
nally, we computed the relative bias and empirical relative standard errors
(RSE) for each estimated parameter compared to the theoretical model
value over the 100 simulations as follows:

Bias��k,th� �
1

L �
l�1

L �̂k
�l� � �k,th

�k,th
(4)

RSE��k,th� �
1

L �
l�1

L �	 �̂k
�l� � �k,th

�k,th

2

(5)

where �̂k
(l) is the estimate of the kth parameter in simulation l � 1. . .L and

�k,th is the theoretical value. The same simulations were also performed for

the empirical design to compare the performance of the optimal design
with the design that was in fact implemented in the child study. The same
parameters were used to simulate the concentrations in both designs (op-
timal and empirical).

We also evaluated the performance of the design when relaxing the
fixed times through sampling windows. We again simulated 100 data
sets, but this time, the sampling times for each visit were drawn ac-
cording to a uniform distribution from the sampling windows chosen.
Evaluation was performed in a manner similar to that used for the
optimal design.

RESULTS
Characteristics of both populations. Table 1 shows the demo-
graphic characteristics and biological measurements in the adult
(left) and pediatric (right) data sets used in the present analysis.
The adult population was almost exclusively male (one woman),
while the recruitment was more balanced in the pediatric study
(51 girls and 60 boys, 59% males).

Figure 3 shows the evolution of mefloquine concentrations
with time in the two populations. Most adults were sampled four
or five times during the study. On average, the first sample was
taken 4 h after the first dose and the next was taken on day 2, 3, 11,
36, or 56, with a few concentrations measured up to 62 days after
the first dose. Four patients had only one sample taken. Concen-
tration profiles show accumulation over the first 3 days, when
mefloquine is administered once daily, followed by a slow biphasic
decline.

In children, the design was more sparse and variable (Fig. 3b)
and fewer samples were collected. Most (51%) of the children
contributed three concentrations, and 37% had only two concen-
trations taken. The first sample was usually taken on day 8, long
after the end of the absorption phase. The second sample was
taken around day 23, and then further samples were taken on days
35 and 45.

Modeling of the PK of mefloquine in adults. The final PK
model was found to be a two-compartment model with first-order
absorption because of significant tissular distribution. Absorption
and elimination were found to be linear. The parameters in this
model are the rate of absorption, the central and intercompart-
mental clearances, and the volumes of the two compartments, so
that �i � (kai, CLi, V1i, Qi, V2i). The residual error was best de-
scribed as a combined-error model. We found that we could re-
move the variability in V2 from the model. This may be due to
either low interindividual variability in that parameter or, more
likely, a lack of information to estimate that parameter.

Table 2 shows the population parameters estimated for the
adult model (Mad). The residual variability was low, indicating
that the model explained most of the variability. Values were well
estimated, with small standard errors. Absorption (ka) and inter-

TABLE 1 Summary of demographic and covariate dataa

Parameter Adults (n � 77) Children (n � 101)

Wt (kg) 53.2 (7.3)–52.0 [48.0, 58.0] 24.6 (10.8)–23.0 [15.0, 35.0]
Age (yr) 28.2 (8.8)–25.0 [21.0, 35.0] 8.8 (4.2)–10.0 [5.0, 13.0]
Hemoglobin (g/dl) 13.1 (2.14)–13.3 [11.7, 14.9] 10.9 (1.9)–11.0 [9.7, 12.4]
ASATb (UI/liter) 34.4 (14.1)–21.0 [25.0, 41.0] 34.9 (38.6)–22.0 [18.0, 29.0]
ALATc (UI/liter) 26.2 (17.1)–21.0 [15.0, 31.0] 17.3 (27.0)–8.0 [6.0, 12.8]
a The values are the means of the variables, with standard deviation in parentheses,
followed by the median and the interquartile interval ([Q1, Q3]).
b ASAT, aspartate aminotransferase.
c ALAT, alanine aminotransferase.
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compartmental clearance (Q) showed the highest interindividual
variability.

There was no bias in predicting the adult concentrations (bias �
0.06), showing no systematic model misspecification, and the
RMSE was estimated to be 1.14.

Extrapolation from adults to children. Mad was then used as a
basis for individual extrapolation to the pediatric population,
yielding the Mallo�mat model.

Extrapolation was assessed by using the pediatric data as an
external evaluation data set on the Mallo�mat, Mallo, Mad, and Mch

models. VPC are shown in Fig. 4. Mallo�mat (Fig. 4a) clearly over-
predicts the observed concentrations in children during the first
days of the trial, suggesting some discrepancy in absorption be-
tween the adult and child populations in the rate of absorption, in
bioavailability, or in both. On the other hand, the elimination and
distribution phases are not inconsistent with the prediction
ranges, and the variability, shown by the breadth of the shaded
areas, appears to be similar in children and adults.

To assess the impact of the different extrapolations involved in
Mallo�mat, we compared the predictive abilities of the other mod-
els. The Mch model was obtained by using a PK analysis similar to
that used for adults and constitutes the best possible fit to the data.
In our analysis, it served as the gold standard for assessment of the

accuracy of model predictions, as it was the only model derived
directly from the pediatric data. In children, we could not identify
a distribution phase; therefore, the Mch model was a one-compart-
ment model. The absorption phase was unidentifiable, and the esti-
mates of ka were unstable. Therefore, the absorption rate constant
(ka) was fixed to the value obtained from the adult population with-
out interindividual variability. As expected, there was no bias for Mch

(0.06); the precision measured by RMSE was 0.89. The bias was sig-
nificant for the other three models; the model with allometry (Mallo),
in fact, has a slightly lower bias (0.15) than the model with matu-
ration (Mallo�mat) (0.27). Both of these models tended to underpre-
dict child drug concentrations, while the adult model (Mad) system-
atically overpredicted drug concentrations in children (bias � 0.34),
as shown in Fig. 4. The RMSE for the two extrapolated models was
quite high (1.2 and 1.1 with and without maturation, respectively). It
was lower for Mad (0.8) than for Mch (0.9).

Optimal design for the pediatric population. Mallo�mat was
then used to design a sampling schedule for the pediatric popula-
tion. We first attempted to optimize designs with three or four
sampling times, as this was close to the design in the pediatric
database, which we call an empirical design. But optimization
failed, indicating that the model was not identifiable with so few
samples. We therefore increased the number of samples to five or
six. Table 3 shows the optimal times found for each group for
designs with five sampling points; several sampling times were
found to be quite similar across the designs, with three samples in
the first 4 days and two after 65 days. The parameters were well
estimated in each group, according to the RSE predicted by PFIM,
with RSE of around 5% for CL, V1, and V2 and around 10% for ka

and Q. Intersubject random effects should have somewhat higher
RSE, between 20 and 30%, but the designs would still allow proper
estimation of the variabilities. Designs with six sampling times
gave similar results in terms of RSE, suggesting that the use of five
sampling times was sufficient in our case.

The optimal design merged the four designs, and the corre-
sponding times are shown in the last row of Table 3.

FIG 3 Concentrations of mefloquine in blood (in milligrams per liter) shown on a log scale. Panels: a, adults; b, children.

TABLE 2 Estimates of the parameters in the Mad modela

Parameter Population value (% RSE) % Variability (% RSE)

ka (day1) 4.2 (12) 81 (12)
CL (liters/day) 26.0 (5) 34 (11)
V1 (liters) 248.0 (5) 25 (17)
Q (liters/day) 41.6 (15) 70 (18)
V2 (liters) 282.0 (7)
a 0.07 (24)
b 0.14 (11)
a The first column shows the value of the fixed effect, while the second column shows
the variabilities expressed as percentages. The RSE of estimation is shown in
parentheses.
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Design evaluation. In order to assess robustness, we performed a
set of simulations under different model assumptions. Table 4
summarizes the results of the evaluation for each combination of
model (rows) and design (columns). For each model, we recall the
values of the parameters used in the simulation, and for each de-
sign, we show the relative bias and the empirical RSE, expressed in
percentages. Simulated patients had the same covariate distribu-
tion as in the real study. For the data sets simulated with the opti-
mal design, parameter estimation was successful for all 100 data
sets. The design in the pediatric database, or the empirical design,
on the other hand, generated a few simulations for which we were
unable to estimate all of the standard errors, mostly for absorp-
tion, intercompartmental clearance, and the respective random

effects. Because only the estimated values, not their RSE, were
used to compute the relative bias and empirical RSE, all of the
values in Table 4 were computed over all of the corresponding
runs. As shown in Table 4, there was no bias in the parameter
estimates when the data were simulated according to the optimal
design, regardless of the actual model. For the first model
(Mallo�mat), this only shows that the estimation algorithm pro-
vides unbiased estimates, as expected. For the other models, it
reflects the fact that there is enough information in this design to
estimate the parameters under different model misspecifications.
The empirical RSE were also in line with predictions from PFIM,
ranging from 3 to 15% for the Mallo�mat model, which was used to
establish the optimal design. More interestingly, parameter preci-
sion was also similar for the other models, showing that the opti-
mal design allows unbiased and precise estimates to be obtained
over a range of model changes.

We can contrast this behavior with the performance of the
empirical design. Across all four models, we found that this design
had relatively high bias for ka, its variability (�ka), or both, even
when the true model was the much simpler one-compartment
model that was estimated to best describe the real data collected
from children. In addition, this design was less robust when the
model assumptions were changed, as other parameters, such as �Q

and �V1, proved difficult to estimate, yielding very large and im-
plausible values or very large RSE.

Although the optimal design gives good results, actually re-
specting the exact sampling times may be difficult to implement in

FIG 4 VPC for extrapolation models based on pediatric data. The 95% confidence interval for the median of the model corresponds to the middle shaded area,
other shaded areas correspond to the 95% prediction bands of the upper and lower limits of the 80% predictive interval, and the dark areas characterize outlier
data points. Panels: a, extrapolation from the Mallo�mat adult model with allometry and maturation; b, extrapolation from the Mallo adult model with allometry;
c, extrapolation from the Mad adult model; d, extrapolation from the Mch model constructed from the child database.

TABLE 3 Optimal sampling times for each age group and for the
optimal design across groups

Groupa Age (yr)
Doseb

(ml/day)
Optimized times
(days)

Infant-toddler �3 87 0.1, 0.9, 4.5, 12, 57
Preschool age 4–5 113 0.1, 0.9, 4.5, 13, 55
School age 5–11 178 0.1, 2, 5, 14, 57
Adolescent 12–15 342 0.2, 2, 6, 16, 66
Overall (optimal design) 0.1, 1, 5, 14, 57
a The four age groups correspond to an infant-toddler group including only one infant
(13%), a group of preschool children (17%), a school age group (37%), and an
adolescent group (33%).
b The dose is the average quantity of mefloquine given per day.
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practice. We therefore also evaluated a design with the following
sampling windows, which relaxes the exact optimized design. The
first sample was taken between 1 and 5 h after the first dose, and
the second was taken between 1 h before and 12 h after the second
dose. For the third to fifth sampling times, we allowed for 12-h
sampling windows over several days, as the concentrations changed
more slowly over this period; the third time was assumed to be
in daytime during day 4 or 5, the fourth during days 13 to 16,

and the final sampling window was from day 55 to day 60. The
evaluation of this design over 100 simulated data sets gave sim-
ilar results for every model compared to the optimal design, in
terms of empirical RSE and relative bias. Full numerical results
for simulations of the sampling window design are shown in
Appendix 2 and Table 5.

DISCUSSION

The objective of the present work was to design a PK pediatric
study by using adult malaria information. To this end, we inves-
tigated the impact of design on the information gained from the
child study, exploring models taking into account prior adult in-
formation through extrapolation by allometry and maturation.
We used the pediatric data both as an external evaluation data set
and to suggest alternative models to test the robustness of both the
empirical design actually performed with children and the opti-
mized design. We assessed their performance with regard to
changes in parameter assumptions.

In the adult PK analysis, a two-compartment model was found
to best describe the PK of mefloquine. In previous studies (22, 23,
24, 25), both one- and two-compartment models have been used
to describe its PK. However, a more appropriate sampling sched-
ule shows evidence of tissular distribution (26, 27) both in patients
(28) and in a large population of healthy military personnel ad-
ministered mefloquine for malaria prophylaxis (29). The param-
eter estimates we obtained in the present analysis were consistent
with the estimates from these two studies. In particular, we found
slow elimination of mefloquine, with a terminal half-life of 17
days, in line with previous estimates of 14 to 16 days.

In our study, we derived the PK parameters of children from
the parameters of adults by using simple methods combining al-
lometry and maturation functions. Allometric scaling to predict
structural and functional properties of vertebrate cardiovascular
and respiratory systems was formally introduced by West et al. in
1997 (19). As the etymology underlines, the purpose of allometry
was initially to find measurements working across and within spe-
cies. The allometric coefficients (e.g., 0.75 for clearances and 1 for
volumes [19]) have been estimated in human populations and
found to be compatible with the theory (30). Allometric coeffi-
cients can also be estimated in specific PK studies, although con-
clusive evidence that they differ from the theoretical values is
questionable and may, in fact, reflect model misspecification. On
the other hand, there is mounting evidence that allometric rela-
tionships may need to be adjusted in early childhood. For exam-
ple, Peeters et al. found differences in clearance exponents in a
study including 98 subjects ranging from neonates to adults and
suggested the use of an exponent varying with weight (3). This
discrepancy between size-based scaling and effective changes in
model parameters in neonates and very young children can be
partially explained by additional maturational changes in physio-
logical processes that occur during this period. Maturation func-
tions have been proposed for several drugs (31, 32), and we
adapted them to the characteristics of mefloquine, such as binding
properties and first-pass metabolism. A similar approach was used
by Anderson and Holford in several studies (30, 33, 34, 35). In
particular, their work on paracetamol involved different physio-
logical processes such as renal and hepatic clearance (13). In the
present work, we applied their methods with formulae specific to
mefloquine by considering the maturation of the cytochromes
and of albumin concentrations.

TABLE 4 Validation of optimal design on different models

Modela and parameter Value

Optimal design Empirical design

Relative
bias (%)

Empirical
RSE (%)

Relative
bias (%)

Empirical
RSE (%)

Mallo�mat

ka (day1) 4.16 1.29 7.90 469.43 486.60
CL (liters/day) 26.00 0.58 2.67 0.73 3.72
V1 (liters) 248.00 2.33 4.39 6.85 10.82
Q (liters/day) 41.60 4.21 9.86 6.56 21.78
V2 (liters) 282.00 2.30 4.98 0.91 7.13
�ka

0.81 2.22 8.10 16.11 34.97
�CL 0.34 0.31 5.66 2.37 8.11
�V1

0.25 1.71 11.45 18.02 29.94
�Q 0.70 0.03 15.37 1.24 20.71
a (mg/kg) 0.07 1.32 7.47 1.16 11.16
b 0.14 2.07 9.48 8.63 14.01

Mad

ka (day1) 4.16 2.75 8.33 219.15 240.32
CL (liters/day) 26.00 0.52 3.73 1.69 3.98
V1 (liters) 248.00 1.46 4.08 11.27 13.39
Q (liters/day) 41.60 5.54 14.08 22.60 31.75
V2 (liters) 282.00 2.78 5.34 5.79 9.30
�ka

0.81 2.61 8.38 15.17 33.64
�CL 0.34 1.12 7.89 2.43 8.93
�V1

0.25 0.59 14.18 14.58 30.73
�Q 0.70 3.74 17.12 5.95 23.87
a (mg/kg) 0.07 1.73 6.10 0.14 7.38
b 0.14 4.15 12.62 15.82 23.08

Mad,abs

ka (day1) 1.00 1.67 12.11 319.11 337.19
CL (liters/day) 26.00 0.28 3.58 1.60 4.15
V1 (liters) 248.00 2.35 8.70 3.54 14.92
Q (liters/day) 41.60 2.45 15.95 40.62 53.55
V2 (liters) 282.00 3.03 7.08 2.44 11.33
�ka

0.81 2.93 9.09 1.63 32.17
�CL 0.34 0.17 8.68 1.65 10.18
�V1

0.25 4.68 19.47 31.07 39.23
�Q 0.70 0.72 21.54 30.07 42.85
a (mg/kg) 0.07 0.53 4.55 0.88 7.99
b 0.14 8.68 15.15 13.45 26.38

Mch

ka (day1) 4.16 3.77 10.23 13.51 50.28
CL (liters/day) 14.30 1.82 5.54 1.92 7.32
V (liters) 263.00 0.64 5.43 0.62 7.81
�ka

0.81 1.74 14.36 52.26 53.87
�CL 0.63 2.33 8.69 0.41 8.80
�V 0.66 0.18 6.93 4.48 10.43
a (mg/kg) 0.08 0.84 7.66 3.05 11.80
b 0.35 0.04 5.32 4.18 9.98

a The models are Mallo�mat based the adult model Mad with allometry and maturation;
Mad, the adult model; Mad,abs, the adult model with different absorption; and Mch, the
model built from the child data. Relative bias and empirical RSE are expressed in
percentages.
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The extrapolated models were evaluated by using the data col-
lected in the pediatric study as an external evaluation data set to
assess how well the child data could be predicted by considering
only information about adults. The results were not particularly
good, as the model was found to systematically underpredict the
early drug concentrations in children. Using the adult parameters
directly was, of course, also not appropriate, as not taking into

account the body size factor led to systematic overprediction.
Compared to the impact of allometry, the contribution of matu-
rational changes here was small and even slightly increased the
prediction bias. This may be due to the fact that the major impact
of maturation for mefloquine occurs in neonates and infants, and
our population included only six very young children (less than 2
years old).

Other methods could be used to extrapolate from adults to
children. A physiological approach, describing the intricacies of
biological processes is provided by the physiologically based PK
(PBPK) models. The model equations rely on principles of mass
transport and fluid dynamics and require knowledge of the exact
drug process. Although very rich, the PBPK models often contain
a large number of unknown parameters, the determination of
which requires many specific studies. PBPK models have not yet
been established for mefloquine. Knibbe et al. (36) proposed an
alternative model combining both PBPK models and maturation
with the development of semiphysiological functions for specific
processes. They applied this method to the glomerular filtration
rate in a study of gentamicin, tobramycin, and vancomycin in-
cluding 1,760 patients ranging from preterm infants to adults. The
present work could benefit from such an approach, using biolog-
ical system-specific rather than drug-specific information. Ap-
proaching a physiological process such as maturation of cyto-
chrome, in particular, CYP3A, in childhood would give more
precise results. However, it would require more covariates, which
were not available in our pediatric study.

Despite the lackluster performance of the maturation model in
terms of predictive ability, in the present work, we used the full
extrapolated model, including both maturation and allometry, to
produce the optimal design. We wanted to reproduce the actual
clinical process, where the child data would not be available to
assess which model performs best, and to take into account all of
the prior knowledge about the drug. The recommended design,
blending the four age group-specific optimal designs, performed
very well in our simulations, yielding low RSE for all parameters,
confirming that the blended recommended design is appropriate
for the entire pediatric data set. Even in this complex study with a
distribution of ages and weights, PFIM predicted the range of
standard errors found in the simulation study quite well. Optimi-
zation of the design of a clinical trial of mefloquine has already
been addressed in adults (24, 37), and our results here are in agree-
ment with these previous studies. In particular, Jamsen et al. (24)
considered optimal designs for various combinations of meflo-
quine and another malaria drug but for a mixed population in-
cluding adults, pregnant women, and children. The optimal de-
signs consisted of two groups of subjects with five samples each,
including an early sample (2 or 3 h after dosing), samples taken on
days 2 and 7, and two additional samples taken at times that dif-
fered between the two groups. In our own work, we focused only
on the pediatric population, but the results over the different age
groups in the study, including adolescents, suggested that there is
not much difference in the sampling schedule recommended over
a large span of ages. Indeed, the similar RSE found in that study
(24) suggest that their design would also be quite robust.

We assessed the performance of the optimal design in a simu-
lation study including four different sets of model assumptions
designed to test model departures from the predicted PK in chil-
dren. Of course, we cannot expect a design to perform well when
the PK change completely, but the range of scenarios we simulated

TABLE 5 Evaluation of the design with sampling windows derived from
the optimized design

Modela and parameter Value

Optimal design

Relative bias (%) Empirical RSE (%)

Mallo�mat

ka (day1) 4.16 1.23 9.12
CL (liters/day) 26.00 0.39 3.08
V1 (liters) 248.00 1.61 3.93
Q (liters/day) 41.60 4.28 11.19
V2 (liters) 282.00 1.28 4.12
�ka

0.81 0.51 7.81
�CL 0.34 0.08 6.66
�V1

0.25 1.79 10.39
�Q 0.70 0.71 14.87
a (mg/kg) 0.07 2.45 8.81
b 0.14 2.08 7.75

Mad

ka (day1) 4.16 3.01 9.26
CL (liters/day) 26.00 0.67 3.57
V1 (liters) 248.00 1.34 4.37
Q (liters/day) 41.60 2.27 12.50
V2 (liters) 282.00 1.36 5.62
�ka

0.81 2.58 7.25
�CL 0.34 0.48 7.12
�V1

0.25 0.09 15.32
�Q 0.70 0.69 17.64
a (mg/kg) 0.07 1.94 6.30
b 0.14 3.05 10.99

Mad,abs

ka (day1) 1.00 0.72 11.57
CL (liters/day) 26.00 0.48 3.78
V1 (liters) 248.00 1.28 7.92
Q (liters/day) 41.60 1.21 16.88
V2 (liters) 282.00 2.71 7.95
�ka

0.81 1.17 8.01
�CL 0.34 0.36 8.19
�V1

0.25 1.69 20.19
�Q 0.70 0.15 21.64
a (mg/kg) 0.07 0.83 4.88
b 0.14 5.86 13.53

Mch

ka (day1) 4.16 0.48 9.45
CL (liters/day) 14.30 0.53 5.60
V (liters) 263.00 1.43 5.15
�ka

0.81 0.29 12.86
�CL 0.63 0.91 6.75
�V 0.66 1.13 6.98
a (mg/kg) 0.08 0.84 8.31
b 0.35 0.10 5.10

a The models are Mallo�mat based the adult model Mad with allometry and maturation;
Mad, the adult model; Mad,abs, the adult model with different absorption; and Mch, the
model built from the child data.
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reflected changes that could be expected when moving from
adults to children. Overall, the optimal design performed much
better than the empirical design from the real pediatric study in all
scenarios. With the empirical design, absorption parameters were
always poorly estimated because of the lack of early time points,
and this seemed to have an impact also on the distribution param-
eters. If we were then performing a real analysis of the pediatric
data, we would need to simplify the model, to fix some parameters
to the adult value, or to perform a joint analysis of adult and child
data together, risking biased estimates if the populations are, in
fact, different. Here, in the analysis of the pediatric data alone,
we had to use a simplified one-compartment model with fixed
absorption (Mch), illustrating the choices that poor designs will
lead to.

In this particular case, the empirical design also reflected logis-
tic and practical constraints. Indeed, most children did not have as
many measurements as originally planned per protocol, which
specified that three or four samples were supposed to be randomly
collected during the first 3 days and during the second week, with
an additional one or two samples taken on different days between
the 21st and 63rd days. In the empirical design, most patients only
had three samples and the first sample was usually taken after 5
days, yielding no information about the absorption phase. Be-
cause mefloquine has a long half-life, late follow-up requires
additional visits to the treatment centers, which may not be con-
venient or cheap enough for the families to afford. However, sam-
ples from these late time points are crucial for good estimation of
the distribution and terminal phases.

A few studies of the PK of mefloquine included children (22),
but there has been no specific pediatric study of mefloquine with
an informative design. Here, when we analyzed the pediatric data
separately, we could not identify a two-compartment model. But
the poor performance of the empirical design in the simulations
also suggested that a more informative design could have been
obtained if the available adult information had been taken into
account, even if the pediatric PK differed substantially from the
adult PK.

In order to get around some of the logistic and practical con-
straints of a fixed design, a solution is to propose time windows
around the sampling times found for the optimal design. In the
present study, we evaluated a relaxed design with the same simu-
lation setting as for the optimal and empirical designs and found
similar performances. The windows were chosen empirically, with
sensible assumptions, and a similar approach could be imple-
mented in practice with the physicians of the trial, who are gener-
ally aware of the logistic constraints they need to respect. Evaluat-
ing relaxed designs through simulations as we did in the present
study is possible for a limited number of designs, but this ap-
proach can also be implemented prospectively. Sampling win-
dows can be specified for instance in the PopED software, which
could be used instead of PFIM to further develop the method
presented (38). Here, however, we obtained good results with sen-
sible sampling windows derived from the optimal design.

An interesting finding of our work is the message that the de-
sign need not be perfect, as long as it is robust enough. As is always
the case in optimal design, the model we are trying to estimate is
unknown prior to performing the study but needs to be specified
to design that study, and the design will be appropriate only if the
model is correct. A way to enhance robustness is to ensure that the
design performs well across different model and parameter as-

sumptions. Here, we show how a cycle of simulation-evaluation
can be integrated into the decision-making process to safeguard
against reasonable departures from candidate model assump-
tions, by comparing the performances of the optimized design for
different models. In the case of mefloquine, the optimized design
performed well both for the extrapolated model (Mallo�mat) and
for the real model derived from child data (Mch). Here, we used D
optimality, which relies on prior knowledge of the parameters, but
we could enhance robustness through ED optimality, which al-
lows the incorporation of uncertainty in the prior parameter spec-
ifications (39). These methods could be investigated in order to
obtain more robust designs for pediatrics studies, where parame-
ters are usually unknown and the interindividual variability is very
high.

In our study, we used data from an adult population and ex-
trapolated the estimated parameters to children through allomet-
ric and maturation considerations. A similar method could be
applied to estimates obtained from the literature. Another inter-
esting approach in this context is adaptive design, where the initial
design is refined through one or several intermediate analyses.
Dumont et al. (7) applied optimal two-stage designs in a pediatric
context and showed that such designs can correct initial model
misspecifications. In their work, the prior information about chil-
dren was obtained by extrapolating a PBPK model developed with
adults to a child population and performing a population PK anal-
ysis of simulated data from a virtual pediatric population, an al-
ternative to extrapolation models.

In the present study, we use repeated optimization and simu-
lation to evaluate the optimized and alternative designs before
implementation, chalking them across different model assump-
tions. The framework presented in Fig. 2 can therefore be imple-
mented in the clinical development process as a way of qualifying
prospective designs to gauge the probability of success of a future
trial, as well as convey to clinical teams the importance of imple-
menting the designs in a rigorous way. Because logistic constraints
can be elicited prior to the study to be taken into account both at
the design stage and at the implementation stage, it is a powerful
way of ensuring that the constraints are well accepted and that the
design is applicable in practice.

In conclusion, the present work supports the use of informa-
tion about adults for design optimization in pediatrics. Optimal
design methodology combined with allometry and maturation
allowed the determination of sampling schedules appropriate for
children. The optimal design was more robust and provided better
estimates of PK parameters for pediatrics, taking into account age
specificities.

APPENDIX 1.

MATURATION AND ALLOMETRY.

Mechanisms of absorption, distribution and elimination of me-
floquine during treatment involve different physiological pro-
cesses. Mefloquine is well absorbed, with an estimated bioavail-
ability of around 85% (40), but little is known about the exact
mechanism of its absorption. Molecules of mefloquine bind
strongly to albumin (98% in adults), resulting in slow diffusion.
Unbound molecules of mefloquine are metabolized by cyto-
chrome CYP3A4. Afterward, mefloquine is eliminated through
renal clearance.

These processes are slightly modified for children because of
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ongoing maturation. Indeed, in parallel with the size differences
from adults that warrant a first adjustment, metabolism functions
are not fully developed until a certain age. Therefore, drug metab-
olism has a distinct evolution, which is characterized by differ-
ences in PK parameter values. Analysis of metabolism processes
makes it possible to identify those that induce a difference from
adult values and to adjust PK parameters with a maturation factor.

During absorption, bioavailability is the first process suscepti-
ble to maturation. The bioavailability of mefloquine, as a substrate
of CYP3A, will decrease with the available quantity of CYP3A
during intestinal and hepatic first-pass effects. Each first pass is
characterized by its own extraction coefficient, Egut for intestinal
and Ehepa for hepatic. Consequently, the overall bioavailability (F)
represents the amount of mefloquine that, once absorbed, is not
metabolized during intestinal and hepatic first passes and reaches
the circulatory system. Adult bioavailability is defined as follows:
Fad � (1  Egut)(1  Ehepa). However, in children, both processes
are modulated by the quantity of CYP3A. Indeed, depending on
age, CYP3A is not produced in the same amount in children as in
adults. Gut and hepatic CYP3A abundances are characterized by
their own maturation function (32). Designating KCYP3A the mat-
uration of CYP3A and KCYP3A4/5 the maturation of CYP3A4/5, the
bioavailability for children can be written as follows: Fch � (1 
EgutKCYP3A)(1  EhepaKCYP3A4/5).

With oral drugs, bioavailability is a key value in the estimation
of PK parameters, which are estimated as apparent, that is, relative
to bioavailability. Therefore, it has an impact on all clearance and
volume parameters. Let CLad be apparent adult clearance related
to real clearance CLad,real through CLad � CLad,real/Fad, where Fad

is adult bioavailability. Likewise, we express apparent clearance
from children as follows: CLch � CLch,real/Fch. As for volume, we
have Vad � Vad,real/Fad with Vad the apparent volume and Vad,real

the real volume. Likewise, for children, we have Vch � Vch,real/Fch.
In the bloodstream, mefloquine binds strongly to albumin,

leaving only a small fraction of mefloquine unbound. Let fu,ch be
this fraction in children. While bound to albumin, mefloquine
cannot be eliminated from the bloodstream and only the un-
bound fraction can be eliminated. Let CLch,u be the clearance of
the unbound fraction of mefloquine in the blood. Therefore, we
have CLch,real � CLch,u 	 fu,ch, leading to CLch � (fu,chCLch,u)/Fch.

In adults, 98% of mefloquine is bound to albumin, such that
the adult unbound fraction (fu,ad) is 0.02. In children, the fraction
of unbound mefloquine can be related to the adult unbound frac-
tion of mefloquine (fu,ad) and to the albumin concentration,
which varies from Cad (40 g/liter, on average) and the correspond-
ing value in children, Cch, respectively (32). The following rela-
tionship links the unbound fraction of mefloquine in children to
the albumin concentration: fu,ch � 1/[1 � ({1  fu,ad}/fu,ad)(Cch/
Cad)].

Moreover, the albumin concentration in children can be ex-
pressed as a function of age (32) as follows: Cch � 1.1287 ln(age) �
33.746.

Therefore, we have Cch � CLch,u/{Fch[1.383 ln(age) � 42.339]}.
Unbound mefloquine is metabolized by CYP3A4/5. Again, the

quantity of CYP3A4/5 influences the extent of metabolism and its
lower value in children needs to be taken into account. Moreover,
clearance is also related to weight and an allometric factor needs to
be introduced. Therefore, clearance of the unbound fraction of
mefloquine from children is related to the adult value (CLad) ac-

cording to the following equation: CLch,u � CLad,u 	 KCYP3A4/5 	
(W/70)0.75.

As previously stated, we deduce that clearance of the unbound
fraction by adults is CLad,real/0.02 � CLad 	 Fad/0.02. Therefore,
CLch � CLad/{0.02[1.383 ln(age) � 42.339]} 	 (Fad/Fch) 	
KCYP3A4/5 	 (W/70)0.75, with Fad/Fch � [(1  Egut)(1  Ehepa)]/
[(1  EgutKCYP3A4)(1  EhepaKCYP3A4/5)].

As mefloquine extraction coefficients are unknown, we arbi-
trary chose Egut � Ehepa � 0.05.

We then need to evaluate the maturation of the cytochrome. Its
maturation has been characterized by Johnson et al. (32) as fol-
lows: KCYP3A4/5 � age0.83/(0.31 � age0.83) and KCYP3A4 � 0.42 �
[(0.639 	 age)/(2.35 � age)].

Contrary to clearance, no maturation process interferes with
the volume in the blood. However, as previously stated, estimated
volumes are apparent volumes. Therefore, adjustment with bio-
availability is appropriate. Although there is no maturation, size
adjustment is still warranted and we have Vch,real � Vad,real 	 (W/
70). Therefore, Vch � Vad 	 (Fad/Fch) 	 (W/70), where Fad/Fch is
determined as described above.

APPENDIX 2.

EVALUATION OF SAMPLING WINDOW DESIGN.

Table A5 presents the results of the evaluation of the design with
sampling windows that were derived empirically from the opti-
mized design. It shows the same evaluation metrics presented in
the text for the optimized and empirical designs.
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