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Abstract

Volumetric muscle loss (VML) following orthopaedic trauma results in chronic loss of strength 

and can contribute to disability. Tissue engineering and regenerative medicine approaches to 

regenerate the lost skeletal muscle and improve functional outcomes are currently under 

development. At the forefront of these efforts, decellularized extracellular matrices (ECMs) have 

reached clinical testing and provide the foundation for other approaches that include stem/

progenitor cell delivery. ECMs have been demonstrated to possess many qualities to initiate 

regeneration, to include stem cell chemotaxis and pro-regenerative macrophage polarization. 

However, the majority of observations indicate that ECM-repair of VML does not promote 

appreciable muscle fiber regeneration. In a recent study, ECM-repair of VML was compared to 

classical muscle fiber regeneration (Garg et al., 2014, Cell & Tissue Research) mediated by 

autologous minced grafts. The most salient findings of this study were: 1) Satellite cells did not 

migrate into the scaffold beyond ~0.5 mm from the remaining host tissue, although other 

migratory stem cells (Sca-1+) were observed throughout the scaffold;2) Macrophage migration to 

the scaffold was over two-times that observed with muscle grafts, but they appeared to be less 

active, as gene expression of pro- and anti-inflammatory cytokines (TNF-α, IL-12, IL-4, IL-10, 

VEGF, and TGF-β1) was significantly reduced in scaffold-repaired muscles; And, 3) scaffolds did 

not promote appreciable muscle fiber regeneration. Collectively, these data suggest that the events 

following ECM transplantation in VML are either incongruous or asynchronous with classical 

muscle fiber regeneration.

Orthopaedic trauma in civilian and military populations usually involves severe skeletal 

muscle injury. Either directly (e.g., blast injury) or indirectly (e.g., soft tissue evacuation 

secondary to crush), the traumatized musculature often presents volumetric muscle loss 

(VML)[1]; which mammalian skeletal muscle is not capable of successfully 

regenerating[2–4]. There is currently no effective therapy used in the clinic that promotes de 

novo muscle tissue regeneration following VML. To this end, persistent strength deficits and 
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limb dysfunction are currently anticipated as part of the sequelae of this injury[5]. Multiple 

efforts are ongoing to develop tissue engineering and regenerative medicine therapies for the 

repair of VML- the intention of the therapies is to restore strength to the injured musculature 

by regenerating appreciable and functional muscle tissue. At the forefront of these efforts 

are decellularized extracellular matrix scaffolds (ECMs) (Table 1), which are being 

investigated in the clinic for VML[6]. While ECMs represent a logical therapy for VML, by-

and-large the capacity of ECMs to promote de novo skeletal muscle regeneration appears to 

be limited[3, 6–8]. The purpose of this report is to compare the putative mechanism of ECM-

mediated regeneration with that of classical muscle repair and regeneration.

The precise mechanism underlying ECM-mediated regeneration in skeletal muscle has not 

been completely elucidated. Following transplantation in a fresh VML wound bed, ECMs 

are infiltrated with mononuclear cells within hours[9]. Thereafter, ECMs substantially 

degrade over the ensuing month[10, 11]. Within this time, ECMs are thought to promote 

skeletal muscle regeneration in vivo by orchestrating the following events through an 

undefined spatiotemporal pattern (see review:[9]): 1) promotion of a vascular bed, 2) 

chemotaxis for nearby resident and circulating progenitor and stem cells,3) provision of 

matrix bound growth factors and cryptic peptides that direct functions of migrating cells, 

and 4) induction of pro-regenerative macrophage polarization in vitro. Ultimately, it is 

thought that the degrading ECM creates a pro-regenerative environment that promotes 

myogenic differentiation of migrating stem and progenitor cells, which then effectively 

regenerate functional muscle fibers.

Despite the regenerative attributes of ECMs, many studies present evidence at prolonged 

time points (months) that ECMs do not promote appreciable muscle fiber regeneration in 

vivo, particularly in regions of the defect further removed from the remaining tissue bed- 

instead fibrotic tissue is remodeled[3, 6, 7, 12–15]. These observations have been made among 

various labs in different species and VML models using a variety of ECMs derived from 

autologous, syngeneic, or xenogeneic tissues, to include bladder, small intestine, and muscle 

(Table 1). That being said, fibrotic tissue deposition following ECM transplantation may 

have under-appreciated therapeutic benefits, to include improving strength via improved 

force transmission (as opposed to production)[3] and protecting the remaining muscle mass 

from chronic overload-induced injury[2, 3].

Recently we observed restricted and limited muscle fiber regeneration after autologous 

devitalized muscle scaffold repair of VML in the rat TA muscle two months post-injury[16]. 

Given this fairly consistent observation (Table 1), we posited that while ECM preparation 

may explain subtle variations in regenerative outcomes[17], it is more likely that the 

underlying mechanism of ECM-remodeling in a VML defect does not adequately mimic that 

of adult endogenous adult muscle fiber regeneration. To investigate this possibility, we 

further interrogated at an acute time point (2 weeks post-injury) the inflammatory and 

myogenic response to the muscle scaffold[16], which relies solely on host cell migration for 

regeneration[18]. Vital minced grafts (1 mm3 pieces of tissue), which also deliver satellite 

cells among other cellular and trophic factors resident in whole skeletal muscle, were used 

as a positive control of successful muscle regeneration[2, 18–20]. In the following sections, 
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the findings of this study are highlighted and discussed in the context of events necessary for 

classical muscle repair and regeneration.

Satellite cells (Pax7+) are a skeletal muscle specific stem cell population that is 

indispensable for muscle regeneration following injury[21]. A combination of signals from 

the host muscle fibers, circulating cells, interstitial cells (such as macrophages) and muscle 

resident stem cells can influence the quiescence, activation and proliferation of the satellite 

cells[22]. It has been shown that, over 100 new myofibers containing thousands of myonuclei 

can be generated from as little as seven activated satellite cells associated with one 

transplanted myofiber[23]. The loss of satellite cell pool due to aging or disease (such as 

duchenne muscular dystrophy) results in impaired regeneration, increased atrophy and 

fibrosis of skeletal muscle[24–27]. It has also been reported that genetic elimination of 

satellite cells results in a complete blockade of regenerative myogenesis following 

cardiotoxin injury[28, 29]. Other host cell populations are unable to compensate for the loss of 

regenerative potential and muscle regeneration can only be rescued by replenishing the 

satellite cell pool[29]. In our study, Pax7+ cells and small regenerating myofibers (myosin+) 

were observed in the muscle scaffolds in close proximity to the remaining musculature, but 

were absent in the defect beyond 0.5 mm from the remaining muscle mass. In contrast, 

minced graft transplantation presented muscle fiber regeneration throughout the defect with 

associated satellite cell (Pax7+) co-localization. Given the importance of satellite cells to 

muscle regeneration, the restricted satellite cell migration into the muscle scaffold appear to 

be a significant limitation to ECM-mediated muscle fiber regeneration.

Besides satellite cells, several other cell types such as bone marrow derived progenitors[30], 

pericytes[31, 32], mesoangioblasts[33], interstitial cells (PW1+/Pax7−)[34], perivascular stem 

cells[35], CD133+ progenitors[36] have been shown to be myogenic. And, these alternative 

myogenic stem cells have been identified in remodeling ECMs[6, 36]. Overall, the 

contribution of these alternative myogenic cells towards regeneration is believed to be lower 

compared to satellite cells, but important never the less[30, 31]. We speculate that the 

therapeutic potential of these cells is limited to an even greater extent in a VML injury 

model, due to the stark absence of key myogenic cues from the lost myofiber remnants and 

satellite cells. In the highlighted study, Sca-1+ cells migrated throughout muscle scaffold, 

and importantly in regions removed from the remaining muscle mass that were unpopulated 

by Pax7+ cells. The presence of Sca-1+ cells indicate that the muscle scaffold was conducive 

to stem and progenitor cells migration, but signify that their presence is not sufficient for de 

novo muscle fiber regeneration. Further studies are needed to assess if these potentially 

alternative myogenic cells require interaction with adult myofibers or activated satellite 

cells[37] to induce myogenesis.

Following injury, the type of the inflammatory response and the significance of transition 

from pro- to an anti-inflammatory phenotype is widely recognized as a critical component to 

regeneration. Through the phases of repair and regeneration, resident and recruited 

macrophages among other immune cells exhibit complex and hybrid phenotypes that are 

believed to be successively activated and timely subsided. While, pro-inflammatory activity 

is important for the migration and activation of myogenic precursor cells[38–40], an anti-

inflammatory response stimulates muscle precursor cell differentiation and myotube 
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formation[7, 38, 40, 41]. An extended and unrestricted pro-inflammatory (M1) macrophage 

response or an early and premature anti-inflammatory (M2) response has been shown to 

result in unsuccessful regenerative outcomes[19–23]. In our study, we generally characterized 

the inflammatory response of muscles repaired with muscle scaffolds and vital grafts at two 

weeks post-injury. The vital grafts supported a mixed up-regulation of pro- and anti-

inflammatory markers in vivo that corresponded with improved regenerative outcomes. The 

overall inflammatory response appeared to be functionally attenuated in scaffold-repaired 

muscles, which corresponded with aberrant regeneration and fibrotic tissue deposition. 

Therefore, we speculate that both functionally active populations of pro- and anti-

inflammatory cells (e.g., M1 and M2 macrophage phenotypes) are important for de novo 

regeneration of VML injured skeletal muscle. In support of this speculation, other studies 

have also demonstrated that coordinated efforts by both M1 and M2 macrophage phenotypes 

are necessary for scaffold vascularization[42] and remodeling[43]. A recent study by Novak et 

al., reported that macrophage populations present after muscle laceration injury, did not 

conform to the canonical M1/M2 classification. Furthermore, they demonstrated that 

activated donor M1 macrophages reduced fibrosis and enhanced myofiber regeneration but 

non-activated macrophages had no effect[44]. Collectively these data suggest that 

synchronized efforts of functionally active pro- and anti-inflammatory cells (e.g. M1 and 

M2 macrophage phenotypes) are required for effective regeneration.

Following recoverable injuries, factors released from injured muscle fibers induce an 

intricate spatiotemporal communication between the innate immune response and myogenic 

progenitor cell activity (i.e., primary satellite cells) that promotes repair and regeneration of 

the injured tissue. Pro-inflammatory M1 macrophages produce cytokines such as TNF-α and 

IL-6 that promote satellite cell activation and proliferation but not differentiation[45]. Anti-

inflammatory M2 macrophages promote myoblast differentiation and fusion and myotube 

maturation by releasing cytokines such as interleukin (IL)-4 and IL-10[38, 41]. In addition to 

secreted myogenic factors, human macrophages have also been shown to deliver anti-

apoptotic signals to myogenic cells through direct cell-cell contact[46]. Evidence of two-way 

communication between myogenic cells and macrophages was demonstrated by our in vitro 

study in which secreted factors from vital grafts were able to induce arginase expression 

(indicative of an M2-like phenotype) in macrophages. Therefore, disruption of either the 

inflammatory response or myogenic cell activity can significantly impact the regenerative 

outcomes. For instance, restricting monocyte/macrophage tissue invasion by disruption of 

CCL2/CCR2 signaling has been shown to impair regeneration and functional 

recovery[47, 48]. Likewise, ablation of satellite cells using an inducible Pax7 knockout model 

abrogated regeneration after toxin injury[28, 29]. The findings of our paper indicate that vital 

minced grafts comprised of myogenic cells in their native extracellular environment allow 

for interaction with the ensuing inflammatory response and promote effective muscle tissue 

regeneration. In contrast, transplantation of a devitalized scaffold results in a stark absence 

of satellite cells in distant regions of the defect and a diminished activity of pro- and anti-

inflammatory cells. These observations present a deviation from the normal spatiotemporal 

events of muscle regeneration that is likely a major contributor to aberrant regenerative 

outcomes observed with ECMs. As the field continues to develop approaches to regenerate 

de novo muscle tissue after VML, ECMs and other scaffolds will likely be fundamental to 
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these efforts. However, pursuant to improved regenerative outcomes with ECM-repair of 

VML is the development of strategies to further align the events of ECM remodeling with 

the intricate spatiotemporal events that underlie adult skeletal muscle regeneration.
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