
F1000Research

Open Peer Review

, University of ManchesterSimon Hubbard

UK

, Griffith University Australia, Yaoqi Zhou

, Griffith UniversityYuedong Yang

Australia

Discuss this article

 (0)Comments

2

1

SOFTWARE TOOL ARTICLE

FreeSASA: An open source C library for solvent accessible
 surface area calculations [version 1; referees: 2 approved]

Simon Mitternacht
University Library, University of Bergen, Bergen, Norway

Abstract
Calculating solvent accessible surface areas (SASA) is a run-of-the-mill
calculation in structural biology. Although there are many programs available
for this calculation, there are no free-standing, open-source tools designed for
easy tool-chain integration. FreeSASA is an open source C library for SASA
calculations that provides both command-line and Python interfaces in addition
to its C API. The library implements both Lee and Richards’ and Shrake and
Rupley’s approximations, and is highly configurable to allow the user to control
molecular parameters, accuracy and output granularity. It only depends on
standard C libraries and should therefore be easy to compile and install on any
platform. The library is well-documented, stable and efficient. The
command-line interface can easily replace closed source legacy programs,
with comparable or better accuracy and speed, and with some added
functionality.

 Simon Mitternacht ()Corresponding author: simon.mitternacht@uib.no
 Mitternacht S. How to cite this article: FreeSASA: An open source C library for solvent accessible surface area calculations [version 1;

 2016, :189 (doi:)referees: 2 approved] F1000Research 5 10.12688/f1000research.7931.1
 © 2016 Mitternacht S. This is an open access article distributed under the terms of the , whichCopyright: Creative Commons Attribution Licence

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Data associated with the article
are available under the terms of the (CC0 1.0 Public domain dedication).Creative Commons Zero "No rights reserved" data waiver

 The author(s) declared that no grants were involved in supporting this work.Grant information:

 Competing interests: No competing interests are disclosed.

 18 Feb 2016, :189 (doi:) First published: 5 10.12688/f1000research.7931.1

 Referee Status:

 Invited Referees

 version 1
published
18 Feb 2016

 1 2

report report

 18 Feb 2016, :189 (doi:)First published: 5 10.12688/f1000research.7931.1
 18 Feb 2016, :189 (doi:)Latest published: 5 10.12688/f1000research.7931.1

v1

Page 1 of 10

F1000Research 2016, 5:189 Last updated: 29 FEB 2016

http://f1000research.com/articles/5-189/v1
http://f1000research.com/articles/5-189/v1
http://dx.doi.org/10.12688/f1000research.7931.1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://dx.doi.org/10.12688/f1000research.7931.1
http://f1000research.com/articles/5-189/v1
http://dx.doi.org/10.12688/f1000research.7931.1
http://dx.doi.org/10.12688/f1000research.7931.1
http://crossmark.crossref.org/dialog/?doi=10.12688/f1000research.7931.1&domain=pdf&date_stamp=2016-02-18

Introduction
Exposing apolar molecules to water is highly unfavorable, and
minimizing the hydrophobic free energy is an important driving
force in the folding of macromolecules (Finkelstein & Ptitsyn,
2002). The solvent accessible surface area (SASA) of a molecule
gives a measure of the contact area between molecule and solvent.
Although the exact quantitative relation between surface area and
free energy is elusive, the SASA can be used to compare different
molecules or different conformations of the same molecule, or for
example measure the surface that is buried due to oligomerization.

To define the SASA, let a spherical probe represent a solvent mol-
ecule. Roll the probe over the surface of a larger molecule. The
surface area traced by the center of the probe is the SASA of the
larger molecule (Lee & Richards, 1971). Two classical approxi-
mations are commonly used to calculate SASA: one by Lee and
Richards (L&R) where the surface is approximated by the outline
of a set of slices (1971), and one by Shrake & Rupley (1973) (S&R)
where the surface of each sphere is approximated by a set of test
points. The SASA can be calculated to arbitrary precision by refin-
ing the resolution of both. The surface area can also be calculated
analytically (Fraczkiewicz & Braun, 1998), which is useful when
the gradient is needed, or by various other approximations, tailored
for different purposes (Cavallo et al., 2003; Drechsel et al., 2014;
Sanner et al., 1996; Weiser et al., 1999; Xu & Zhang, 2009).

There are many tools available to calculate SASA. The most popu-
lar program for command line use is probably NACCESS (Hubbard
& Thornton, 1993) (freely available for academic use), which is
an efficient Fortran implementation of the L&R approximation.
Another well-known command line tool is DSSP, which prima-
rily calculates the secondary structure and hydrogen bonds of
a protein structure, but provides the SASA as well (Touw et al.,
2015) (using S&R, open source). There are also some web serv-
ices available, for example Getarea, which calculates the surface
analytically (Fraczkiewicz & Braun, 1998), and Triforce which
uses a semianalytical tessellation approach (Drechsel et al., 2014)
(also available for command line use). In addition, most molecular
dynamics simulation packages include tools to analyze SASA from
trajectories.

FreeSASA is intended to fill the same niche as NACCESS, and a
number of other similar programs: a simple and fast command-line
tool that “does one thing and does it well” and can be easily inte-
grated into tool chains. The advantage of FreeSASA is that it is
open source (GNU General Public License 3), and provides both
C and Python APIs in addition to its command line interface. It
has sensible default parameters and no obligatory configuration for
casual users (the only required input is a structure), but also allows
full control over all calculation parameters. Dependencies have
been kept to a minimum: compilation only requires standard C and
GNU libraries. The library is thread-safe, and some effort has gone
into dealing gracefully with various errors. The code ships with
thorough documentation, which is also available online at http://
freesasa.github.io/doxygen/. Although functionality and availabil-
ity have been the primary motivating factors for writing this library,
performance tests show that FreeSASA is as fast as or faster than
legacy programs when run on a single CPU core. In addition, a

large portion of the calculation has been parallelized, which gives
significant additional speed when run on multicore processors.

Methods
Implementation
Calculations. Both S&R and L&R are pretty straightforward to
implement, and both require first determining which atoms are
in contact, and then calculating the overlap between each atom
and its neighbors. Finding contacts is done using cell lists, which
means the contact calculation is an O(N) operation. Both algo-
rithms then treat each atom independently, making also the second
part of the calculation O(N). In addition, this second part is trivi-
ally parallelizable.

For L&R, instead of slicing the whole protein in one go, each atom
is sliced individually. The L&R calculation is thus parameterized
by the number of slices per atom, i.e. small atoms have thinner
slices than large atoms.

The Fibonacci spiral gives a good approximation to an even distri-
bution of points on the sphere (Swinbank & Purser, 2006), allowing
efficient generation of an arbitrary number of S&R test points. The
cell lists provide the first of the two lattices in the double cubic lat-
tice optimization for this algorithm (Eisenhaber et al., 1995), the
second lattice (for the test points) is not implemented in FreeSASA,
for now.

The correctness of the implementations was tested by first inspect-
ing the surfaces visually. In the two atom case, results were veri-
fied against analytical calculations. Another verification came from
comparing the results of high precision SASA calculations using
the two independent algorithms. In addition, using the L&R algo-
rithm gives identical results to NACCESS when the same resolution
and atomic radii are used.

Radius assignment. An important step of the calculation is assign-
ing a radius to each atom. The default in FreeSASA is to use the
ProtOr radii by Tsai et al. (1999). The library recognizes the
20 standard amino acids (plus Sec and Pyl), and the standard nucle-
otides (plus a few nonstandard ones). Tsai et al. do not mention
phosphorus and selenium; these atoms are assigned a radius of 1.8
and 1.9 Å respectively.

By default, hydrogen atoms and HETATM records are ignored
in Protein Data Bank (PDB) files. If included, the library recog-
nizes three common HETATM entries: the acetyl and NH

2
 capping

groups, and water, and assigns ProtOr radii to these. Otherwise the
van der Waals radius of the element is used, taken from the paper
by Mantina et al. (2009). For elements outside of the 44 main group
elements treated by Mantina et al., or if completely different radii
are desired, users can provide their own configuration.

Users can specify their own atomic radii either through the API
or by providing a configuration file. The library ships with a few
sample configuration files, including one that provides a sub-
set of the NACCESS parameterization, and one with the default
ProtOr parameters. In addition, scripts are provided to automatically

Page 2 of 10

F1000Research 2016, 5:189 Last updated: 29 FEB 2016

http://freesasa.github.io/doxygen/
http://freesasa.github.io/doxygen/

generate ProtOr configurations from PDB CONECT entries, such
as those in the Chemical Component Dictionary (Westbrook et al.,
2015). These can then be appended to the default configuration.

Operation
Building the FreeSASA library and command-line interface only
requires standard C and GNU libraries and a C99-compliant com-
piler, and should be straightforward on any UNIX system (has been
tested in Mac OS X 10.8 and Debian 8), and not too difficult in
Windows (not tested). Building the Python bindings requires Cython
(tested with version 0.21). The library ships with an Autotools build
configuration, but the source itself is simple enough to be possible
to compile “manually”, if necessary.

Command-line interface. Building FreeSASA creates the binary
freesasa. The simplest program call, with default parameters, is

 $ freesasa 3wbm.pdb

using the structure with PDB code 3wbm as an example (a protein-
RNA complex). The above produces the following output

 ## freesasa 1.0.1 ##

 PARAMETERS
 algorithm : Lee & Richards
 probe-radius : 1.400
 threads : 2
 slices : 20

 INPUT
 source : 3wbm.pdb
 chains : ABCDXY
 atoms : 3714

 RESULTS (A^2)
 Total : 25190.77
 Apolar : 11552.38
 Polar : 13638.39
 CHAIN A : 3785.49
 CHAIN B : 4342.33
 CHAIN C : 3961.12
 CHAIN D : 4904.30
 CHAIN X : 4156.46
 CHAIN Y : 4041.08

The numbers in the results section are the SASA values (in Å2) for
the respective groups of atoms.

As an illustration of a few of the other configuration options, and
how to use the program as a PDB file filter, the command

 $ freesasa -n 100 --print-as-B-values
--no-log < 3wbm.pdb > 3wbm.sasa

calculates the SASA of a PDB-file passed via stdin, using
100 slices per atom. The flag --no-log suppresses the regular

output. The output will instead, because of the flag --print-as-
B-values, be the provided PDB-file with the SASA of each atom
replacing the temperature factors, and the atomic radii stored in the
occupancy factor field.

By calling with the option --chain-groups,

 $ freesasa --chain-groups=ABCD+XY 3wbm.pdb

two calculations are appended to the original output, one where
only the four chains A, B, C and D have been included, and one
with only X and Y.

The option --select can be used to select a set of atoms using a
subset of the selection syntax used in the program Pymol (DeLano,
2002). For example, the command

 $ freesasa --select="RNA, resn A+U+G+C"

will produce the following output (after the regular output shown
above)

 SELECTIONS
 RNA : 8197.53

where RNA is simply the user-defined name of the selection, and
the number the contribution to the total SASA from the bases A,
U, G and C (which we in this particular case could have got by
simply adding the areas for the chains X and Y in the sample output
above).

The command

 $ freesasa -h

prints a help message listing all available options, including other
ways to redirect output and how to change different calculation
parameters (the most detailed information can be found online at
http://freesasa.github.io/doxygen/CLI.html).

C API. The C code below illustrates how to perform a SASA-
calculation on the same PDB-file as above, using the C API, with
default parameters. The functions and types used are all defined in
the header freesasa.h.

 FILE *fp = fopen("3wbm.pdb","r");
 freesasa_structure *structure =
freesasa_structure_from_pdb(fp, NULL, 0);
 freesasa_result *result =
freesasa_calc_structure(structure, NULL);
 printf("Total area : %f A2\n", result->total);

The two points where null pointers are passed as arguments are
places where atom classifiers and calculation parameters could have
been provided. A more elaborate example that includes error han-
dling and freeing of allocated resources can be seen in Figure 1.

Page 3 of 10

F1000Research 2016, 5:189 Last updated: 29 FEB 2016

http://freesasa.github.io/doxygen/CLI.html

Figure 1. C API. Illustration of how to use the C API including rudimentary error handling.

The API also allows the user to calculate the SASA of a set of coor-
dinates with associated radii. The code below puts two atoms at
positions 1x

�
= (1, 1, 1) and 2x

�
= (2, 2, 2) with radii r

1
 = 2 and r

2
 = 3,

respectively, and outputs the SASA of the individual atoms.

 double coord[] = {1.0, 1.0, 1.0, 2.0, 2.0, 2.0};
 double radius[] = {2.0, 3.0};
 freesasa_result *result =
freesasa_calc_coord(coord, radius, 2, NULL);
 printf("A1 = %f, A2 = %f\n", result->sasa[0], 	
 result->sasa[1]);

Python API. The library includes Python bindings that export most
of the C API to Python. The Python code below gives the same

output as the example in Figure 1. Error handling is excluded for
brevity.

 import freesasa

 structure = freesasa.Structure("3wbm.pdb")
 result = freesasa.calc(structure)
 classArea = freesasa.classifyResults(result,
	 structure)

 print "Total : %.2f A2" % result.totalArea()
 for key in classArea:
 print key, ": %.2f A2" % classArea[key]

#include <stdlib.h>
#include <stdio.h>
#include "freesasa.h"

int main(int argc, char **argv) {
freesasa_structure *structure = NULL;
freesasa_result *result = NULL;
freesasa_strvp *class_area = NULL;

/* Read structure from stdin */
structure = freesasa_structure_from_pdb(stdin,NULL,0);

/* Calculate SASA using structure */
if (structure) {

result = freesasa_calc_structure(structure,NULL);
}

/* Calculate area of classes (Polar/Apolar/..) */
if (result) {

class_area = freesasa_result_classify(result,structure,NULL);
}

/* Print results */
if (class_area) {

printf("Total area : %f A2\n",result->total);
for (int i = 0; i < class_area->n; ++i)

printf("%s : %f A2\n",class_area->string[i],
class_area->value[i]);

} else {
/* If there was an error at any step, we will end up here */
printf("Error calculating SASA\n");

}

/* Free allocated resources */
freesasa_strvp_free(class_area);
freesasa_result_free(result);
freesasa_structure_free(structure);
return EXIT_SUCCESS;

}

Page 4 of 10

F1000Research 2016, 5:189 Last updated: 29 FEB 2016

Results

Dataset 1. List of PDB codes used for the performance analysis

http://dx.doi.org/10.5256/f1000research.7931.d112977

This set was generated from the most restrictive list of structures in
the PISCES database (Wang & Dunbrack, 2003). 88 PDB files were
selected randomly from a set of size intervals in this list, to get an
approximately even distribution in size.

Dataset 2. Zip-archive with raw data for the performance analysis
in Figure 2 and Figure 3

http://dx.doi.org/10.5256/f1000research.7931.d112978

See the file explanation.txt for an overview of the contents of the
archive.

The computational efficiency of the two algorithms was compared
by running the FreeSASA command-line program with differ-
ent parameters on a set of 88 PDB structures selected from the
PISCES database (Wang & Dunbrack, 2003) (see Dataset 1 for a list).

PISCES specifies a specific chain in each structure, but in the fol-
lowing all chains were used, which resulted in the largest structure
having over 30,000 atoms (1jz8). To average out some variation in
the running time in these rather short calculations (in some cases
< 10 ms), the fastest calculations were run two to five times. As we
will see below, error bars are relatively small along that axis.

To measure the accuracy of the two algorithms, a reference SASA
value, A

ref
, was calculated using L&R with 1000 slices per atom

for each structure. The error of a given SASA-value, A, is then
ε = |A–A

ref
| /N, where N is the number of atoms in the structure.

Calculation time T is measured as the wall time of the entire cal-
culation including reading and writing files. Dataset 2 contains the
values of A, A

ref
, N and T used to produce Figure 2 and Figure 3.

Figure 2 shows ε versus T/N, averaged over the 88 PDB struc-
tures. At low resolution S&R is considerably faster than L&R, and
at high resolution L&R is faster, with a crossover at around 1000
test points or 20 slices per atom (20 slices is the default setting in
FreeSASA).

Figure 2. Precision and calculation time. The mean of the error ε in SASA vs T /N, for the two algorithms in FreeSASA plus the programs
NACCESS and POPS. Labels indicate the resolution used for each set of calculations, and error bars the standard error along both axes. The
solid lines are only there to guide the eye, and the dashed lines indicate the analogous lines when using 2 and 4 threads in FreeSASA. An
L&R run with 1000 slices was used as Aref when calculating ε for both approximations. NACCESS uses L&R and was run with three values of
the z-parameter (0.1, 0.05 and 0.01, corresponding to 10, 20 and 100 slices per atom), a run with z-parameter 0.005 was used as Aref (using
even lower z-values gave inconsistent results). The NACCESS reference calculation was also used as reference for POPS. All programs were
compiled using GCC 4.9.3 with the optimization flag “-Ofast” and the tests were run on an Intel Core i5-2415M CPU at 2.30 GHz. The raw
data for this figure can be found in Dataset 2.

Page 5 of 10

F1000Research 2016, 5:189 Last updated: 29 FEB 2016

http://dx.doi.org/10.5256/f1000research.7931.d112977
http://dx.doi.org/10.5256/f1000research.7931.d112978

Comparisons were done with NACCESS 2.1.1 (Hubbard &
Thornton, 1993), DSSP 2.2.1 (Touw et al., 2015), NSOL 1.7
(Masuya, 2003), POPS 1.6.4 (Cavallo et al., 2003) and Triforce 0.1
(Drechsel et al., 2014). The list could potentially have been a lot
longer; some programs were left out on the basis of being closed
source, poorly documented or no longer available. NACCESS was
included in spite of its limiting license due to its popularity. The
SASA facilities in molecular dynamics packages were not consid-
ered since these cater to a different use case.

NACCESS allows the user to choose arbitrary resolution and can
therefore be used as a reference for itself, and POPS was optimized
with NACCESS as reference. NACCESS uses L&R and performs
very similarly to FreeSASA using L&R. The POPS algorithm is
intended as a fast coarse-grained approximation; its authors state an
average error of 2.6 Å2 per atom (Cavallo et al., 2003). In Figure 2

the mean ε is lower than that, which is expected, since this error is
measured over the total SASA, not atom by atom. A fit showed that
POPS runs in O(N2) time (using the data in the file pops.dat in
Dataset 2), which to some extent explains the relatively long mean
calculation time per atom.

The other programs listed above were left out of Figure 2 because
they can not be compared under the same premises. DSSP calcu-
lates many different things in addition to its 200 test-point S&R-
calculation, and the total running time is therefore naturally longer
than the corresponding calculation in FreeSASA, although the
accuracy should be comparable for the same number of test points.
The program NSOL uses S&R, but does five different SASA cal-
culations on the same input using different parameters. The NSOL
code was modified to only do one of the five calculations, and is
then only slightly slower than FreeSASA using the same number

Figure 3. Parallelization. The histograms shows the distribution of the calculation time using two or four threads divided by the time using
one thread. Thus if this fraction is two or four, respectively, we have “perfect” parallelization. The legends indicate the resolution of the
calculation: for L&R, slices per atom, and for S&R, number of test points. The raw data for this figure can be found in Dataset 2.

Page 6 of 10

F1000Research 2016, 5:189 Last updated: 29 FEB 2016

of test points. Lastly, Triforce is not suitable for comparison in this
particular use case because it has a high initialization cost, which
makes it slow for calculating the SASA of an isolated structure.

In single-threaded mode, FreeSASA using L&R is almost indistin-
guishable from NACCESS in Figure 2, but it is significantly faster
when 2 or 4 threads are used. The effect of spreading the calcula-
tion over several threads is shown in more detail in Figure 3. Since
the generation of cell lists is not parallelized, using more than one
thread only gives a significant performance benefit in the high reso-
lution limit. Based on these results, the default has been set to two
threads. Depending on the nature of the calculations, this speedup
can make a noticeable difference.

Summary
FreeSASA is an efficient library for calculating the SASA of pro-
tein, RNA and DNA structures. Its main advantages over other
commonly used tools is that it is open source, easily configurable
and can be used both as a command line tool, a C library and a
Python module. The tests above demonstrate that it runs as fast as,
or faster than, some popular tools at a given resolution, and can be
boosted further by parallelizing the calculation.

Data and software availability
Data
F1000Research: Dataset 1. List of PDB codes used for the perform-
ance analysis, 10.5256/f1000research.7931.d112977 (Mitternacht,
2016a).

F1000Research: Dataset 2. Zip-archive with raw data for
the performance analysis in Figure 2 and Figure 3, 10.5256/
f1000research.7931.d112978 (Mitternacht, 2016b).

Software
Latest source code and software available from http://freesasa.
github.io/

Archived source code as at the time of publication http://dx.doi.
org/10.5281/zenodo.45239 (Mitternacht, 2016c).

License GNU GPL v3 (http://www.gnu.org/licenses/gpl-3.0.en.html).

Competing interests
No competing interests are disclosed.

Grant information
The author declared that no grants were involved in supporting this
work.

Acknowledgments
Thanks go to Edvin Fuglebakk for comments on the code and docu-
mentation. Thanks to Sandhya P. Tiwari and Anders Irbäck for com-
ments on the manuscript. Thanks to João Rodrigues for suggestions
for improved functionality.

References

	 Cavallo L, Kleinjung J, Fraternali F: POPS: A fast algorithm for solvent accessible
surface areas at atomic and residue level. Nucleic Acids Res. 2003; 31(13):
3364–3366.
PubMed Abstract | Publisher Full Text | Free Full Text

	 DeLano WL: The PyMOL molecular graphics system. 2002.
Reference Source

	 Drechsel NJ, Fennell CJ, Dill KA, et al.: TRIFORCE: Tessellated Semianalytical
Solvent Exposed Surface Areas and Derivatives. J Chem Theory Comput. 2014;
10(9): 4121–4132.
PubMed Abstract | Publisher Full Text | Free Full Text

	 Eisenhaber F, Lijnzaad P, Argos P, et al.: The double cubic lattice method: efficient
approaches to numerical integration of surface area and volume and to dot surface
contouring of molecular assemblies. J Comput Chem. 1995; 16(3): 273–284.
Publisher Full Text

	 Finkelstein AV, Ptitsyn O: Protein physics: a course of lectures. Academic Press,
London, 2002.
Reference Source

	 Fraczkiewicz R, Braun W: Exact and efficient analytical calculation of the
accessible surface areas and their gradients for macromolecules. J Comput
Chem. 1998; 19(3): 319–333.
Publisher Full Text

	 Hubbard SJ, Thornton JM: NACCESS. Computer Program, Department of
Biochemistry and Molecular Biology, University College London, 1993.
Reference Source

	 Lee B, Richards FM: The interpretation of protein structures: estimation of
static accessibility. J Mol Biol. 1971; 55(3): 379–400.
PubMed Abstract | Publisher Full Text

	 Mantina M, Chamberlin AC, Valero R, et al.: Consistent van der Waals radii for
the whole main group. J Phys Chem A. 2009; 113(19): 5806–5812.
PubMed Abstract | Publisher Full Text | Free Full Text

	 Masuya M: NSOL: A numerical calculation program of molecular surface area,
volume, and solvation energy. 2003.
Reference Source

	 Mitternacht S: Dataset 1 in: FreeSASA: An open source C library for solvent
accessible surface area calculations. F1000Research. 2016a.
Data Source

	 Mitternacht S: Dataset 2 in: FreeSASA: An open source C library for solvent
accessible surface area calculations. F1000Research. 2016b.
Data Source

	 Mitternacht S: FreeSASA 1.0.1: Solvent Accessible Surface Area Calculations.
Zenodo. 2016c.
Data Source

	 Sanner MF, Olson AJ, Spehner JC: Reduced surface: an efficient way to
compute molecular surfaces. Biopolymers. 1996; 38(3): 305–320.
PubMed Abstract | Publisher Full Text

	 Shrake A, Rupley JA: Environment and exposure to solvent of protein atoms.
Lysozyme and insulin. J Mol Biol. 1973; 79(2): 351–371.
PubMed Abstract | Publisher Full Text

	 Swinbank R, Purser RJ: Fibonacci grids: A novel approach to global modelling.
Q J R Meteorol Soc. 2006; 132(619): 1769–1793.
Publisher Full Text

	 Touw WG, Baakman C, Black J, et al.: A series of PDB-related databanks for
everyday needs. Nucleic Acids Res. 2015; 43(Database issue): D364–D368.
PubMed Abstract | Publisher Full Text | Free Full Text

	 Tsai J, Taylor R, Chothia C, et al.: The packing density in proteins: standard
radii and volumes. J Mol Biol. 1999; 290(1): 253–266.
PubMed Abstract | Publisher Full Text

	 Wang G, Dunbrack RL Jr: PISCES: a protein sequence culling server.
Bioinformatics. 2003; 19(12): 1589–1591.
PubMed Abstract | Publisher Full Text

	 Weiser J, Shenkin PS, Still WC: Approximate atomic surfaces from linear
combinations of pairwise overlaps (LCPO). J Comput Chem. 1999; 20(2):
217–230.
Publisher Full Text

	 Westbrook JD, Shao C, Feng Z, et al.: The chemical component dictionary:
complete descriptions of constituent molecules in experimentally determined
3D macromolecules in the Protein Data Bank. Bioinformatics. 2015; 31(8):
1274–1278.
PubMed Abstract | Publisher Full Text | Free Full Text

	 Xu D, Zhang Y: Generating triangulated macromolecular surfaces by Euclidean
Distance Transform. PLoS One. 2009; 4(12): e8140.
PubMed Abstract | Publisher Full Text | Free Full Text

Page 7 of 10

F1000Research 2016, 5:189 Last updated: 29 FEB 2016

http://dx.doi.org/10.5256/f1000research.7931.d112977
http://dx.doi.org/10.5256/f1000research.7931.d112978
http://dx.doi.org/10.5256/f1000research.7931.d112978
http://freesasa.github.io/
http://freesasa.github.io/
http://dx.doi.org/10.5281/zenodo.45239
http://dx.doi.org/10.5281/zenodo.45239
http://www.gnu.org/licenses/gpl-3.0.en.html
http://www.ncbi.nlm.nih.gov/pubmed/12824328
http://dx.doi.org/10.1093/nar/gkg601
http://www.ncbi.nlm.nih.gov/pmc/articles/169007
http://www.pymol.org
http://www.ncbi.nlm.nih.gov/pubmed/25221446
http://dx.doi.org/10.1021/ct5002818
http://www.ncbi.nlm.nih.gov/pmc/articles/4159216
http://dx.doi.org/10.1002/jcc.540160303
https://books.google.co.in/books?id=Vbb01Eo8VBAC&printsec=frontcover&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
http://dx.doi.org/10.1002/(SICI)1096-987X(199802)19:3<319::AID-JCC6>3.0.CO;2-W
http://www.bioinf.manchester.ac.uk/naccess/
http://www.ncbi.nlm.nih.gov/pubmed/5551392
http://dx.doi.org/10.1016/0022-2836(71)90324-X
http://www.ncbi.nlm.nih.gov/pubmed/19382751
http://dx.doi.org/10.1021/jp8111556
http://www.ncbi.nlm.nih.gov/pmc/articles/3658832
http://biocomputing.cc/nsol/
http://dx.doi.org/10.5256/f1000research.7931.d112977
http://dx.doi.org/10.5256/f1000research.7931.d112978
http://dx.doi.org/10.5281/zenodo.45239
http://www.ncbi.nlm.nih.gov/pubmed/8906967
http://dx.doi.org/10.1002/(SICI)1097-0282(199603)38:3<305::AID-BIP4>3.0.CO;2-Y
http://www.ncbi.nlm.nih.gov/pubmed/4760134
http://dx.doi.org/10.1016/0022-2836(73)90011-9
http://dx.doi.org/10.1256/qj.05.227
http://www.ncbi.nlm.nih.gov/pubmed/25352545
http://dx.doi.org/10.1093/nar/gku1028
http://www.ncbi.nlm.nih.gov/pmc/articles/4383885
http://www.ncbi.nlm.nih.gov/pubmed/10388571
http://dx.doi.org/10.1006/jmbi.1999.2829
http://www.ncbi.nlm.nih.gov/pubmed/12912846
http://dx.doi.org/10.1093/bioinformatics/btg224
http://dx.doi.org/10.1002/(SICI)1096-987X(19990130)20:2<217::AID-JCC4>3.0.CO;2-A
http://www.ncbi.nlm.nih.gov/pubmed/25540181
http://dx.doi.org/10.1093/bioinformatics/btu789
http://www.ncbi.nlm.nih.gov/pmc/articles/4393513
http://www.ncbi.nlm.nih.gov/pubmed/19956577
http://dx.doi.org/10.1371/journal.pone.0008140
http://www.ncbi.nlm.nih.gov/pmc/articles/2779860
https://books.google.co.in/books?id=Vbb01Eo8VBAC&printsec=frontcover&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false

F1000Research

1.

2.

3.

4.

5.

6.

7.

Open Peer Review

 Current Referee Status:

Version 1

 29 February 2016Referee Report

doi:10.5256/f1000research.8538.r12528

, Yaoqi Zhou Yuedong Yang
Institute of Glycomics, Griffith University, Gold Coast, QLD, Australia

Solvent accessible surface area is a frequently calculated quantity in structural bioinformatics. Although
many tools are available, an open source, easy-to-use program is certainly welcome. The author did a
careful test and performed comparative studies to existing tools. The code is clearly written and well
documented. There are no major changes required for this clearly written manuscript. Here are some
minor questions requiring further clarifications and additions.

For multiple chains or a protein-ligand complex structure, does Freesasa yield the ASA for isolated
chains or chains in the complex structure? It would be better if the program has an option to
calculate the change of ASA on a residue before and after binding to another molecule (ligand,
RNA, DNA, another chain) assuming that there is no structural change upon binding. This would
allow to identify the functional residues.

Please clarify the command to produce a residue-level ASA, rather than the atomic level ASA.

What are default recommendations for the ASA calculation in term of resolution required or choice
of LR and SR approximations?

Are the default atomic radii employed here the same as used in DSSP and/or NACCESS? If
different, what are the main differences?

Is this method faster than analytical methods? If so, by how much?

Can authors provide a table that lists all possible commands?

The program would be more useful if it can directly read in Biopython data structure and work with
pymol.

We have read this submission. We believe that we have an appropriate level of expertise to
confirm that it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:

Author Response 29 Feb 2016
, Simon Mitternacht

Page 8 of 10

F1000Research 2016, 5:189 Last updated: 29 FEB 2016

http://dx.doi.org/10.5256/f1000research.8538.r12528

F1000Research

1.

2.

3.

4.

5.

6.

7.

Thanks for your comments and suggestions. I interpret most of them as being better solved by
improving the functionality and/or documentation of the program itself, rather than revising the
paper. For the sake of brevity not all the functionality is described in the paper, but is available in
the online documentation.

The default behavior is to calculate the SASA of the chains in the complex. The command
option '--chain-groups' described in the paper allows the user to look at combinations of
chains in isolation. The option '--separate-chains', is not discussed in the paper, but can be
used to treats each chain separately (i.e. for a four chain protein '--chain-groups=A+B+C+D'
would be equivalent to '--separate-chains'). My intention was to give the user the ability to
calculate the total ASA of different combinations of chains, and then do the arithmetic of the
changes themselves. I will look into adding command-line options to do this automatically in
future versions of the program.

The option '--foreach-residue' (not described in the paper) can be used to print the SASA of
each residue.

It is hard to give a general recommendation here, but I chose to use the same default
resolution as NACCESS since this seems to be an accepted standard. If one is looking for
changes due to minor conformational changes, a higher resolution might be needed. The
average of / in Dataset 2 is 5.6 Å , and the average error in Figure 2 for the defaultA N
resolution is around 0.002 Å , i.e. the error in the total SASA () is on average 0.002/5.6 <A
1/1000.

As mentioned in the paper, the ProtOr atomic radii are used. I think the easiest way of
comparing these with those employed in NACCESS and DSSP is to compare the radii in the
configuration-files supplied with the program (in the directory share/).

I was not able to get hold of FANTOM or any other analytical program, so I have
unfortunately not been able to compare directly. As mentioned I compared with the
semi-analytical Triforce, which was significantly slower when run on a single structure due to
high initialization cost. I assume Triforce performs better when the same instance of the
program is run on many structures, but that is a different use case.

The command 'freesasa -h' lists all options. I decided not to provide this list in the paper
because it will probably expand as time goes, and then the paper would quickly become
outdated.

Thank you for these suggestions, I will look into ways of adding more functionality to the
Python bindings.

 No competing interests were disclosed.Competing Interests:

 26 February 2016Referee Report

doi:10.5256/f1000research.8538.r12524

 Simon Hubbard

ref
2

2

Page 9 of 10

F1000Research 2016, 5:189 Last updated: 29 FEB 2016

http://dx.doi.org/10.5256/f1000research.8538.r12524

F1000Research

 Simon Hubbard
Faculty of Life Sciences, University of Manchester, Manchester, UK

This is a simple and effective implementation of the two main heuristics used for calculating solvent
accessible surface area of atomic structures such as proteins. The algortihm, FreeSASA, is suitably
described and tested in the article. I see no real need to ask for any changes, as the author has done a
very professional and nice job here. It downloads and installs very smoothly and offers most of the
functionality that NACCESS offers, so will be appreciated by legacy users I would imagine (though some
things have not been implemented, probably with good reason - either way, not a problem for me - and
the author can react to requests or users can do a little work to get what they want in terms of formatting). I
am sure the ability to thread across multiple cores will be beneficial and speed things up, and the API will
make it slot into python pipelines etc. It's possible that it won't directly supplant some NACCESS
dependencies which rely on its rather old formatting (.rsa file for example perhaps) but this is probably
only a minor concern and easily fixed if needed (since its fully open source, its probably reduced to
changing a few print statements anyway).

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 The reviewer as one of the original co-authors of NACCESS, one of the softwareCompeting Interests:
tools this program is compared with. This is freely available to academic users but licenced, via UCL
e-lucid, to commerical users.

Page 10 of 10

F1000Research 2016, 5:189 Last updated: 29 FEB 2016

