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Asthma exacerbations exhibit a consistent annual pattern, closely
mirroring the school calendar. Although respiratory viruses—the
“common cold” viruses—are implicated as a principal cause, there
is little evidence to link viral prevalence to seasonal differences in
risk. We jointly fit a common cold transmission model and a model
of biological and environmental exacerbation triggers to estimate
effects on hospitalization risk. Asthma hospitalization rate, influ-
enza prevalence, and air quality measures are available, but com-
mon cold circulation is not; therefore, we generate estimates of viral
prevalence using a transmission model. Our deterministic multivirus
transmission model includes transmission rates that vary when
school is closed. We jointly fit the two models to 7 y of daily asthma
hospitalizations in adults and children (66,000 events) in eight met-
ropolitan areas. For children, we find that daily viral prevalence is
the strongest predictor of asthma hospitalizations, with transmission
reduced by 45% (95% credible interval =41–49%) during school clo-
sures. We detect a transient period of nonspecific immunity between
infections lasting 19 (17–21) d. For adults, hospitalizations are more
variable, with influenza driving wintertime peaks. Neither particu-
late matter nor ozone was an important predictor, perhaps because
of the large geographic area of the populations. The school calendar
clearly and predictably drives seasonal variation in common cold
prevalence, which results in the “back-to-school” asthma exacerba-
tion pattern seen in children and indirectly contributes to exacerba-
tion risk in adults. This study provides a framework for anticipating
the seasonal dynamics of common colds and the associated risks
for asthmatics.
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Asthma is a chronic airway condition with increasing preva-
lence in many countries (1, 2). Exacerbations, the worsening

of asthma symptoms, are a growing public health concern, resulting
in millions of missed work and school days and $50 billion in direct
healthcare costs in the United States each year (3–5). Prior studies
have examined environmental correlates of asthma exacerbations,
including air quality measures (6–8), whereas others have consid-
ered the role of respiratory virus infections in triggering asthma
exacerbation (9–13). However, none have simultaneously con-
sidered both infectious and noninfectious factors that poten-
tially influence the large-scale spatiotemporal dynamics of asthma
exacerbations.
Asthma-related hospitalizations exhibit an extraordinarily con-

sistent seasonal pattern from year to year (14). In children, this
pattern strongly reflects the school calendar (15–17). A wave of
asthma exacerbations in children ensues shortly after the return to
school after summer break (shown in Fig. 1 for Texas in mid-
August). The return-to-school peak has been termed the “September
epidemic of asthma” (14) and noted in the United Kingdom (18),
Canada (17, 19), and elsewhere (20). Asthma hospitalizations also

seem to rise after the 2-wk winter holiday (late December through
early January) and 1-wk spring break (late March) (Fig. 1).
Respiratory virus infections, including those responsible for

the common cold, are known to cause exacerbations in asthmatic
children and to a lesser extent, adults suffering from respiratory
diseases (11, 21, 22). In particular, rhinovirus has been widely
implicated in asthma exacerbations and wheezing-related hos-
pitalizations (13, 16, 23–29). Although asthma is not infectious,
these aggravating viruses are infectious. Consequently, the dy-
namics of asthma hospitalizations can seem as if children are
serving as transmission vectors for exacerbations (19). Data on
the prevalence of these common viruses are infrequently available
and are never available for large sample sizes.
Common cold viruses spread rampantly—typically causing two

to four relatively mild infections in adults and three to eight
infections in children annually (30, 31). Although asthmatics
tend to experience more severe and prolonged illness on in-
fection, studies suggest that the frequency of infection is similar
for asthmatics and nonasthmatics (21). However, little is known
about the transmission dynamics of these viruses or the extent to
which they account for the complex annual cycles of asthma
exacerbations. Mathematical models of viral transmission are
widely used for estimating epidemiological parameters, such as
transmission rates, from disease surveillance data (32–34). Such
data are rare for common colds, because most infections are
subclinical, never entering the healthcare system. Here, we exploit
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asthmatics as a “sentinel” population for the common cold to infer
the transmission dynamics of these viruses.
Although viral infections are an important trigger for asthma

exacerbations, they are not the only cause of asthma hospitaliza-
tions. In particular, poor air quality is thought to be a critical
risk factor, and the link between pollution and asthma has been
studied extensively (8, 35–39). Elevated particulate matter and
ozone levels have both been associated with increased asthma
exacerbations and hospitalization events.
By fitting a mathematical model of viral transmission jointly

with a model of noninfectious drivers to asthma hospitalization
data from eight metropolitan populations in Texas, we are able
to both estimate epidemiological characteristics of common cold
viruses and rigorously assess the relative contributions of pro-
posed infectious and noninfectious drivers of asthma exacerba-
tions. Our analysis provides insight into the dynamics of common
cold viruses and a robust framework for predicting times of
heightened risk and thus, key periods for clinical intervention in
the growing population of asthmatic people.

Results
Predictors of Asthma Hospitalizations. We tested models with dif-
ferent combinations of predictive variables and determined which
explained the hospitalization data best. The variables tested are
shown in Table 1, and the components of the best fitting model
are indicated in column 4 of Table 1. The best fitting model from
our study included common cold prevalence (Fig. 2), influenza
prevalence, daily low temperature, a baseline hospitalization rate
specific to each city, a term modifying the baseline rate on each
day of the week, and a long-term temporal trend in hospitalization
rates. Fitted values for this model are shown in Fig. 3 for children
and adults, and coefficients for each parameter of the best fitting
model are given in SI Appendix, Table S2. Bayesian model selection
procedures excluded ozone and particulate matter variables as in-
formative predictors of asthma hospitalization rate. A full de-
scription of each model compared is given in SI Appendix, section 10.
The coefficient of the day of the week variable has a pro-

nounced pattern in both adults and children (Fig. 4B), where the
contribution to the hospitalization rates steadily declines from
Monday to Saturday. This pattern has been observed in asthma
hospitalizations previously [for example, in Canada (40)]. Base-
line hospitalization rates differ across metropolitan areas as
shown by higher or lower addition to the baseline hospitalization
rate (Fig. 4 D and E). The rate differences are not correlated in
children and adults in the same metropolitan areas (Fig. 4C).

Temporal Variation in Exacerbation Triggers. To investigate if there
was a different dominant driver of asthma exacerbations at dif-
ferent times of year, we determined the contribution of each
variable to the hospitalization rate on certain days. In Fig. 3 C–E,
the total height of a bar is the fitted hospitalization rate on that
day. We found that the key predictors of asthma exacerbations
vary in importance through the year. For example, in 2003 in the
Dallas–Fort Worth–Arlington metropolitan area, the common
cold hardly contributes to late summer asthma activity (Fig. 3C),
because prevalence is low in the summer when children are
out of school and thus, have a lower transmission rate. Com-
mon cold prevalence substantially impacts the back-to-school
wave of exacerbations (Fig. 3D). During winter break, low
temperatures, common cold prevalence, and influenza all
have moderate effects (Fig. 3E), because the temperature is
low, and common cold and influenza prevalence is moderate.
The other years of the study and metropolitan areas exhibit
similar temporal patterns, and additional examination of the
contribution of each variable to the fitted rate is given in SI
Appendix, section 18.
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Fig. 1. Daily number of asthma hospitalizations. Total hospitalizations in
the eight largest metropolitan areas in Texas from August of 2004 to August
of 2005, where markers indicate the first day of the month. Daily count
values (light gray) and a spline-smoothed value (dark gray) in (A) children
ages 5–18 y old and (B) adults ages 19–55 y old. In 2004, most Texas schools
started in mid-August, took a 2-wk winter break in late December to early
January, and took a 1-wk spring break in late March.

Table 1. Name, source, and description of each explanatory variable considered

Data Source Description
Included in best

model

Common cold SIRS transmission
model

4-d Aggregated common cold prevalence *

Influenza
prevalence

Hospitalization
records

Daily state-level hospitalizations per million caused by
influenza in adults and children (spline-smoothed)

*

Day of the week Calendar *
Time trend Daily index value *
Local intercept Metropolitan

boundary
Geographic variation in baseline hospitalization rate *

Low temperature CDC Wonder Daily minimum temperature in counties in the metropolitan area (Celsius) *
Ozone AQS Daily ozone (air quality index value)
PM 2.5 CDC Wonder Maximum daily PM 2.5 for counties in the metropolitan area (micrograms per

meter3)

A complete description of each model and estimated coefficients of each variable is in SI Appendix. AQS, air quality system; CDC, Centers for Disease
Control and Prevention; PM, particulate matter.
*The variable was included in the best fitting model.
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Common Cold Transmission Rates. The common cold susceptible–
infectious–recovered–susceptible (SIRS) transmission model has
six estimated parameters (Table 2). The posterior means and 95%
credible intervals suggest that children infect each other much
more than do other combinations of age groups. Specifically, the
estimated adult-to-child and adult-to-adult transmission rates are
2.5% (1.4–4.2%) and 42% (35–48%) of the child-to-child rate,
respectively. We estimate that, when schools close for weekends
and holidays, transmission rates between children decrease by 45%
(41–49%). Furthermore, we estimate that the common cold has an
average infectious period of 3.0 d (2.6–3.5 d), and after recovery,
that cross-protective immunity lasts an average of 19 d (18–21 d).
As additional validation, we used the model to estimate the

average number of common cold infections in each adult and child
per year. Although the model was fitted to different data (daily
asthma hospitalizations), the estimated numbers of colds per year
were remarkably consistent with those reported in the literature
and widely endorsed by public health agencies (Fig. 4A) (30, 31).
In addition, when school start dates in Texas were delayed by 10 d
in 2007 because of legislative change, the September asthma peak
shifted accordingly. Our model provides a mechanistic link be-
tween the school calendar and asthma exacerbations and readily
captures this epidemiological transition (SI Appendix, Fig. S16).

Robustness of Common Cold Model. To further assess whether
common cold prevalence is a critical predictor of asthma exac-
erbations, we performed likelihood ratio comparisons between
the full model and two linear models that lacked the SIRS-driven
common cold variable. One included only the other variables
from the best fit model to test whether the common cold variable
was necessary; the other also included a school closure indicator
variable to test whether the school effect is linked to attendance
at school rather than viral transmission at school. The likelihood
ratio test indicated that the alternative models were significantly
inferior (P < 0.01 and P < 0.01, respectively), further supporting
the fundamental role of common colds in shaping large-scale
spatiotemporal dynamics of asthma exacerbations (additional
details are in SI Appendix, sections 11 and 12).

Discussion
Asthma hospitalization rates in children clearly reflect the school
calendar. We hypothesized that this is mediated by viral trans-
mission within schools rather than alternative triggers associated
with the school environment. Through explicit modeling of re-
spiratory virus circulation and comparison of model components,
we found that the prevalence of respiratory infections explained
asthma hospitalization patterns much better than the academic
calendar alone. Our study combines both infectious and non-
infectious drivers of asthma exacerbation; this two-tiered modeling
strategy—coupling an asthma regression model with a respiratory
virus transmission model—allowed us to simultaneously infer pre-
dictors of asthma hospitalization rates and epidemiological
characteristics of the viruses that trigger asthma exacerbations.

We found that common cold infection is the primary de-
terminant of asthma-related hospitalization patterns in children
across eight major Texas metropolitan areas. Furthermore, the
transmission of common colds is integrally linked to the school
calendar, thus explaining the relationship between school vacation
periods and asthma exacerbation. For adults, hospitalization rates
have a different temporal signature dominated by a combination
of common cold and influenza prevalence. In both age groups, low
temperatures are a significant risk factor, and asthma hospitali-
zation rates vary by day of the week.
It is critical to use a transmission model to generate the common

cold prevalence input to our model, because actual viral prevalence
data are not available for these study populations. Indeed, common
cold prevalence is not known for any population on this scale or long
time periods, such as in the 7 consecutive y of our study. Because
common cold viruses cause mild, self-limited infections in healthy
populations, there is little motivation for large studies to determine
prevalence of these infections through time. By using very large-
scale data, we are able to infer prevalence, which shows the power of
transmission models to answer diverse public health questions.
Our viral transmission model captures the nonlinear interplay

of waning immunity, cross-protection between different viruses,
and contact patterns that both vary across age groups and change
when schools are closed. The September epidemics noted in other
asthma studies can be attributed to a resurgence of viral trans-
mission at the beginning of the school year after an accumulation of
susceptible children during summer vacation when transmission is
lower. Later peaks occur after population-level waning of immunity
during school vacation days, such as after Thanksgiving break.
Understanding the impact of school closures on the transmis-

sion of respiratory viral infections is valuable for not only asthma

Table 2. Parameter estimates for the common cold model

Parameter Symbol Mean
95%

CI lower
95%

CI upper

Transmissibility β0 0.74 0.68 0.79
Adult–child scaling (%) αAC 2.54 1.39 4.24
Adult–adult scaling (%) αAA 41.6 34.6 48.3
Vacation effect (%) σt 45.1 41.0 49.0
Duration of cross-immunity (d) ω−1 19.3 17.7 21.1
Duration of infection (d) γ−1 3.01 2.64 3.45

Posterior means and 95% credible intervals (95% CIs) for the parameters
of the SIRS common cold model.

A

B

Fig. 2. The SIRS dynamic transmission model of common cold circulation.
(A) The child and adult populations are each divided into three infection
classes: susceptible, infectious, and recovered. The recovered class is immune
to infection. Transitions between compartments are governed by the rate
parameters indicated. (B) Example model output for children (red) and
adults (blue). Weekends and vacations for the Dallas–Fort Worth–Arlington
metropolitan area in 2003–2004 are shown as gray areas. On those days, the
transmission rate of children is decreased by σ. The prevalence of common
cold infections in children more directly reflects the school calendar (i.e.,
weekends and holidays). Variation in adults is driven by changes in preva-
lence in children in the model. The estimated prevalence values are in-
corporated into an asthma hospitalization risk model to assess the relative
impact of viral transmission on asthma exacerbation rates.
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control but also, designing school closure strategies in planning for
seasonal and pandemic influenza. We estimated transmission rates
during school closures that are comparable with published esti-
mates based on influenza surveillance data (41), sociological sur-
veys (42), and measles outbreak dynamics (43). Unlike previous
estimates, our analysis reflects contact patterns in normal vacation
periods rather than during severe outbreaks, for which there may
be additional changes in behavior that affect transmission rate.
Reducing severe asthma exacerbations remains a formida-

ble challenge. Our analysis shows the critical influence of viral

infections but does not explain the substantial variation in base-
line asthma hospitalization rate observed between cities. We did
not detect a significant effect of air pollutants, perhaps because
measurements at the level of metropolitan areas are too coarse-
grained. Our study is also limited to eight major cities in Texas
and therefore, may not directly pertain to regions with dif-
ferent temperature and air quality values. We expect, however,
that the common cold model may be generally applicable, with
transmission reduced during school closures. In metropolitan
areas with a high degree of heterogeneity in school calendar dates,
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Fig. 3. Fit of the best model in children and adults.
Seven-day rolling means of observed hospitalizations
in all cities (black) and simulations from the best
fitting model (red). We sampled 20 parameter sets
from the joint posterior distribution and generated
five nonhomogeneous Poisson simulations for each
set. Hospitalizations are shown for (A) children ages
5–18 y old and (B) adults ages 19–55 y old. Contri-
bution of each factor to the predicted hospitaliza-
tion rate in children for (C) Monday, August 11,
2003; (D) Monday, September 1, 2003; and (E) Mon-
day, December 29, 2003 in the Dallas–Fort Worth–
Arlington area (metropolitan code 19100). The
heights of the bars in C–E sum to the fitted total
asthma hospitalization rates on those days.
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common cold waves may be less pronounced. Furthermore, our
model does not consider coinfection by multiple viruses, which
could have a different probability of triggering asthma exacer-
bations than single infections. Nonspecific immunity may
influence the frequency of coinfections by some viruses (44,
45), potentially leading to complex interactions between strains.
Our model distills the multivirus transmission dynamics of the
common cold into a parsimonious but biologically plausible
system and could potentially be extended to consider additional
complexity.
In Texas, asthmatic children tend to be at higher risk for ex-

acerbations at the start of the school year and after other school
breaks. Although reducing the burden of common cold viruses
may not be feasible, asthma interventions that decrease the risk
of exacerbation or hospitalization, including increased monitor-
ing and preventive and therapeutic care, can be targeted at these
high-risk periods. In general, future risk assessments and inter-
ventions for asthma, particularly in children, should explicitly
consider both the school calendar and the seasonal dynamic of
infectious triggers, either through spatiotemporal modeling or
when possible, viral surveillance data.

Methods
We used asthma hospitalization data to jointly estimate the parameters of a
population-level viral transmission model and coefficients of a multifactor
linear model for asthma exacerbations in a Bayesian framework. We com-
pared multiple models—including different combinations of predictors—
using the deviance information criterion (DIC) (46).

Hospitalization Data. To calculate the daily hospitalization rate per million, we
use daily hospitalization records, which have a principal admission code in-
dicating asthma (International Classification of Diseases version 9 code 493.
XX) in each of the eight largest metropolitan areas of Texas from January 1,
2003 to December 30, 2009. There were 66,000 hospitalizations stratified
into school-aged children (5–18 y old; 27,000 hospitalizations) and non-
elderly adults (19–55 y old; 39,000 hospitalizations). We excluded age groups
over 55 y old because of overlapping effects and diagnoses of chronic ob-
structive pulmonary disease. The eight focal populations totaled 14.8 million
people in 2009, which are ∼59% of the state population. Additional details
of the data are provided in SI Appendix, sections 1–5. This study was ap-
proved by Texas Department of State Health Services Institutional Review
Board #1. Informed consent was not required from patients because data
were extracted from administrative records. The data used is aggregated
and nonidentifiable.

Common Cold Transmission Model. We developed a dynamic SIRS transmission
model for common cold viruses (Fig. 2). The population (N) is stratified into
adults and children who may be susceptible (S), infected (I), or recovered (R).
Recovered individuals are protected against infection. The governing equa-
tions are

dSi
dt

=−βi,tSi +ωRi ,  
dIi
dt

= βi.tSi − γIi ,   and 
dRi

dt
= γIi −ωRi ,

where i represents age group [adults (A) or children (C)], γ is the recovery
rate, and ω is the rate at which cross-protective immunity wanes. The age-
specific transmission rates (βi,t) are given by

βC,t = β0

�
σt
�
IC
NC

�
+ αAC

�
IA
NA

��
  and

βA = β0

�
αAC

�
IC
NC

�
+ αAA

�
IA
NA

��
,

where β0 is the baseline child-to-child transmission rate; the αij terms are
scaling factors for transmission rates between age groups, where αAC and
αCA are assumed to be equal, σt is time-dependent and represents the de-
crease in child-to-child transmission rates during school closures on weekends
and school holidays, and σt is one when school is in session and estimated
during weekends and vacation periods. Therefore, the transmission rate of
children, βC,t, is time-dependent. We assume that transmission rates involving
adults are not affected by school closures.

Multiple cocirculating viruses cause common colds, and recovery from one
virus does not provide lasting immunity against other viruses. Thus, the re-
covered class models short-term broad-spectrum immunity against all com-
mon cold viruses. Although not fully understood, broad cross-protection after
infection has been noted for other respiratory viruses (47, 48) and may be
mediated by innate immune mechanisms (49, 50). Individuals return to the
susceptible class after a period of protection, which has duration ω−1.

Holiday periods were collated for each metropolitan area for each year of
the study from the largest (or second largest) school district in themetropolitan
area (additional details are in SI Appendix, section 4). Temporal changes in
population size and age composition were calibrated to the 2000 Census and
2010 Census in the two age groups. We assume that there is a maximum delay
of 4 d between initial infection and hospitalization for asthma exacerbation
(39, 51–53). We solve the ordinary differential equation model using a fourth-
order Runge–Kutta method with a fifth-order error term.

We use this age-stratified SIRS model to generate daily common cold
prevalence in adults and children for each metropolitan area (Fig. 2B). The
parameters that govern transitions between compartments are estimated.
The time series of prevalence values serves as input into our asthma hospi-
talization model, which is described below.

Hospitalization Model.We developed a linear regression model to fit the daily
hospitalization rate per million adults and children in each metropolitan area
using potential predictors of variation in asthma hospitalization rate (SI
Appendix, section 7). The variables included in model selection were com-
mon cold prevalence, influenza prevalence, particulate matter (2.5 μm),
ozone, low temperature, city-specific difference in hospitalization rate, day
of the week variation, and secular trend in hospitalization rate (Table 1). For
the common cold, we used the SIRS model to generate daily prevalence. For
influenza, we estimated daily prevalence directly from hospitalization records
and did not explicitly model transmission dynamics. For all other variables, daily
measurements were obtained from publicly available sources (SI Appendix, sec-
tions 2 and 3). Model components were compared extensively using the DIC,
where DIC = D̄ + pv, and pv = 0.5var(D̄) (46, 54). Lower values indicate a better fit
of the model to data, and a difference of 5 units is the customary threshold for
distinguishing model variants.

We jointly fitted the transmission and hospitalization models using Markov
Chain Monte Carlo. To sample the transmission model parameters more effi-
ciently, we explicitly marginalized over the other parameters at each step by a
Laplace approximation. Additional details on fitting methods and model
comparison are given in SI Appendix, sections 6–10.
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