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Abstract

Matching theories about growth, development, and change to appropriate statistical models can 

present a challenge, which can result in misuse, misinterpretation, and underutilization of different 

analytical approaches. We discuss the use of derivatives --- the change of a construct with respect 

to changes in another construct. Derivatives provide a common language linking developmental 

theory and statistical methods. Conceptualizing change in terms of derivatives allows precise 

translation of theory into method and highlights commonly overlooked models of change. A wide 

variety of models can be understood in terms of the level, velocity and acceleration of constructs: 

the 0th, 1st, and 2nd derivatives, respectively. We introduce the language of derivatives, and 

highlight the conceptually differing questions that can be addressed in developmental studies. A 

substantive example is presented to demonstrate how common and unfamiliar statistical 

methodology can be understood as addressing relations between differing pairs of derivatives.
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Of great interest to developmental researchers is the association between two or more 

changing constructs, and whether and how they are related over time. To do so, 

methodological factors must be considered, such as the type of statistical model needed to 

Correspondence to: Pascal R. Deboeck, pascal@ku.edu.

HHS Public Access
Author manuscript
Appl Dev Sci. Author manuscript; available in PMC 2017 January 01.

Published in final edited form as:
Appl Dev Sci. 2016 ; 19(4): 217–231. doi:10.1080/10888691.2015.1021924.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



investigate questions about growth, development, and change, and the time scale over which 

change is expected (Ferrer & McArdle, 2010; Little, 2013; Nesselroade, 1991; Sliwinski, 

2011). Models exploring the longitudinal relations between constructs can take many forms 

(Little, 2013). For example, studies examining relations between mothers’ and children’s 

depressive symptoms have used correlations of observed scores, hierarchical linear models 

of change (e.g., Pilowsky et al., 2008), models of latent growth curves with correlated 

growth parameters (e.g., Garber & Cole, 2010; Gross, Shaw, & Moilanen, 2008), latent 

change score models (e.g., Kouros & Garber, 2010), and cross-lagged panel designs (e.g., 

Ge et al., 1995; Jaffee & Poulton, 2006). Each of these models is useful for describing 

developmental processes, but rarely are the commonalities across the models explicitly 

noted. This disconnect burdens researchers with the task of figuring out how each analytic 

approach is or is not appropriate for modeling different types of developmental processes 

and theories. This confusion also influences the inferences that can or cannot be drawn from 

specific models.

A bridge between theoretical rationale for development and the appropriate model may be 

achieved through a common language for statisticians and substantive researchers. In this 

paper we present derivative terminology, which can aid in the articulation of change and 

thereby better link developmental theories, models, and inferences. Derivative terminology 

overlaps with both developmental and statistical concepts, and could serve as a common 

vocabulary in modeling change. In doing so, developmental psychologists may be able to 

better understand a wide range of models as part of a common framework, instead of as 

distinct options whose overlap in commonalities and discrepancies are muddled, at best. We 

begin by presenting a typical developmental research question on the relation of change 

between mothers’ and children’s behavior, after which we introduce derivative vocabulary 

and apply this language to substantive examples to discuss the inferences drawn from 

differing statistical models.

The Dynamic Relation between Mothers and Children

Developmentalists often are interested in the mother-child dyad, and how change in one 

member of the dyad could affect the other. The interest in this bidirectional relation between 

members of a dyad is reflected in many prominent theories and developmental perspectives 

(dynamic systems; Thelen & Smith, 2006; family systems theory; Cox & Paley, 1997; see 

also Sameroff, 1975). One dynamic, bidirectional relation of this sort, the transactional 

association between mothers’ and children’s psychiatric symptoms, also has theoretical and 

empirical justification (see Gunlicks & Weissman, 2008; Elgar, McGrath, Waschbusch, 

Stewart, & Curtis, 2004). Theoretically, different mechanisms have been proposed to 

account for the effect of maternal depression on children’s psychological symptoms (e.g., 

impairments in parenting and quality of family environment, see Goodman & Gotlib, 1999), 

as well as the effect of children’s psychological symptoms on maternal depression (e.g., 

stress of caring for a child with psychological problems, see Elgar et al., 2004). Given strong 

theoretical support for bidirectional relations, research has focused on providing empirical 

support for this link; this has been examined with several different models. For example, 

Gross et al. (2008) and Garber and Cole (2010) tested parallel process models, in which the 

latent growth parameters representing linear change in mothers’ and children’s symptoms 
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were correlated. Jaffee and Poulton (2006) tested an autoregressive, cross-lag model to test 

for time-dependent bidirectional relations. Kouros and Garber (2010) used a latent change 

score model to test for transactional relations. Finally, Nicholson, Deboeck, Farris, Boker, 

and Borkowski (2011) used differential equation modeling techniques to fit a coupled 

damped linear oscillator model. These studies have attempted to assess the bidirectional 

relation using a variety of statistical methods. Notably, some of these methods ask very 

similar questions about the change processes, despite using different models, whereas others 

make unique assumptions about how the constructs are related. These different change 

models may (and frequently do) yield different results and conclusions, and the similarities 

between models may not be readily apparent (e.g., Kouros, Quasem, & Garber, 2013).

Which model should developmentalists use to test such transactional relations? The 

difficulty, in part, is that “transactional relation” is vaguely defined from a mathematical 

perspective, and could imply many different models. Figure 1 depicts hypothetical 

trajectories for maternal depressive symptoms and child externalizing behavior problems for 

two dyads. In both Figures 1A and 1B, the mother’s trajectory of depressive symptoms 

increases over time. Prior to the onset of maternal depression, the child could have many 

possible initial trajectories, corresponding to increasing or decreasing rate of externalizing 

behaviors. Had there not been an increase in mother’s depression, we might expect children 

to continue on these initial trajectories, corresponding to the dashed, gray dotted lines in 

Figure 1. As mother’s depressive symptoms increase, however, in both cases the children 

may respond by showing an increase in the number of behavioral problems relative to their 

expected trajectory (solid gray line).

We expect that a child’s behaviors would change in response to mother’s depression, but the 

word change is mathematically vague and does not imply a specific model that can be 

tested. In these examples, the children in both dyads demonstrate changes in their 

trajectories in response to the increase in their mother’s depression, but they show very 

different changes over time despite their starting at baseline with similar scores on 

externalizing behaviors. The first child (Figure 1A) follows a pattern that would be 

expected, as there is a positive correlation between maternal depression and children’s 

externalizing scores due to both variables having positive slopes. In contrast, there would be 

a correlation of approximately zero between the mother and the second child (Figure 1B), as 

depression shows a positive slope whereas the child’s corresponding behavioral trajectory 

appears neutral or slightly negative. A model focused on correlating scores or correlating 

linear slopes would suggest that the second child’s behavior problems were not related to the 

mother’s depression, as the change is masked by an initially negative trajectory.

Herein are some of a few questions that can be raised related to how change is defined. In 

saying that the children have changed in relation to their mothers, are we expecting an 

increase in the observed levels of their externalizing scores or an increasing slope as with the 

child in the first dyad (Figure 1A), or a change in the trajectory of the child (i.e., curvature) 

as seen in both children? Moreover, it must be considered if the child is responding to the 

level of the mother’s depression, the steepness of her slope, or changes in the steepness of 

her slope. The imprecise vernacular of using the word change fails to articulate the forms of 

the relations depicted in Figure 1. Similarly, the word trajectory does not convey a specific 
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form of change, and can be interpreted mathematically in multiple ways. Derivatives offer 

the potential of specifically defining what is meant by change and the ability to specify 

components of a trajectory.

Derivatives, being mathematically defined, also allow for translation to and from 

mathematical models; that is, they allow selection of models that more closely match theory 

and provide more precise interpretations of the inferences that can or cannot be made with a 

specific model. Using derivatives as a precise common denominator between theory and 

method would reduce misunderstandings among developmental researchers and mitigate 

translating theory into inappropriate statistical models. Using derivative terms to represent 

change easily identifies models that fit the theory and provides a framework for 

understanding whether different models address similar questions about change. 

Additionally, by identifying how current models fit in this framework, new modeling 

possibilities may be identified.

Derivatives: The Vocabulary of Change

In mathematics, the change in one construct with respect to change in another construct is 

expressed using derivatives. In this paper we will specifically consider the changes in 

constructs with respect to time. The value of a construct at a specified point in time is the 0th 

derivative; the 0th derivative is usually described by the name of the substantive construct to 

which it is referring, but despite differing names in developmental science the 0th derivative 

can be generally considered the level of a construct at a specific time. In a plot of a construct 

(y-axis) versus time (x-axis), the 0th derivative would be represented with a single point. 

Changes in the level of a construct, with respect to time, are called the 1st derivative; the 1st 

derivative is the velocity (speed in a specific direction) at which a construct is changing. In a 

plot of a construct versus time, the 1st derivative would be the slope of a straight line, and 

can also be referred to as the rate of change, the rise over the run, and the change in a 

construct with respect to a change in time. The rate of change in the velocity with respect to 

time, that is how quickly the slope of a line changes in a single direction, is the 2nd 

derivative or the acceleration. Acceleration in a construct plotted versus time would appear 

as a curved line. While some variation in terms occurs, the present paper utilizes level, 

velocity, and acceleration to refer to the 0th, 1st and 2nd derivatives.

To gain familiarity with this vocabulary, consider driving a car as a metaphor for a changing 

construct. The 0th derivative expresses the level of a construct at a specific time, which in a 

car would correspond to the position of the car at a specific time. How this position changes 

with respect to time, or how much of a change in position occurs divided by the elapsed 

amount of time, is the velocity (1st derivative) of the car if it is assumed the car is traveling 

in a single direction along a straight road. The velocity of the car, however, may not be 

constant as there may be increases or decreases in velocity over some period of time. These 

changes in velocity are represented in the acceleration of the car (2nd derivative); the term 

acceleration is used to represent both positive (acceleration) and negative (deceleration) 

changes to velocity. Using this metaphor to describe derivatives, we can articulate more 

clearly the property or properties of any construct of interest to inform our decision of which 

analysis to choose to investigate how constructs change over time.
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Figure 2 presents another way to visualize level (0th derivative), velocity (1st derivative), 

and acceleration (2nd derivative). The light gray line represents a hypothetical 

developmental trajectory. The black circles represent the 0th derivative, or the level of a 

construct at any given point in time along this trajectory. The straight black lines tangential 

to the trajectory represent the velocity of the construct at some particular time. If we 

examine the slopes just before and after a given point in time, we would see a change in 

velocity (i.e., acceleration, curved dark gray lines) that could be described using the 2nd 

derivative. Table 1 presents a summary of several ways of expressing derivatives. Although 

using derivative notation may be unfamiliar, researchers who are comfortable thinking in 

terms of the level of a construct at a specific time (point), straight line change, and curved 

lines can begin to identify derivatives that correspond to these same concepts.

Relating Constructs

Considering levels, velocities, and accelerations on individual constructs expands the 

possible ways in which two or more constructs may be related. We return to our example of 

maternal depression and child externalizing behavior problems. In the context of related 

constructs, the questions about correlated levels, velocities, and accelerations would 

respectively address: (1) Are high levels of maternal depression scores observed with high 

levels of child behavioral problem scores? (2) Does the rate at which maternal depression 

change (i.e., velocity) correlate with the rate at which child behavioral problems are 

changing? (3) When the rate of change in maternal depression is increasing or decreasing 

(i.e., accelerating), do child behavioral problems also show increasing or decreasing rates of 

change? These three questions each capture a uniquely different component of change and 

the presence of any one relation does not imply any other relation. For example, if high 

maternal depression scores are correlated with high child behavior problem scores, it does 

not necessarily mean that the dyads’ slopes are also related. Figure 3 explores two examples 

(Panels A and B) of how the presence of correlated velocities or accelerations individually 

do not necessarily imply other related derivatives --- each relation can occur independently 

of the other two. The two examples each have trajectories for four participants (upper row of 

each panel) that are used to produce the plots of the relations between derivatives (lower row 

of each panel). In Panel A, there is a clear velocity-velocity relation, but level-level and 

acceleration-acceleration relations are equal to zero. In Panel B, there is a significant 

acceleration-acceleration relation, but level-level and velocity-velocity relations are equal to 

zero. As the significance of each relation can be independently manipulated it becomes even 

more necessary to explicitly express what is meant when saying that two constructs show 

related change.

Thinking about level, velocity, and acceleration also offers opportunities to examine 

relations that may be underutilized. Table 2 presents possible relations between two 

constructs and examples of possible research questions regarding the relation between 

maternal depression and child behavioral problems. Those along the diagonal already have 

been discussed: level-level, velocity-velocity, and acceleration-acceleration. Relations 

between constructs, however, also can occur between differing derivatives; three 

opportunities presented in this table are level-velocity, level-acceleration, and velocity-

acceleration relations. For example, a mother’s level of depression, regardless of whether 
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her symptoms are changing or not, might be related to the rate at which a child’s behavior 

problems are changing (level-velocity). A mother’s level of depression may also lead to an 

increase or decrease in the rate at which the child’s behavioral problems are changing, such 

that her child’s behavior shows a curvilinear relation (level-acceleration). Finally, the 

absolute level of a mother’s depression could be inconsequential, whereas the rate at which a 

mother’s depression is changing could precipitate an increase or decrease in the rate at 

which the child’s behavior problems are changing (velocity-acceleration). Such different 

relations between derivatives can lead to important research questions that are more in line 

with the need for appropriate models to better explain the true nature of human behavior 

(Lewis, 2000; Richters, 1997; Sameroff, 2000; Sameroff & MacKenzie, 2003). Theoretical 

approaches, like presentations of dynamical systems by Thelen and Smith (2006), encourage 

a way to conceptualize, operationalize, and formalize complex patterns for how variables 

may differ in their change relations.

Substantive Example

Many models are available for the description of change; models that are often presented as 

separate and different entities. Derivatives can provide a framework for understanding the 

inferences that can be drawn from particular models and understanding how they relate to 

concepts of change. We present here analyses to demonstrate how both familiar and 

unfamiliar analyses can be conceptualized as testing inferences about differing derivative 

relations. The first examines a Hierarchical Linear Model (HLM), a common analytic 

approach for developmental researchers. The second examines the same data, from the 

perspective of Latent Growth Curve Modeling (LGCM). We re-express both of these 

familiar models in terms of derivatives, and consequently discuss the inferences of 

parameters in terms of level, velocity, and acceleration. Finally, we introduce a more novel 

methodology for estimating derivatives from repeated intraindividual observations; while 

this method will be less familiar to most readers, the inferences that are being drawn can still 

be understood in terms of relations between pairs of derivatives. The present examples are 

provided only for pedagogical value and any specific results should be considered 

exploratory, if for no other reason than we have selected to focus on unidirectional relations 

using data where a bidirectional transactional relation is certainly plausible. Additionally, 

readers should use these examples to try to appreciate the differences in the derivative 

relations examined by differing models, and not draw conclusions about the value of any 

one particular method based on the significance or non-significance of the relations 

examined.

The examples are based on a sample of 240 youth (M age = 11.86 years, SD = .56; 54% 

female; 81.5% European American) and their mothers followed annually from grade 6 

through grade 12. A subset of these children had a mother with a history of a mood disorder 

(n = 185), whereas the remaining mothers were life-time free of psychopathology (n = 55). 

At each annual assessment, mothers reported on their depressive symptoms on the Beck 

Depression Inventory (BDI; Beck, Ward, Mendelson, Mocks, & Erlbaugh, 1961; the term 

depression is used here for the sake of brevity) and about their child’s externalizing 

behavioral problems on the Child Behavior Checklist (CBCL; Achenbach, 1991). 

Externalizing behavioral problem t-scores were used in the subsequent analyses.
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Example 1: Hierarchical Linear Modeling

A hierarchical linear model (HLM) was fit to predict changes in child behavior problems in 

relation to mother’s depression. We begin with a level 1 model where child behavior 

problems (Yit) are predicted by time:

(1)

where T represents time (Grade 6 = 0), and the subscripts i and t indicate observations for 

each individual child over several occasions of time. Although researchers are familiar with 

the growth parameter terms of intercept, linear slope, and quadratic slope modeled in 

Equation 1, the relation between variables modeled in Equation 1 also can be understood as 

an expression of how the change in one variable is related to another variable. Equation 1 

can be re-written as:

(2)

Notice, that the β-parameters from Equation 1 have now been replaced with their 

corresponding derivatives (i.e., the changes in Y with respect to time). Re-written this way, 

Equation 2 shows that the observed score of child behavior problems: Yit for child i at some 

time t is equal to the value of the level of the child’s behavior problems when T = 0 (Y0i), 

plus the velocity of the child’s behavioral problems  multiplied by the elapsed time (T), 

plus one-half times1 the rate at which the velocity is changing (acceleration, ) multiplied 

by time squared (T2). Whereas replacing the β-parameter notation to which we are 

accustomed may seem unnecessarily complicated, doing so allows us to see that the β0, β1, 

and β2 parameters respectively represent information about the level when T = 0, the velocity 

when T = 0, and the acceleration of a child’s behavior problems. Clearly mapping the 

derivative associated with these commonly tested growth parameters will ensure that the 

interpretation of change is accurately articulated.

For the models that follow, all models were tested using R (version 3.0.2; R Core Team, 

2013), and the package lme4 (version 1.0-6; Bates, Maechler, Bolker & Walker, 2014). In 

any cases where more than one random effect was estimated, the models allowed for all 

covariances between random effects (i.e., unstructured covariance matrix). The lme4 

package does not allow for specification of the variance-covariance structures for the 

residuals. When available, the REML=FALSE command was used, so that ML estimates 

were produced for the likelihood ratio tests presented.

The effect of mothers’ depression (BDI score) was considered in two ways. The first way 

(Model 1) tested the initial BDI score as a level 2 predictor of the β’s (intercept, linear slope, 

and quadratic slope) Incorporating mother’s initial depression into the model as a level 2 

predictor of the β’s (Model 1) gives us the following level 2 equations:

1The multiplication by one-half is the result of taking the indefinite integral of time with respect to time. Typically ∫ t dt is discussed 
in the early sections of introductory calculus materials, although the t and dt may be replaced with another set of symbols such as x 
and dx. It is often easier to first understand differentiation of x2, which is equal to 2x. Integration is the reverse operation.
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(2.1)

(2.2)

(2.3)

where β0i, β1i, and β2i are equivalently seen as Y0i, , and , or read as level, 

velocity and one-half times acceleration. Full results are provided in Table 3. A series of six 

models was tested, each which added an additional component to the prior model; changes 

in model fit, evaluated through the likelihood ratio test and AIC, were used to evaluate the 

contributions of additions to the model. The top-half of the table provides model comparison 

results testing whether including the random effect of time and the random effect of time2 

improved model fit (models 1a – 1c), and whether adding initial BDI scores as a Level 2 

predictor of the three random effects improved model fit (models 1d – 1f).

Results of the model comparisons suggested a need for incorporating both the random 

effects of time and time2. Adding initial BDI as a predictor of differing intercepts was 

significant (1c vs. 1d; χ2(1) = 117.2, p<.0001), suggesting that the level of children’s 

behavior problems at T=0 (i.e., Grade 6) was related to their mothers’ initial level of 

depression. Including initial BDI scores as a predictor of the linear slope did not improve 

model fit (1d vs. 1e; χ2(1) = 1.07, p =.30), suggesting that the velocity (linear change) at T = 

0 in behavior problem scores was not related to mother’s initial level of depression. Finally, 

adding initial BDI scores as a predictor of the quadratic slope improved model fit (1e vs. 1f; 

χ2(1) = 4.6, p = .032), suggesting that acceleration in children’s behavior problems 

(increases/decreases in the rate of change) was related to mother’s initial level of depression. 

Comparing model 1f to model 1e means that the relation between BDI and the linear slope 

was retained in the model, even though the comparison of models 1d and 1e suggested this 

was not a significant parameter. This term was retained in model 1f because when the 2-

level equations are written as a single equation, this term can be seen as a lower-order 

regression term; such terms are typically retained in regression models when examining 

interactions. It should be noted that when the model with BDI as a predictor of the intercept, 

linear slope and quadratic slope is compared to the model with BDI as a predictor of only 

the intercept the criterion of α=0.05 is not met (1d vs. 1f; χ2(2) = 5.68, p=0.058); based on 

the closeness of the p-value to the 0.05 criterion, and support for the more complicated 

model by the AIC (AIC(1d)=9468.4; AIC(1f)=9466.7), we decided to interpret parameter 

estimates from the more complex model (model 1f). The parameter estimates appear in the 

bottom half of Table 3.

2It should be noted that the estimation of derivatives will depend on factors in addition to the time over which estimates are made. In 
addition to the time over which derivatives are estimates, the method of estimation and choices associated with each method of 
estimation can impact the quality of the estimates. For example, in the application of Generalized Local Linear Approximation (Boker, 
S. M., Deboeck, P. R., Edler, C., & Keel, P. K., 2010), the estimates depend on the time over which derivatives are estimated as well 
as the value of tau --- a research-selected value that affects the number and spacing (in time) of the observations that are used to 
estimate derivatives.
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Interpreting the parameter estimates of model 1f, these results suggest that initial levels of 

mothers’ depression predict higher levels of children’s behavioral problems at T = 0 (b = 

0.25). Children with higher velocities at T = 0 tend to occur for mothers with lower initial 

levels of depression (b = −0.11), although the comparison of models 1d and 1e suggest this 

relation is nonsignificant. Finally, children’s behavior problems positively accelerate for 

mothers with higher initial levels of depression (b = 0.02), suggesting an increasing rate at 

which behavioral problems are occurring when mothers have higher rates of depression. 

Thus, all of the level 2 questions constitute ones where the level of mother’s initial 

depression can alter some characteristic of the child’s behavior problem trajectory over time 

whether it is their level, velocity, or acceleration. What HLM, as presented, cannot draw 

inferences about is how changes in mother’s depression (velocity or acceleration) may 

predict child behavior problems.

In the second HLM model examined (Model 2), the mother’s depression at each time was 

tested as a level 1 predictor (i.e., a time-varying covariate) to make use of the repeated 

measurements of mother’s depression. The Level 1 equation for Model 2 is:

(3)

The results of this model are presented in Table 4. Because in this model the level of 

depression is predicting changes in Yit (i.e., β3i), Equation 3 allows for conclusions on how 

the level of depression at different times is related to the level of child behavioral problems; 

this is in contrast to the prior analyses which only used an initial level of mother’s 

depression as a predictor. Although there are different depression scores at each time, the 

relation being examined is still a level-level relation. Inferences that could be drawn would 

be able to state whether concurrent levels of mother’s depression and child behaviors are 

related, controlling for time. The results in Table 4 support the suggestion that the mothers’ 

level of depression predicts higher concurrent levels of children’s behavior problems (b = .

15, SE = .04, t = 3.80). This model does not, however, directly test whether (for example) 

the rate of change in depression was related to the rate of change in child behaviors 

(velocity-velocity). As level-level relations do not necessarily imply velocity-velocity 

relations, and vice versa, we cannot confidently infer one from the other.

One modification to Model 2 not considered here would be to allow an interaction between 

depression and time at level 1. This would allow the relation between level of depression 

and level of child behavior problems to vary (become stronger or weaker) over time, but still 

would not address questions as to whether changes (i.e., velocity or acceleration) of 

depression were related to changes (i.e., velocity or acceleration) in child behavior 

problems. HLM is very useful for addressing specific questions about change. As we have 

seen here, several differing questions about level-level relations can be addressed, as well as 

level-velocity and level-acceleration questions. These models, however, do not address 

concordant rates of change in two constructs.
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Example 2: Velocity-Velocity Relations

If one’s key question of interest is relating concordant change, it may be necessary to 

consider methods other than HLM. We focus on velocity-velocity relations, although the 

following section applies equally to acceleration-acceleration relations and velocity-

acceleration relations. Equation 2 showed that the parameter associated with the effect of 

time could be thought of as the velocity of child behavior problems . Consequently, to 

relate changes in mother’s depression to changes in child behavior problems, it is necessary 

to identify a model where a linear slope related to time (i.e., velocity) can be estimated for 

both constructs. In searching for a model where velocity can be related to velocity, one 

would come across several models. By recalling that velocity and slope are the same, one 

might select Latent Growth Curve Models (LGCM; Bollen & Curran, 2006), as these 

models allow for the slope (velocity) of two constructs to be related to each other (i.e., the 

Parallel Process Model; e.g., Garber & Cole, 2010). In such a model, the latent intercept 

(level) and slope (velocity) are estimated for each construct in structural equation modeling 

software, and subsequently the latent growth parameters can be correlated or regressed on 

each other.

Using the maternal depression-child behavior problems data above, we explored a series of 

four models as shown in Figure 4: (1) no relations between levels and slopes (Model 3a), (2) 

depression level predicting the child behavior problems level (Model 3b), (3) depression 

velocity predicting the child behavior problems velocity (Model 3c), and (4) a model that 

included both relations from models 2 and 3 (Model 3d). All models were fit using the R 

(version 3.0.2; R Core Team, 2013) structural equation modeling package lavaan (version 

1.5-16; Rosseel, 2012). Latent variable paths to manifest variables were constrained to 1 or a 

sequence from 0 to 6 (i.e., Grade 6 = 0) for the levels (intercepts) and velocities (slopes), 

respectively. Manifest residuals were allowed to vary across measurements, and no 

correlations between manifest variables were included. The latent level and velocity for each 

construct was allowed to correlate.

Table 5 provides results from fitting the aforementioned models. Based on the AIC, and 

support from the likelihood ratio tests, the fourth model appeared to be the best fitting 

model. The bottom of Table 5 provides the information for specific parameters in this 

model. The model indicated that the relation between intercepts was significant (z = 2.83, p 

= .01), and that the relation between slopes was not significant (z = 1.53, p = .13). These 

parameters directly test level-level and velocity-velocity questions. From these results, we 

can draw the inference that the level of maternal depression and level of child behavior 

problems at T = 0 appear to be related, but we have no evidence with the current model that 

the velocity in depression is related to the velocity of child behavior problems. Whereas this 

may seem counterintuitive, Figure 1 shows that not all derivatives will necessarily be 

correlated; this is elaborated upon in Figure 3, which demonstrates that correlations between 

the levels of variables do not necessarily imply correlated velocities or accelerations in 

variables, nor vice-versa.

The present example can also be used to highlight one additional consideration that using 

derivative terminology raises: In addition to considering the expected relations detailed in 
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Table 2, derivatives can make one acutely aware that estimates of change can depend on the 

time over which the estimates are made2. The LGCM example is based on slopes estimated 

over the entire 6 years of sampling. Although not explicitly stated, the model tested 

examined whether linear slopes of depression and behavior problems were related over a 

relatively long period of time. Alternatively, one might hypothesize that there is a velocity-

velocity relation, but that it occurs over periods of time shorter than 6 years. With the 

present data, one could test whether the velocity of mother’s depression and child’s behavior 

problems are related over shorter spans (e.g., 3 years3); that is, one might need to examine 

differing types of change over spans of time shorter than the entire time series, as depicted in 

Figure 2.

This idea has led to a series of new methods in developmental psychology often titled 

differential equation modeling, which are literally models that include derivatives and can be 

understood in terms of the same derivative relations that the HLMs and LGCMs explored. 

One key difference in these models is that derivatives are often estimated over spans of time 

much shorter than the full length of time over which samples were collected, and these 

derivatives then can be used to build models that allow for the analysis of dynamic systems 

(e.g., Boker & Nesselroade, 2002; Hu, Boker, Neale, & Rausch, 2004; Montpetit, 

Bergeman, Deboeck, Tiberio, & Boker, 2010; Estabrook, 2013). In the examples presented, 

it is possible that maternal depression and child externalizing behaviors are poorly described 

with the derivatives used over the course of 6 years; rather these constructs may be changing 

at a faster rate (over the course of months or just a few years) and using estimates over the 

course of 6 years may serve to average over interesting variation in the constructs (Ferrer & 

McArdle, 2010; Nesselroade, 1991). It is also unlikely that relations between constructs are 

static, but rather that they take some time for a detectable relation to occur, and over longer 

periods of time the relation may cease to exist; the dependency of relations on time is well 

known in the mediation literature (Gollob & Reichardt, 1987, 1991) and is also being 

discussed in the developmental literature (e.g., Kouros, Cummings, & Davies, 2010). 

Derivatives can be estimated over differing spans of time, with the current data velocities 

can be estimated using anywhere from 2 to 6 years. Derivative terminology further 

highlights the fact that theory must also specify the time over which specific relations are 

expected to occur. The factors that affect a construct such as stress may differ whether one is 

considering changes in stress over hours, days, weeks, months, or years; that is, a construct 

that affects daily stress may not affect stress over the course of years (Deboeck, Montpetit, 

Bergeman, & Boker, 2009).

Using the previous data, we used the method of generalized orthogonal local derivative 

estimates (GOLD; Deboeck, 2010) to estimate the velocity of depression and the velocity of 

behavior problems over three year intervals using the program R (version 3.0.2; R Core 

Team, 2013). It should be noted that there are numerous methods for fitting differential 

equations to data and for estimating derivatives. We leave aside the specifics of this method 

3Spans shorter than 3 years were explored (1-year and 2-year spans). While shorter spans produced the same pattern of results in 
terms of the significance and direction of the fixed effects, the models with shorter spans produced estimates of zero for the random 
effect variance. As a zero random effect variance appeared untenable given the data, a slightly larger span (3-years) is presented, as 
this span produced reasonable estimates.
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as the primary purpose in presenting GOLD is to highlight how novel methodology can still 

be understood in terms of relations between derivatives. The inferences that can be made 

with this method can be discussed without the particular of its strengths and weaknesses if 

one uses derivative terminology.

Using GOLD, level and velocity estimates were produced for each dyad’s depression and 

behavior scores. Rather than using the data across all 6 years to estimate these derivatives, as 

in the HLM and LGCM, series of observations spanning 3 years were used (year 1–4, 2–5, 

3–6, etc.). While fewer observations are used to produce each estimate, they can still be 

understood as conveying the level and velocity of mother’s depression and child’s behavior 

over the course of 3 years; just as the LGCM example estimated intercepts (levels) and 

slopes (velocity) over the course of 6 years, the idea is the same here that levels (intercepts) 

and velocities (slopes) are being estimated over 3 years. As multiple estimates are produced 

for each dyad, a mixed model (model with random effects, similar to an HLM with no level 

2 predictors) was used to account for the nested data; the R package lme4 was used to fit this 

model (version 1.0-6; Bates, Maechler, Bolker & Walker, 2014). In these models, the 

velocity of child behaviors was predicted using a random intercept model (Model 4a), the 

mother’s depression velocity (Model 4b), and both mother’s depression velocity and 

depression level (Model 4c). Mother’s velocity was included as a predictor first, as it was 

expected that the rate of change in child’s externalizing behaviors is likely to be related to 

the rate of change in mother’s depression based on prior research introduced earlier, even 

though the velocity-velocity relation was not supported with the LGCM.

Table 6 provides more extensive results from fitting these models. These models indicate a 

significant relation between the velocity of depression and the velocity of behavior 

problems, estimated over three years using adjacent, annual evaluations (3a vs. 3b; χ2(1) = 

6.73, p = .009). The level of depression was not predictive of the velocity of behavior 

problems estimated over three years, controlling for the velocity of depression (3b vs. 3c; 

χ2(1) = 0.71, p = .40). These results suggest a velocity-velocity relation that is not 

explainable by a relation between depression level on behavior problems velocity. 

Importantly, this relation was only apparent at shorter time scales (3 years) but not over 

longer periods of time (6 years).

Conclusions

The word derivative rarely makes an appearance when learning about developmental theory 

or even in the presentation of many statistical methods and models. We have presented 

several equivalent ways to think of derivatives in Table 1. This table offers the opportunity 

to more specifically state development theory. If statistical models are understood in terms 

of derivatives and the relations being examined, as in the highlighted examples, theories 

expressed in terms of level, velocity, and acceleration translate more readily into 

mathematical models. This direct correspondence will allow developmental researchers to 

be both more assured that the statistical models being used lend themselves to the desired 

inferences, and more careful in reviewing the inferences claimed by other researchers. 

Derivatives provide a common language for matching theoretical relations of variables to 

appropriate analytical approaches, mapping new or less commonly used models onto a 
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single existing knowledge-base, and creating a commonality between statisticians and 

substantive researchers.

In pursuing the question of whether change in child behavior problems is related to change 

in maternal depression, the substantive examples demonstrated several models using 

derivative terminology. In doing so, they highlighted the differences among models that test 

relations such as level-level, level-velocity, and velocity-velocity. The HLM example 

highlighted that not all theoretical questions can be addressed in every modeling framework. 

The LGCM example showed how one could test a velocity-velocity hypothesis, but that a 

level-level relation does not necessarily imply a velocity-velocity relation. The final 

example revealed that any conclusions about related change are dependent on the timescale 

that these relations are examined, and so using the common language of derivatives will 

highlight the need to not only formulate specific theories about change (i.e., Table 2), but 

also about the time-scale over which these relations exist (Ferrer & McArdle, 2010; Little, 

2013; Nesselroade, 1991; Sliwinski, 2011).

While the present paper focused on highlighting differences in the relations that HLM and 

SEM can be used to examine, the example also allows for consideration of when models 

may be testing similar hypotheses. In Figure 4, aside from the Level-Level relation 

examined, which the HLM also examined, one could also examine a model where the latent 

level of mothers’ depression is used to predict the latent velocity of children’s behavior. This 

level-velocity relation would be similar to the earlier HLM model where differences in the 

linear effect of time (velocity) were predicted using depression. How close to equivalent the 

models are will depend, in part, on how the initial time (t=0) is defined in each of the 

models, as the intercepts in models with higher order terms will correspond to the level 

when time is equal to zero. But this relation serves to highlight that seemingly different 

modeling frameworks, HLM and SEM, can be used to make similar inferences under some 

conditions.

As the number of available models for analyzing change multiplies (Collins & Sayer, 2001), 

we anticipate only increased burden on developmental researchers to learn about differing 

models and increased confusion as to how models may or may not address similar questions. 

Models are often presented as unique, which makes it unlikely that researchers fully grasp 

the many emerging options for characterizing change relations, and how the models differ 

and overlap. By using the derivative framework, a scaffold is provided into which new 

models can be incorporated.

This framework requires that developmental researchers become much more precise in 

articulating theory. This challenge, however, is not without significant benefit. Our example 

in Figure 1 (maternal depression and child behavioral problems) allowed us to address what 

it is about mother’s depression that relates to her child’s behavioral problems. In this 

example, the children’s behavior problems were such that their level and velocity might not 

clearly relate to the mother’s depression, particularly for the child in Figure 1B; yet this 

child clearly is responding to his mother in some way because of the increase in the rate at 

which the child’s behavior is changing (acceleration). Because acceleration is often 

overlooked, considerable data may exist in file drawers because only one or a few of the 
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relations in Table 2 were examined. Adopting the language of derivatives will highlight 

other change relations that could be considered.

Developmental psychology has often pushed the methodological frontier forward in 

psychology (Laursen, Little, & Card, 2012); in doing so, researchers who are focused on 

developmental theory incur a burden because speaking the languages of both developmental 

theory and statistical methodology fluently can be a difficult endeavor. This challenge is 

compounded with the continued expansion of the number and variety of statistical models 

available. If developmental researchers regularly use only the models with which they are 

familiar, and are not careful about articulating the inferences provided by such a model, a 

real danger presents itself. As the number of statistical models continues to expand, it may 

become difficult for developmental researchers to understand the inferences and limitations 

of related methods. If methodologists begin to describe the modeling of change in terms of 

derivatives, and developmental researchers precisely articulate their theories about change, 

these dimensions of change (level, velocity, and acceleration) can serve as the bridge 

between two complex languages. In this manner, the language of derivatives may serve as a 

common language to navigate intrapersonal and interpersonal models of change, allowing 

for better description and modeling of the complexity of human nature.
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Figure 1. 
Plots of hypothetical trajectories for two mother-child dyads where mother’s depression 

affects the child’s externalizing behaviors. In both figures the change in child’s behavior 

(solid gray line) is coupled to the change in mother’s depression (solid black line). The 

figures differ in the initial trajectories of the children (dashed gray lines). Panel A shows a 

relation where the scores of the mother and child would be highly correlated. In Panel B, 

whereas the mother’s depression is leading to changes in the child’s trajectory from his/her 

initial trajectory, the scores of the mother and child would have a correlation near zero.
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Figure 2. 
Plot of a developmental trajectory (light gray line) with the level (black circles), 

instantaneous velocity (black lines), and instantaneous accelerations (dark grey lines) at 

three points in time. In this figure the straight black lines indicate a positive first derivative 

(velocity) for the first and second points at which derivatives are estimated, and a negative 

first derivative at the third point. The upwards curved dark gray lines indicate a positive 

second derivative (acceleration) at the first and last points at which derivatives are 

estimated; the downwards curve at the second point indicates a negative second derivative.
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Figure 3. 
Figures demonstrating that the presence of a relation between a pair of derivatives does not 

necessarily imply that other derivatives will be related. The top row of each panel shows 

trajectories of 4 hypothetical dyads; the bottom row of each panel plots the levels, velocities, 

and accelerations of the dyads against each other. The symbols for the dyads in the top row 

correspond to the symbols plotted in the second row. Panel A demonstrates trajectories with 

a significant velocity-velocity relation when level-level and acceleration-acceleration 

relations are equal to zero. Panel B demonstrates trajectories with a significant acceleration-

acceleration relation when level-level and velocity-velocity relations are equal to zero. The 

presence of correlated velocities (Panel A) or correlated accelerations (Panel B) does not 

necessarily imply the levels of constructs will be correlated. The same can be shown for 

correlated levels of constructs; the presence of correlated levels of constructs does not 

necessarily imply that correlated velocities or accelerations occur.
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Figure 4. 
SEM tested in substantive example. Four models were examined: (1) no relations between 

levels and slopes (no path A or B), (2) depression level predicting the child behavior 

problems level (inclusion of path A), (3) depression velocity predicting the child behavior 

problems velocity (inclusion of path B), and (4) a model that included both relations from 

models 2 and 3 (inclusion of both A and B).
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Table 4

Parameter Estimates from Hierarchical Linear Models Testing Mothers’ Depression as a Time-varying (Level 

1) Predictor of Children’s Behavior Problems

Level 1

Child Behavior Problems

Fixed Effects

b SE t

 Intercept 46.01 0.69 66.41

 Time 0.19 0.37 0.50

 Time2 −0.02 0.06 −0.40

 BDI 0.14 0.04 3.80

Level 2 Random Effects

Variance Estimate SE

 Intercept 63.93 8.00

 Time 8.22 2.87

 Time2 0.14 0.37

Note. BDI = Beck Depressive Inventory (mother self-report). BDI treated as fixed at Level 2.
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