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We examined the pharmacokinetic properties of vancomycin conjugated to a bone-targeting agent (BT) with high affinity for
hydroxyapatite after systemic intravenous administration. The results confirm enhanced persistence of BT-vancomycin in
plasma and enhanced accumulation in bone relative to vancomycin. This suggests that BT-vancomycin may be a potential car-
rier for the systemic targeted delivery of vancomycin in the treatment of bone infections, potentially reducing the reliance on
surgical debridement to achieve the desired therapeutic outcome.

Osteomyelitis is defined as any inflammatory process in bone,
the most common cause of which is infection. Although

many bacterial pathogens have been associated with osteomyeli-
tis, Staphylococcus aureus is the predominant cause and the patho-
gen responsible for the most serious forms of bone infection (1).
Given the increasing prevalence of S. aureus strains resistant to
methicillin (2), vancomycin remains the most commonly used
antibiotic for the treatment of these infections (3). While true
vancomycin resistance is rare, S. aureus strains with reduced sus-
ceptibility are common and often arise as a consequence of the
prolonged periods of vancomycin therapy required to treat bone
infections (1, 4). Vancomycin acts by inhibiting bacterial cell wall
biosynthesis (5, 6) and is a large hydrophilic molecule that has
limited penetration into bone and therefore low bone bioavail-
ability when administered systemically (7). These factors empha-
size the need to develop methods to enhance delivery of vancomy-
cin to bone in the treatment of osteomyelitis. One way to
accomplish this is to employ local antibiotic delivery, which while

useful suffers from inherent limitations, not the least being the
ability to gain direct access to the infection site (8–16). Thus, one
of the major challenges to improve therapeutic outcomes for os-
teomyelitis patients is to develop methods for the systemic deliv-
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FIG 1 Structures of vancomycin (left) and BT-vancomycin (right).
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ery of vancomycin, and potentially other antibiotics, in sufficient
concentrations to achieve the desired therapeutic effect.

Previous studies in our laboratories have led to the develop-
ment of bone-targeting agents (BT) based on their high affinity for
hydroxyapatite and an enhanced tendency to accumulate in bone
(17). We demonstrated that these compounds can be conjugated
to vancomycin via a modified polyethylene glycol (PEG) linker
(Fig. 1) to form BT-2-minipeg-2-vancomycin (BT-vancomycin)
(18–20). Previous in vitro studies confirmed that the MICs of
BT-vancomycin against methicillin-resistant and methicillin-sus-
ceptible S. aureus are comparable to those of vancomycin alone
and that BT-vancomycin binds to hydroxyapatite to a greater ex-
tent than vancomycin (21). The objective of the present study was
to define the pharmacokinetic (PK) profiles of vancomycin and
BT-vancomycin after systemic administration via intravenous
(i.v.) or intraperitoneal (i.p.) routes and to determine the plasma
and bone content of vancomycin versus BT-vancomycin.

All experimental animal protocols were in strict accordance
with the NIH “Guide for the Care and Use of Laboratory Animals”
(24) and were approved by the Institutional Animal Care and Use
Committees at the University of Kentucky, Lexington, KY, and
Mayo Clinic, Rochester, MN. Thirty-five rats received a single i.v.
injection via the tail vein of either vancomycin HCl (50 mg/kg of
body weight) or BT-vancomycin (63.85 mg/kg; molar equivalent
of 50 mg/kg of vancomycin HCl). Twenty rats were given an i.p.
injection of either vancomycin HCl (50 mg/kg) or BT-vancomy-
cin (63.85 mg/kg) twice daily for a total of seven doses. BT-van-
comycin and vancomycin levels in plasma and bone were deter-
mined by liquid chromatography-tandem mass spectrometry
(LC/MS-MS).

Bone samples (frozen tibiae) were pulverized, and the crushed
bones were weighed, placed into 2-ml tubes, and stored at �80°C
for further analysis. Analysis of vancomycin and BT-vancomycin
was carried out using a Shimadzu LC unit coupled to an ABI
4000-Qtrap hybrid linear ion trap triple-quadrupole mass spec-
trometer in the multiple reaction monitoring (MRM) mode. Tei-
coplanin was used as an internal standard.

PK analysis was performed using data from individual rats, for
which the mean and standard error of the mean (SEM) were cal-
culated for each group. PK parameters were estimated using a
noncompartmental model (Phoenix WinNonlin, Professional,
version 6.2; Pharsight, Mountain View, CA). The levels of vanco-
mycin and BT-vancomycin in plasma peaked at 13.00 � 1.96 and
41.22 � 8.71 �M, respectively, 1 h after administration (Fig. 2).
The concentration of BT-vancomycin in plasma declined to its
lowest levels (0.07 � 0.02 �M) at 168 h, while vancomycin
reached its lowest level 12 h after i.v. administration (Fig. 2). Com-
pared to the peak concentrations in plasma, peak concentrations
in bone were delayed, with peak concentrations occurring 6 h after
i.v. administration (Fig. 3). The amount of BT-vancomycin in
bone was approximately 5-fold higher than that of vancomycin
during the initial 12-h period but increased progressively to ap-
proximately 47-fold at 168 h (Table 1).

Increased accumulation of BT-vancomycin was also con-
firmed after i.p. administration of seven doses of 50 mg/kg of
vancomycin or the molar equivalent of BT-vancomycin at 12-h
intervals. The ratios of BT-vancomycin to vancomycin were 7.8,
7.4, and 47.7 at 1, 6, and 12 h after the last i.p. administration

FIG 2 Plasma concentration-time profile of vancomycin (circles) and BT-
vancomycin (squares) after i.v. administration of 50 mg/kg vancomycin or
63.85 mg/kg BT-vancomycin (molar equivalent to 50 mg/kg vancomycin).
Results are the mean � SEM (n � 5 rats). *, significantly higher than results for
vancomycin, P � 0.05; **, significantly higher than results for vancomycin,
P � 0.01; ***, significantly higher than results for vancomycin, P � 0.0001.

FIG 3 Concentration-time profile in bone of vancomycin (circles) and BT-
vancomycin (squares) after i.v. administration of vancomycin (50 mg/kg) or
BT-vancomycin (63.85 mg/kg). Results are the mean � SEM (n � 5 rats per
group). *, significantly higher than results for vancomycin, P � 0.05; **, sig-
nificantly higher than results for vancomycin, P � 0.01; ***, significantly
higher than results for vancomycin, P � 0.001.

TABLE 1 Comparative concentrations of vancomycin and
BT-vancomycin in bone after i.v. administration of 50 mg/kg
vancomycin or 63.85 mg/kg BT-vancomycina

Time (h)

Concn (�M) (mean � SEM)a

BT-vancomycin/
vancomycin ratioVancomycin BT-vancomycin

1 1.04 � 0.14 4.89 � 1.08b 4.7
6 1.73 � 0.13 11.41 � 1.79c 6.6
12 1.51 � 0.15 8.06 � 1.46c 5.3
24 0.97 � 0.09 3.15 � 0.49b 3.3
72 0.35 � 0.10 4.31 � 0.63c 12.3
168 0.08 � 0.05 3.73 � 0.61c 46.6
a n � 5 rats per group.
b Significantly higher than results for vancomycin (P � 0.01).
c Significantly higher than results for vancomycin (P � 0.001).
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(Table 2). PK parameters obtained after i.v. administration are
detailed in Table 3.

These data demonstrate that vancomycin and BT-vancomycin
exhibit significant differences in their PK profiles. A decrease in
total clearance (CLtot) of 13.5-fold was observed for BT-vancomy-
cin compared to vancomycin, with a 14.7-fold increase in half-life
(t1/2) allowing for a 10.8-fold enhancement in the area under the
concentration-time curve (AUC). The significant changes in the
AUC indicate a higher degree of in vivo exposure to BT-vancomy-
cin, facilitating the accumulation of drug in bone due to an en-
hanced permeation and retention effect. Consequently, BT-van-
comycin shows a longer systemic mean residence time (MRT)
than vancomycin (P � 0.001). The higher MRT value of BT-van-
comycin could be due in part to a more protracted steady state in
vivo, resulting in improved delivery, dramatically increased access
into bones, and prolonged exposure in bone tissue (Table 3).

The estimates of the maximum concentration of drug in serum
(Cmax) of vancomycin and BT-vancomycin determined in the
present study were in agreement with previously published data,
which include therapeutic peak and trough serum concentrations
of 20.7 to 27.6 �M and 3.5 to 6.9 �M, respectively (22).

In our experiments, levels of BT-vancomycin in bone were
above the MIC of vancomycin for up to 168 h after administra-
tion. These findings predict good antimicrobial outcomes, since
the antimicrobial activity of vancomycin is time dependent and
not concentration dependent (23).

In conclusion, our previously published work with BT-vanco-
mycin showed that this novel molecule had in vitro activity similar

to that of vancomycin against both methicillin-resistant and me-
thicillin-susceptible S. aureus strains isolated from bone infections
(21). Additionally, BT-vancomycin was shown to be more effica-
cious than an equimolar dose of vancomycin in a rat osteomyelitis
model. However, the most efficacious dosing regimen used in
these studies (i.p. injection every 12 h for 21 days) not only was
associated with high BT-vancomycin levels in plasma but also
caused a decrease in body weight, an elevation in white blood cell
count, renal dysfunction, and evidence of tubulointerstitial ne-
phritis. Although we did not examine toxicity in the current stud-
ies, we have demonstrated enhanced accumulation in bone, even
after a single i.v. dose of an amount of BT-vancomycin equivalent
to that used in the previous study (21). Thus, with further dose
optimization, this toxicity can likely be minimized, making BT-
vancomycin a useful BT therapy for the treatment of methicillin-
resistant S. aureus (MRSA) osteomyelitis. More importantly, the
results justify future studies to assess the utility of our promising
BT agent in the context of other, less toxic antibiotics that have
activity against MRSA.
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