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Volume and functional outcome of
intracerebral hemorrhage according to oral
anticoagulant type

ABSTRACT

Objective: To compare intracerebral hemorrhage (ICH) volume and clinical outcome of non–vitamin
K oral anticoagulants (NOAC)–associated ICH to warfarin-associated ICH.

Methods: In this multicenter cross-sectional observational study of patients with anticoagulant-
associated ICH, consecutive patients with NOAC-ICH were compared to those with warfarin-
ICH selected from a population of 344 patients with anticoagulant-associated ICH. ICH volume
was measured by an observer blinded to clinical details. Outcome measures were ICH volume
and clinical outcome adjusted for confounding factors.

Results: We compared 11 patients with NOAC-ICH to 52 patients with warfarin-ICH. The median
ICH volume was 2.4 mL (interquartile range [IQR] 0.3–5.4 mL) for NOAC-ICH vs 8.9 mL (IQR 4.0–
21.3 mL) for warfarin-ICH (p 5 0.0028). In univariate linear regression, use of warfarin (differ-
ence in cube root volume 1.61; 95% confidence interval [CI] 0.69 to 2.53) and lobar ICH location
(compared with nonlobar ICH; difference in cube root volume 1.52; 95% CI 2.20 to 0.85) were
associated with larger ICH volumes. In multivariable linear regression adjusting for confounding
factors (sex, hypertension, previous ischemic stroke, white matter disease burden, and premorbid
modified Rankin Scale score [mRS]), warfarin use remained independently associatedwith larger ICH
(cube root) volumes (coefficient 0.64; 95%CI 0.24 to 1.25; p5 0.042). Ordered logistic regression
showed an increased odds of a worse clinical outcome (as measured by discharge mRS) in warfarin-
ICH compared with NOAC-ICH: odds ratio 4.46 (95% CI 1.10 to 18.14; p 5 0.037).

Conclusions: In this small prospective observational study, patients with NOAC-associated ICH
had smaller ICH volumes and better clinical outcomes compared with warfarin-associated ICH.
Neurology® 2016;86:360–366

GLOSSARY
FVII 5 factor VII; FX 5 factor X; ICH 5 intracerebral hemorrhage; INR 5 international normalized ratio; mRS 5 modified
Rankin Scale; NIHSS 5 NIH Stroke Scale; NOAC 5 non–vitamin K oral anticoagulant; TF 5 tissue factor.

Intracerebral hemorrhage (ICH) is the most feared complication of oral anticoagulation, with an
in-hospital mortality of 42%.1 Despite advances in ICH prevention, the global incidence of ICH
has not declined,2 likely secondary to the increase in anticoagulant-related ICH in the elderly.3–5

In large phase 3 randomized trials, patients in atrial fibrillation had half the incidence of ICH
when taking non–vitamin K oral anticoagulants (NOACs) compared to warfarin, with similar
efficacy in preventing ischemic stroke.6 Data on NOAC-associated ICH (NOAC-ICH) outside
randomized trials are limited, and there is widespread concern that, without any currently available
specific antidotes, those who have ICH while on NOACs might have larger ICH volumes and
worse clinical outcomes than patients with warfarin-associated ICH (warfarin-ICH).7,8

Although experimental models show that dabigatran9 and rivaroxaban10—unlike warfarin—
do not increase ICH volume unless given at supratherapeutic doses, few data are available on the
clinical and radiologic characteristics of NOAC-ICH. A small study from Japan recently
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reported that in 5 patients with ICH associ-
ated with the NOAC rivaroxaban, the mean
hematoma volume was smaller than in a com-
parison group of ICH associated with warfa-
rin,11 and that functional outcomes were
better in the NOAC group.

In this prospective, multicenter cross-sectional
observational study of oral anticoagulant-
associated ICH, we aim to describe the clinical
and radiologic characteristics of NOAC-ICH
in comparison to warfarin-ICH. We hypothe-
sized that, in comparison to warfarin-ICH,
NOAC-ICH have a smaller volume and a more
favorable clinical outcome.

METHODS Patients were recruited from an ongoing multicen-

ter prospective observational cohort study of 344 patients with oral

anticoagulant-related ICH.12 Inclusion criteria for the present study

required adult patients (.18 years old) treated at participating

centers with ICH confirmed on brain CT or MRI scans with a

history of anticoagulant use at the time of the ICH, and informed

written consent from the patient or a representative. Exclusion

criteria include known underlying structural cause for ICH or

major head trauma (causing loss of consciousness and thought to

be sufficient to have caused the ICH) in the last 24 hours before

presentation. Only patients with CT brain performed within 48

hours of onset of ICH symptoms were included. All consecutively

recruitedNOAC-ICH cases were considered for inclusion (n5 14)

while warfarin-ICH cases were selected randomly from the same

study population, recruited over the same time period, in a 4:1 ratio

(n 5 56), giving a total initial sample size of 70.

Our outcome measures were ICH volume (see below) and

clinical outcome at discharge from hospital, measured by the

modified Rankin Scale (mRS).11 Other variables included neuro-

imaging features (hematoma location, severity of white matter

hyperintensities of presumed vascular origin), clinical demo-

graphics, vascular risk factors, international normalized ratio

(INR), C-reactive protein, and immediate management.

Imaging was undertaken at each study center using standard

clinical protocols. Anonymized DICOM images were sent to the

study center. Two clinical research associates (D.W. and A.C.)

blinded to clinical details and trained in neuroimaging undertook

quality assurance and all imaging analysis. D.W. rated hematoma

size using a validated semiautomated planimetric method13 includ-

ing only scans less than 48 hours from onset with uniform slice

thickness (ranging from 0.625 to 5 mm). Hematoma location was

stratified as brainstem, cerebellar, deep, or lobar (cortical or cortical-

subcortical and not involving any of the deep gray matter struc-

tures), and then further classified into lobar or nonlobar. White

matter hyperintensities on plain CT were rated using the simplified

Fazekas scale14 by a single trained observer (A.C.).

Statistical analysis. Hematoma volume was cube root trans-

formed for each patient to satisfy statistical assumptions regarding

normality. We compared the characteristics of warfarin-ICH and

NOAC-ICH using either t tests or Mann-Whitney tests for

continuous variables, and either x2 or Fisher test for categorical

variables. The t tests were undertaken to identify possible

predictors of cube root hematoma volume. A multivariable linear

regression model was undertaken using the cube root of the

hematoma size as the dependent variable and anticoagulant

(warfarin or NOAC) as an independent variable. Other variables

that were different between the 2 groups, or variables with biological

plausibility as confounding factors, were added to the model.

Ordered logistic regression was undertaken using discharge

mRS as the dependent variable and anticoagulant (warfarin or

NOAC) as an independent variable adjusting for confounding fac-

tors (premorbid mRS and baseline NIH Stroke Scale [NIHSS]

score). To satisfy the proportional odds assumption we reclassified

the mRS as follows: mRS 0–2, mRS 3, mRS 4, and mRS 5–6.

Figure 1 Flow chart of study design and patient selection

ICH 5 intracerebral hemorrhage; NOAC 5 non–vitamin K oral anticoagulant; SAH 5 subarachnoid hemorrhage.
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Standard protocol approvals, registrations, and patient
consents. Clinical Relevance Of Microbleeds In Stroke

(CROMIS-2) was approved by the Central London Research

Ethics Committee, National Research Ethics Service.

Written informed consent for research was obtained from all

participants (or guardians of participants) in the study.

RESULTS From a total population of 344 patients
with ICH associated with oral anticoagulation, we
identified 14 cases of NOAC-associated ICH.
Blinded to all other clinical and radiologic details,
we randomly selected 4 controls with warfarin-
associated ICH for each NOAC-ICH case (resulting
in a total of 56 warfarin-ICH cases). After quality
assurance checks against our inclusion criteria, 3
NOAC-ICH and 4 warfarin-ICH cases were
excluded. The final study population thus included
11 NOAC-ICH and 52 warfarin-ICH (figure 1).
The NOAC group included 3 patients taking
dabigatran, 6 taking rivaroxaban, and 2 taking
apixaban from a total of 39 centers, a mixture of
small district general hospitals and large central
teaching hospitals.

The median age of the participants in the entire
cohort was 80.3 years (IQR 72.9 to 84.7); 46% were

women. Characteristics were generally similar
between the groups, but the NOAC-ICH cohort
had a higher prevalence of female sex, hypertension,
and previous stroke, but a lower degree of white mat-
ter hyperintensities and higher premorbid mRS (table
1). ICH location was similar among the groups (table
2). The mean INR value was 2.5 (95% CI 1.88 to
3.1) for the warfarin group. Of the 52 warfarin-ICH
cases, only 13 had an INR .3 upon admission; only
5 had INR .3.5. There was little difference in mean
hemorrhage volume (cube root) in warfarin-ICH
between those with INR ,3 (15 mL; 95% CI 7 to
23) and those .3 (16 mL; 95% CI 9 to 23) (p 5

0.85). Time in range was not available.
The median ICH volume was 2.4 mL (IQR 0.3–

5.4 mL) for NOAC-ICH vs 8.9 mL (IQR 4.0–21.3
mL) for warfarin-ICH (p 5 0.0028). Figure 2A
shows individual data points for the volume of each
ICH; figure 2B (box plot) shows the minimum,
median, first quartile, third quartile, and maximum
ICH volume in the NOAC-ICH and warfarin-ICH
groups. In univariate analysis, only anticoagulant type
(warfarin vs NOAC) and lobar ICH location were
associated with (cube root) ICH volume (table 3).

Table 1 Baseline characteristics of NOAC-associated and warfarin-associated ICH

Variables
NOAC-ICH
(n 5 11)

Warfarin-ICH
(n 5 52) p Value

Age, y, median (IQR) 81 (76–83) 80 (72–85) 0.45

Female, n (%) 9 (82) 20 (38) 0.009

Event–scan time, d, median (IQR) 0 (0–0) 0 (0–0) 0.29a

Hypertension, n (%) 10 (91) 35 (67) 0.12

Hypercholesterolemia, n (%) 76 (55) 30 (59) 0.80

Diabetes, n (%) 2 (18) 15 (29) 0.47

Smoking (never), n (%) 5 (50); n 5 10 26 (50) 0.64

Alcohol units/wk, median (IQR) 0 (0–0) 1 (0–4); n 5 50b 0.12a

IHD, n (%) 2 (18) 10 (20); n 5 51b 0.91

Previous IS, n (%) 6 (54) 13 (25); n 5 51b 0.06

Previous ICH, n (%) 2 (19) 12 (24); n 5 51b 0.70

Previous TIA, n (%) 2 (19) 12 (24); n 5 49b 0.66

Concurrent antiplatelet, n (%) 1 (9) 5 (9) 0.96

Premorbid modified Rankin Scale score, median (IQR) 3 (1–3) 1 (0–2); n 5 48b 0.04a

Anticoagulant reversal (3 or 4 factor prothrombin complex) n (%) 6 (55) 45 (87) 0.44

SVD, Fazekas score median (IQR) 0 (0–2) 2 (0–2) 0.22a

Non lobar ICH location, n (%) 8 (73) 30 (59) 0.39

IVH, n (%) 3 (27) 15 (29) 0.89

AF as reason for anticoagulation n (%) 8 (73) 39 (75) 0.42

Abbreviations: AF 5 atrial fibrillation; ICH 5 intracerebral hemorrhage; IHD 5 ischemic heart disease; IQR 5 interquartile
range; IS 5 ischemic stroke; IVH 5 intraventricular hemorrhage; NOAC 5 non–vitamin K oral anticoagulant; SVD 5 small
vessel disease.
aNonparametric Mann-Whitney or Fisher exact test used (t test or x2 tests were used otherwise, as appropriate).
bNumber of patients for whom data were available in variable with incomplete/missing data.
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In multivariable linear regression, after adjusting for
sex, hypertension, previous ischemic stroke, white mat-
ter disease burden, and premorbid mRS, warfarin-ICH
(compared to NOAC-ICH) was independently associ-
ated with larger (cube root) ICH volume (coefficient
0.64, 95% CI 0.24 to 1.25; p 5 0.042).

Ordinal logistic regression, adjusting for premor-
bid mRS and NIHSS, showed increased odds of a
worse outcome in warfarin-ICH compared to
NOAC-ICH: odds ratio 4.46 (95% CI 1.10 to
18.14; p 5 0.037). The proportional odds assump-
tion was satisfied.

DISCUSSION Our results from a multicenter pro-
spective observational study show that NOAC-ICH is
associated with smaller ICH volume, and better clinical
outcome, than warfarin-ICH. Our findings provide
preliminary reassurance that NOACs can be used
without concern that ICH complicating anticoagulation
might be larger and associated with poorer outcomes
for NOAC-ICH compared to warfarin-ICH. However,
it would be valuable to confirm our findings in larger
cohorts and randomized trials.

We are aware of only one previous small study on
the clinical and radiologic characteristics of NOAC-
ICH from Japan,11 which included 5 patients with
rivaroxaban-associated ICH and found smaller ICH
volumes and better outcome in comparison to
warfarin-ICH. Our study included patients on a range
of different NOACs (including both direct thrombin
and Xa inhibitors) from multiple hospitals in a prospec-
tive cohort study, with regression analyses adjusted for
potential confounding factors. Thus, our study
strengthens the evidence that NOAC-ICH has a differ-
ent radiologic and clinical profile vs warfarin-ICH, and
may be more widely generalizable to other populations.

The mechanism leading to larger hemorrhage vol-
ume in warfarin-ICH compared with NOAC-ICH
requires clarification. We postulate that due to the
high levels of tissue factor (TF) around blood vessels
in the brain,15 the extrinsic or TF-dependent coagu-
lation pathway (the major route by which thrombin
generation is initiated in response to vessel damage)

plays a vital role in ICH volume. Following vascular
injury related to ICH and exposure of TF-presenting
cells to the blood, TF comes into contact with factor
VII (FVII), a fraction (;1%) of which circulates in its
active form, FVIIa. TF binds both FVII and FVIIa with
high affinity, and the trace amount of TF-FVIIa formed
is sufficient to activate factor X (FX) both directly
(extrinsic pathway) and indirectly via activation of factor
IX,16 leading to fibrin formation. Vitamin K antagonists
such as warfarin inhibit the vitamin K conversion cycle,
inducing hepatic production of partially decarboxylated
vitamin K–dependent coagulation proteins II, VII, IX,
and X, with reduced coagulant activity.17,18 Thus war-
farin, by reducing the amount of factor VII available for
interaction with TF (the key system in the initiation of
coagulation),19 reduces the extrinsic coagulation path-
way and subsequent fibrin formation. NOACs specifi-
cally and competitively inhibit FXa (rivaroxaban and
apixaban) or thrombin (dabigatran), and thereby reduce
the thrombin burst during the downstream propagation
phase of coagulation20 or thrombin activity,19 respec-
tively. NOACs do not affect the initial factor VII and
VIIa interaction with TF, which may provide an expla-
nation for the smaller NOAC-ICH volumes in our
study. Our mean event to scan time of under 24 hours
in both groups suggests the shorter half-life of NOAC
compared with warfarin is unlikely to play a role in
baseline ICH size, although it may contribute toward
the trend in improved clinical outcomes.

We hypothesize that the majority of ICH cases in
both cohorts is secondary to an interaction of oral an-
ticoagulation (causing impaired homoeostasis) with
bleeding-prone cerebral small vessel diseases includ-
ing a deep perforator (hypertensive) arteriopathy or
cerebral amyloid angiopathy.21 While we have data
on the baseline INR results for the warfarin cohort
(which suggest the majority of warfarin-ICH
occurred in the therapeutic range), we did not have
access to specific coagulation measures specific for
NOACmonitoring (for example, thrombin, activated
partial thromboplastin time, and anti-FXa assays). It
would have been interesting to examine whether these
measures were outside the therapeutic ranges in
NOAC-ICH cases. Furthermore, as we did not have
access to MRI in these patients, we could not look at
the different anticoagulant agents and their interactions
with different underlying small vessel disease subtypes.

Strengths of our study include prospective and
standardized clinical and imaging data collection.
Furthermore, the comparator group (warfarin-related
ICH) was drawn at random from the same study pop-
ulation, recruited over the same time period as the
NOAC-ICH cases. The major limitations include
the small sample size for NOAC-associated ICH,
and the inherent selection bias towards ICH survi-
vors. This bias will lead to smaller ICH volumes

Table 2 ICH location in the 2 groups (warfarin-
ICH and NOAC-ICH)

ICH location NOAC-ICH, % Warfarin-ICH, %

Brainstem 1 (9) 2 (4)

Cerebellar 1 (9) 7 (14)

Deep 6 (55) 21 (41)

Lobar 3 (27) 21 (41)

Abbreviations: ICH 5 intracerebral hemorrhage; NOAC 5

non–vitamin K oral anticoagulant.
Values are n (%).
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compared with a population-based cohort of consec-
utive ICH patients, and might underestimate the true
between-group difference in mean ICH volume. As
we did not match NOAC-ICH to warfarin-ICH pa-
tients, there may be inherent differences between the
groups that could conceivably affect the outcomes of
interest. However, variables that differed between the
groups did not have any significant effect on ICH size
in univariate analysis. We considered matching our
NOAC-ICH and warfarin-ICH cohorts on a number
of variables. However, we are interested in the expo-
sure anticoagulant variable and its relationship with
ICH volume and clinical outcome, and concluded that
a multivariable regression analysis was the best

approach for the following reasons. First, we did not
want to overmatch and risk diluting any association
of interest. Second, matching on multiple variables
would be challenging or impossible due to the small
pool of NOAC-ICH patients. Third, matching on
only 1 or 2 variables would not fully solve the confound-
ing issues but would necessitate a far more complicated
analysis. Fourth, multivariable regression analysis of
matched ordinal data was not a standard analysis.

Confounding could arise if hospitals that prescribe
NOACs have a higher level of care than those that do
not. However, this seems unlikely as the majority of
study centers (29 of 39) prescribe NOACs. Further-
more, discharge mRS may not be the most

Table 3 Mean cube root of the ICH volume according to different predictor variables of interest

Predictor variable Means (SD) Difference (95% CI) p Value

Oral anticoagulant type (warfarin vs NOAC) 2.10 (1.31) vs 0.49 (1.75) 1.61 (0.69–2.53) 0.0009a

ICH location (lobar vs nonlobar) 2.71 (0.99) vs 1.19 (1.44) 1.52 (0.85–2.20) ,0.0001a

Severe WMH (‡2 Fazekas scale) (yes vs no) 1.85 (1.53) vs 1.65 (1.42) 0.020 (20.59 to 0.98) 0.62

Sex (female vs male) 1.50 (1.52) vs 2.09 (1.47) 20.58 (21.34 to 0.17) 0.129

HTN (yes vs no) 1.71 (1.58) vs 2.10 (1.31) 20.40 (21.24 to 0.45) 0.35

Antiplatelet use (yes vs no) 2.35 (1.20) vs 1.77 (1.54) 0.59 (20.71 to 1.88) 0.37

Previous IS (yes vs no) 1.68 (1.68) vs 1.83 (1.43) 20.16 (20.99 to 0.67) 0.71

Abbreviations: CI5 confidence interval; HTN5 hypertension; ICH5 intracerebral hemorrhage; IS5 ischemic stroke; NOAC 5

non–vitamin K oral anticoagulant; WMH 5 white matter hyperintensity.
aSignificant.

Figure 2 Dot plot and box plot

(A) Dot plot of individual participants and their corresponding hemorrhage sizes. Blue dots showwarfarin–intracerebral hemorrhage (ICH); red triangles show
non–vitamin K oral anticoagulant (NOAC)–ICH. (B) Box plot showsmedian, lower and upper quartiles, and minimum andmaximum values of hematoma volume
for NOAC-ICH cases and warfarin-ICH cases.
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appropriate longer term functional outcome, because
ICH has a high 1-month mortality rate (approaching
50%).22 Future studies should include mortality as an
outcome measure. Finally, our study is cross-sectional
and observational, so cannot demonstrate causality or
eliminate all sources of confounding. Randomized
control trials are needed to make definitive treatment
comparisons. Previous randomized trials show no sig-
nificant difference in case fatality from ICH among
participants assigned dabigatran 150 or 110 mg vs
warfarin (41% dabigatran 110 mg vs 35% dabigatran
150 mg vs 36% warfarin),23 or rivaroxaban vs warfa-
rin (48% rivaroxaban vs 50% warfarin).24 The similar
fatality rates seen in the above trials suggest that ICH
sizes may have been comparable between NOAC-
ICH and warfarin-ICH, but radiologic analyses are
not available. It is thus possible that our results may
not hold true in larger samples. Further larger obser-
vational collaborative studies, and randomized con-
trol trials of NOACs vs vitamin K antagonists, with
detailed clinical and radiologic assessment of ICH
events and their outcome, are therefore needed.
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