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ESSENCE refers to early symptomatic syndromes eliciting neurodevelopmental clinical 
examinations. It includes a broad range of early onset neurodevelopmental disorders affecting 
more than 10% of children before 5 years of age. ESSENCE includes among others attention 
deficit hyperactivity disorder (aDhD), intellectual disability (ID) and autism spectrum disorders 
(aSD). Some degree of disability is the rule rather than the exception. The causes are 
heterogeneous ranging from extreme social deprivation, pre- and perinatal risk factors, genetic 
and metabolic diseases, immune and infectious disorders, nutritional factors, physical trauma, 
and postnatal toxic and environmental factors (and combinations/interactions of some or several 
of these). Treatments often involve a combination of psychoeducational interventions, home- 
and school-based programmes, and medication. here, I will first briefly review our main 
knowledge on the biological pathways associated with early onset neurodevelopmental disorders 
and will provide useful links to be informed of the progress in the field. Five main pathways 
are associated with aSD and ID: chromatin remodelling, cytoskeleton dynamics, mrNa 
translation, metabolism and synapse formation/function. I will then detail three propositions 
coming from institutions, researchers and/or communities of patients and families to foster 
research: 1) to use more dimensional and quantitative data than diagnostic categories; 2) to 
increase data sharing and research on genetic and brain diversity in human populations; 3) to 
involve patients and relatives as participants for research. Finally, I will provide examples of 
very stimulating initiatives towards a more inclusive world for individuals with ESSENCE.
•    Autism, Genes, Synapses.
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Children with neurodevelopmental disorders can experi-
ence problems with language and speech, motor 

skills, behaviour, memory, learning, or other neurological 
functions. These difficulties are also frequently associated 
with co-morbidities such as sensory-motor, sleep, and gas-
trointestinal problems (1). To better tackle this heterogene-
ity Christopher gillberg coined the acronym ESSENCE, 
referring to “early symptomatic syndromes eliciting neu-
rodevelopmental clinical examinations”. It is a term to 
refer to the reality of children (and their parents) present-
ing in clinical settings with impairing child symptoms 
before age 3–5 years in the fields of 1) general develop-
ment, 2) communication and language, 3) social inter-
relatedness, 4) motor coordination, 5) attention, 6) activity, 
7) behaviour, 8) mood, and/or 9) sleep. Symptoms of neu-
rodevelopmental disorders often evolve and may improve 
as a child grows older, but many disabilities are perma-
nent. Diagnosis and treatment of these disorders can be 

difficult; treatment often involves a combination of profes-
sional therapy, pharmaceuticals, and home- and school-
based programmes. With progress in genetics and 
neurobiology, the causes of early onset neurodevelopmen-
tal disorders (or ESSENCE) are better understood. here,  
I will summarize the current knowledge on the genetic 
causes. Then I will summarize propositions that were sug-
gested to improve research in this field.

Definition and prevalence
Early onset neurodevelopmental disorders affect more 
than 10% of children (Table 1) often with consequences 
throughout their lives and with significant effects on their 
families (1–3). This grouping is diverse in terms of sever-
ity and pathophysiology: fetal alcohol syndrome (FaS), 
attention deficit hyperactivity disorder (aDhD), intellectual 
disability (ID), tic disorder, developmental coordination 
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large chromosomal rearrangements and chromosomal aneu-
ploidy (5). Chromosomal aneuploidy (an abnormal number 
of chromosomes) is observed in syndromic forms of neu-
rodevelopmental disorders such as Down, Klinefelter or 
Turner syndromes. Large chromosomal rearrangements and 
CNVs can be recurrent in some regions of the genome such 
as on chromosome 22q11 (velocardiofacial syndrome), 15q 
(angelman and Prader-Willi syndromes), or 17p (Smith-
magenis syndrome). however, in most cases, CNVs are 
unique to each patient, affecting from one to hundreds of 
genes. a trinucleotide repeat expansion of Cgg repeats is 
observed in fragile X syndrome. This expansion upstream 
of the FMR1 gene impedes its expression resulting in 
increased translation at the synapse. an additional example: 
single nucleotide mutations can affect X-linked genes such 
as MECP2 to cause rett syndrome or autosomal genes such 
as CDH8 or SHANK3 to cause aSD.

highly penetrant de  novo mutations probably account 
for a significant fraction (15–50%) of severe early onset 
developmental disorders (6, 7–13). This has been clearly 
demonstrated for ID (14) and aSD (11, 12, 15). The risk 
factors that increase the occurrence of de  novo mutations, 
amplifications, deletions or duplications are better under-
stood (16). For example, regions of the human genome 
flanked by large segmental duplications (such as on chro-
mosome 15, 16p,) are more prone to be deleted/duplicated 
through illegitimate recombination. Increased paternal age 
was also shown to be a factor in de  novo single base pair 
change. For aSD and ID, de novo chromosomal rearrange-
ments and CNVs are more frequently observed in patients 
compared with controls. In contrast, patients and controls 
usually carry the same number of de  novo single base 
mutations (on average 60–70 de  novo mutations in each 
genome of 3 billion base pairs and one in each exome of 
60 million base pairs). however, in patients, there is a sig-
nificant increase, compared with controls, of damaging 
mutations (e.g. loss of function) in evolutionarily con-
strained genes expressed in the brain (Fig. 1) (11–13, 17).

The vast majority of mutations reported in patients 
with aSD were identified using DNa isolated from their 
blood (or from saliva in some projects). as a conse-
quence, de  novo somatic mutations occurring in specific 
brain cell lineage are missed (18, 19). Only studies using 
deep genomic sequencing and post-mortem brain tissues 
of the patients will be able to inform us as to whether 
somatic mutations in the brain are increased in early 
onset neurodevelopmental disorders.

Inherited monogenic and polygenic forms of 
ESSENCE
among patients with early onset developmental disorders, 
inherited monogenic forms might account for a relatively 
significant fraction ( 10%) (20). In aSD it was esti-
mated that 3–6% of patients are “homozygous knock-out” 
carriers of two loss of function mutations in the same 

disorder, dyslexia, specific language disorders and autism 
spectrum disorders (aSD). Neuromuscular disorders such 
as Becker or Duchenne muscular dystrophies could also 
be included in neurodevelopmental disorders since they 
also affect cognition in a subset of patients, but such dis-
orders are often considered as a separate cluster because 
of their predominant symptoms. Boys seem to be at ele-
vated risk compared with girls for most neurodevelop-
mental disorders, suggesting gender-specific risk and 
protective factors.

The amount of funding and research dedicated to a 
disorder is often correlated to its prevalence and its 
severity (4). Thus, it is noteworthy that the amount of 
research on intellectual disability is below the predicted 
level (4). Causes of ESSENCE range from severe social 
deprivation, genetic risk factors, metabolic diseases, 
immune disorders, infectious diseases, nutritional factors, 
physical trauma, and toxic and environmental factors. 
among these factors, we have recently gained better 
knowledge concerning genetic risk factors, which is, in 
turn, motivating new neurobiological research.

The genetics of ESSENCE
The growing list of genes that contribute to early onset 
developmental disorders includes hundreds of genes. how-
ever, the complexity is multiplied by the observation that 
each patient can carry a specific combination of alleles of 
large and small effect that occur de  novo or inherited.

De novo mutations in ESSENCE
De novo mutations include single base mutations, amplifica-
tion of trinucleotide repeats, copy-number variations (CNVs), 

Table  1. Prevalence and biological pathways associated with 
ESSENCE.

Neurodevelopmental 
disorders Prevalence%

Proteins or biological 
pathways

Learning disabilities 2–4 Chromatin remodelling
metabolism
actin skeleton organization
Channels
Synaptogenesis
Neurotransmission

Dyslexia 5–15 Neuronal migration?
attention deficit 

hyperactivity 
disorder

1.7–9 Synapses?
Cortical maturation?

autism spectrum 
disorders

0.6–1.2 Chromatin remodelling
metabolism
actin skeleton organization
Channels
Synapses

Epilepsy 0.45–1 Synapses
Channels

Fetal alcohol 
syndrome

0.1–5 –
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than controls. among affected children, inherited CNVs 
tended to co-occur with a second-site large CNV. No 
parental bias was observed for the primary de  novo or 
inherited site, but for the second-site, 72% of the second-
site CNVs were inherited from the mother (25).

Other studies have supported a multiple-hits model in 
patients carrying a similar “first hit”. In 42 carriers of a 
16p11.2 microdeletion, 10 carried an additional large 
copy-number variant, a significantly higher proportion 
when compared with controls conditional on a large first 
hit (10 of 42 cases, 21 of 471 controls; P  0.000057, 
odds ratio  6.6) (24). The clinical features of individuals 

gene (21, 22). In countries with higher consanguinity, the 
impact of recessive mutations is likely to be higher (23).

multiple hits in different regions of the genome might 
also contribute to susceptibility to early onset neurodevel-
opmental disorders. Several studies have demonstrated the 
presence of more than one deleterious mutation in such 
patients (24–26). In a large-scale study of 2312 children 
known to carry a CNV associated with ID and congenital 
abnormalities, 10% carried a second large CNV in addition 
to the primary genetic lesion (25). Children who carried 
two large CNVs of unknown clinical significance were eight 
times more likely than controls to have developmental delay 
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Fig. 1. Circos plot of de novo mutations in aSD. all coding-sequence variants and copy-number variants present in autismKB and 
SFarI gene are shown. a genemaNIa network analysis (centre) highlights proteins with synaptic function (36% of the proteins have 
at least one interaction with another protein, 61% are expressed in the brain, and 14% are known to be involved in synaptic function). 
From huguet et al. 2013 (36).

NOrD J PSYChIaTrY·VOL 70 NO 1·2016



T Bourgeron

4 

selection of the genes. autismKB usually selects genes 
from linkage analyses, copy-number variant studies, and 
gWaS, whereas SFarI gene usually selects genes from 
copy-number variant studies, sequencing analyses of large 
cohorts, and case reports.

Biological pathways involved in ESSENCE
In the last 10 years, tremendous progress has been made 
in our comprehension of early onset developmental disor-
ders. animal models (37–47) as well as induced pluripo-
tent stem cells (48, 49) have both contributed to better 
understanding of pathophysiology and to suggest new 
treatments. understanding the symptoms and course for 
each individual, and the biology ranging from genetic 
and environmental risk factors to the neural circuits 
involved remains a substantial challenge for geneticists 
and neurobiologists (50–52).

Several pathway analyses have been performed using 
either genetic or transcriptome data to gain insight into 
the biological functions associated with aSD. Pinto et al. 
(53) recently analysed 2446 aSD-affected families and 
confirmed an excess of genic deletions and duplications in 
affected versus control groups (1.41-fold, p  0.00001) and 
an increase in affected subjects carrying exonic pathogenic 
CNVs overlapping known loci associated with dominant 
or X-linked aSD and intellectual disability (odds 
ratio  12.62, p  02.7  10-15, ∼3% of aSD subjects). 
Consistent with hypothesized sex-specific modulators of 
risk, female patients with aSD were more likely to have 
highly penetrant CNVs (p  0.017) and were also overrep-
resented among subjects with mutations in genes that 
encode fragile X syndrome protein targets (p  0.02) sug-
gesting that severe genetic lesions were required to over-
come the lower liability to aSD in girls. genes affected 
by de novo CNVs and/or loss-of-function single-nucleotide 
variants converged on networks related to neuronal signal-
ling and development, synaptic function, and chromatin 
regulation. Voineagu and colleagues (54) analysed genes 
that are differentially expressed between two brain regions 
(frontal and temporal lobes) in patients with aSD and 
controls. Interestingly, the typical regional differences 
between the gene expression profiles of the frontal and 
temporal lobes were attenuated in patients. a first network 
module was related to interneurons and to genes involved 
in synaptic function, and was down-regulated in brains 
from patients compared with those from controls; a sec-
ond module was enriched for genes related to immunity 
and microglial activation, and was up-regulated in brains 
from patients with aSD compared with those of controls.

To date, five main pathways have been identified as 
candidates for early onset neurodevelopmental disorders 
(Fig. 2): chromatin remodelling, cytoskeleton dynamics, 
mrNa translation, metabolism and synapse formation/
function. This list is, however, far from exhaustive.

with two mutations were distinct from and/or more 
severe than those of individuals carrying only the  
co-occurring mutation. another study showed that three 
patients with aSD carrying a de  novo ShaNK2 deletion 
were also carriers of a second CNV at the 15q11 locus 
(26). Two were carrying CNVs including CHRNA7 and 
ARHGAP11B; the third was carrying a mutation that 
removed CYFIP1, NIPA1, NIPA2, and TUBGCP5. after 
this initial publication, another child with neurodevelop-
mental disorder carrying a SHANK2 translocation and a 
CHRNA7 duplication was reported (27).

Beside de novo and inherited rare mutations, one of the 
current challenges for geneticists is to identify the myriad 
of frequent alleles across the genome, which in an addi-
tive manner increase the risk of developing a disorder. 
Common variants could contribute to 17–60% and  
25–30% of the heritability of aSD and aDhD, respec-
tively (28–30). The same methodology was also used to 
estimate the contribution of genotyped single nucleotide 
polymorphisms (SNPs) in the heritability of the IQ 
( 40%) (31, 32) and on the human brain anatomy (50%) 
estimates that common variants might contribute to such 
quantitative phenotypes (Toro et al. molecular  
Psychiatry, in press. given that these common variants 
have individually only a weak additive effect (33), 
genome-wide association studies (gWaS) to date have 
been significantly underpowered and identified very few if 
any replicated common sequence variants that contribute 
to risk of early onset neurodevelopmental disorders (34). 
Based on these results, even if this genetic information is 
difficult to translate into clinical diagnosis, the identifica-
tion of low risk alleles represents an important goal for 
understanding the genetic architecture of early onset  
neurodevelopmental disorders (35). moreover, even weak 
alleles shown with confidence to influence disease risk, 
point to genes and pathways involved in pathogenesis.

Database of genes associated with ESSENCE
Several genetic databases provide clinical and functional 
annotation of genes associated with early onset neurode-
velopmental disorders. The Online mendelian Inheritance 
in man (OmIm) database catalogues more than  
5000 human genetic diseases (http://www.omim.org/). 
Decipher (http://decipher.sanger.ac.uk/) and the Database 
of genomic Variants (http://dgv.tcag.ca/dgv/app/home) 
are interactive Web-based databases which incorporate a 
suite of tools designed to aid the interpretation of genomic 
variants. Two databases of genes associated with aSD 
are updated regularly: autismKB (http://autismkb.cbi.pku.
edu.cn) and SFarI gene (https://gene.sfari.org) (36).  
a total of 197 genes are included in both databases, and 
481 are additionally included in either one or the other 
(255 in autismKB and 226 in SFarI gene). The main 
difference between the two databases concerns the 
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excitatory and inhibitory synapses (62–64). In addition, 
genes associated with epilepsy, such as SCN1A, which 
encodes a voltage-gated sodium channel, were also found 
mutated in patients with aSD (7).

While different, these pathways most likely affect neu-
ronal homeostasis at the end point (17, 65). Some sug-
gest potential drug targets; indeed some early clinical 
trials are ongoing to determine whether targeting some 
such proteins could improve the symptoms of patients 
(see (66, 67) for reviews).

Three propositions to improve research in the 
field of ESSENCE
While tremendous progress has been made in the under-
standing of the causes of early onset neurodevelopmental 
disorders, several issues detailed below represent poten-
tial breaks for research in this field. Three propositions 
are listed below.

Proposition 1: fewer categories, more dimensions
The recent advances in genomics have demonstrated that 
an identical genetic variant may increase the risk for a wide 
range of diagnoses formerly thought of as distinct (29, 68, 
69). These findings are contributing to an ongoing re- 
conceptualization of the current psychiatric nosology. The 
use of epidemiological samples, studies grouping individu-
als based first on genetic findings, and efforts at combining 
existing categorical schema with dimensional phenotypes 

The first pathway concerns chromatin remodelling and 
was suggested by reports of mutations in genes such as 
MECP2 or CDH8 in rett syndrome and aSD, respectively 
(11, 12, 55, 56). a second pathway is related to metabo-
lism and includes mutations in genes such as PAH in phe-
nylketonuria, BCKDH in disorders of branched-chain amino 
acids, TMLHE in carnitine deficiency or AGAT and GAMT 
in creatine deficiency syndromes. Interestingly, patients 
with mild forms of inborn errors of metabolism may pres-
ent with predominantly autistic symptoms (22). Identifying 
such mutations is of clinical importance since treatments 
may already be available (57). a third pathway is related 
to aberrant translation of mrNa encoding synaptic pro-
teins, (58) and includes mutations affecting several proteins 
that normally inhibit translation through the PI3K-mTOr 
signalling pathway (TSC1, TSC2, NF1, and PTEN) as well 
as mutations affecting proteins directly involved in inhibit-
ing mrNa translation at the synapse (FmrP, CYFIP1, and 
EIF4E) (58, 59). a fourth pathway concerns the actin 
cytoskeleton organization and includes mutations affecting 
OPhN1, arhgEF6, PaK3, mEgaP, arhgEF9 and the 
regulation of the rhogTPase, the ras, the rab, the arf 
and the JNK pathways (60). While mutations affecting 
these pathways were mostly identified in patients with ID, 
they might account for a fraction of patients with aSD 
(53). Finally, a fifth pathway is involved in synapse forma-
tion and excitation/inhibition balance (17, 61). Several 
genes associated with aSD, such as NLGN3/4X, NRXN, 
and SHANK1-3, appear to be involved in the formation of 

Fig. 2. Five pathways are associated with early onset neurodevelopmental disorders. For each pathway, examples of mutated genes are 
indicated.
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tives of the allen Brain Institute (http://www.brain-map.
org) or the Sestan Laboratory (http://medicine.yale.edu/
lab/sestan/index.aspx) are impressive in their description 
of human gene expression at very high resolution. how-
ever, if we want to better ascertain the links that exist 
between the variability of genomes and human brains, 
thousands of brains will need to be studied at the gene 
expression level as well as the functional level, even if 
this proves costly and difficult.

Integrating diversity into our experimental design will 
require an increase in the sample size of our study popu-
lations. Indeed, risk factors for early onset neurodevelop-
mental disorders are either rare with large effect or 
frequent but with a small effect (72). In both situations, 
robust genotype–phenotype relationships are difficult to 
ascertain in small samples. One opportunity to increase 
sample size is to foster data sharing. many constraints 
reduce efficient data sharing (73). hence, there is need 
1) to agree on an ethical informed consent for research 
subjects that will allow data sharing; 2) to agree on stan-
dardized measures, 3) to change the reward system 
regarding publications, 4) to set up systems to make data 
sharing easy and secure.

There is an emerging community of researchers 
involved in data sharing. Specifically in neuroscience, ini-
tiatives such as the Neuroscience Information Framework 
(NIF) or the International Neuroinformatics Coordinating 
Facility (INCF) were launched recently. NIF (http://www.
neuinfo.org) is a dynamic inventory of Web-based neuro-
science resources: data, materials, and tools accessible via 
any computer connected to the Internet. This should 
advance neuroscience research by enabling discovery and 
access to public research data and tools worldwide 
through an open source, networked environment. INCF 
(http://www.incf.org/) develops collaborative neuroinfor-
matics infrastructure and promotes the sharing of data 
and computing resources to the international research 
community. Neuroinformatics integrates information 
across all levels and scales of neuroscience to help under-
stand the brain and treat disease. In addition to increasing 
sample size of the studies, these initiatives for more data 
sharing in the scientific community should also lead to a 
reduction of the important publication bias in the field of 
early onset neurodevelopmental disorders (74).

Proposition 3: patients and relatives as participants 
for research
many aspects of the quality of life of patients and their 
relatives are not adequately taken into account by 
researchers. For example, in aSD, co-morbidities such as 
gastrointestinal and sensory problems are under-explored. 
The movement “no research about me, without me” is 
calling for patients and their relatives to be more involved 
in research designs. For example, the uK National health 
Service (NhS) initiative INVOLVE (http://www.invo.org.

and biomarkers, all promise to provide important new 
insights into the aetiology and classification of these disor-
ders. DSm-5 now makes it easier to recognize overlap 
between different diagnostic categories, but in the main the 
existing narrow and rigid categories tend to disconnect 
researchers from the real phenotypes. recently, several  
initiatives such as the ESSENCE from Christopher gillberg 
were undertaken to improve phenotype characterization 
using more dimensional approaches. The research  
Domain Criteria (rDoC) project has been launched by  
the uS National Institute of mental health (NImh), calling 
for the development, for research purposes, of new ways of 
classifying psychopathology based on dimensions of observ-
able behaviour and neurobiological and genetic measures 
(http://www.nimh.nih.gov/research-priorities/rdoc/nimh-
research-domain-criteria-rdoc.shtml). This effort is attempt-
ing to define basic dimensions of functioning related to 
known neural circuitry to be studied across multiple units 
of analysis, from genes to neural circuits to behaviours, 
cutting across disorders as traditionally defined.

In summary, it is most likely that progress in the  
comprehension of the risk factors for neurodevelopmental 
disorders will come from dimensional and quantitative 
data that goes well beyond current psychiatric classifica-
tion. One first step would be to gather the information 
that is currently separated by DSm-5 diagnostic  
categories and dispersed in different laboratories that may 
fail to communicate. To achieve this, there is a need for 
more data sharing (see below).

Proposition 2: more research on genetic and brain 
diversity in human populations and more data sharing
Based on current case-control design, there is a tendency 
for researchers to know better the genotypes and pheno-
types of the patients than those of the controls. Indeed, in 
the vast majority of genetic studies, controls are often not 
investigated at the phenotypic level, and in phenotypic 
studies, controls are very limited in their number and their 
cultural and socioeconomic status diversity (70). as a con-
sequence, early onset developmental disorders are therefore 
considered as binary traits “affected” versus “non-affected” 
without taking into account the genetic and phenotypic 
diversity of both “affected” and “non-affected” individuals. 
The same is true for studies using transgenic mice; most 
of our knowledge is based on the effect of the mutations 
in C57BL6 mice. however, we know that mutations might 
produce a different phenotype in a different strain. The 
crucial role of the genetic background was very nicely 
illustrated in a recent paper showing the phenotypic conse-
quence of the scalloped mutation in different strains of 
Drosophila  melanogaster (71).

No progress could have been made in the genetics of 
neurodevelopmental disorders if thousands of genomes 
had not been sequenced to ascertain their genetic diver-
sity. The same is true for human brains. The first initia-
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of non-dominant behaviours and phenotypes, such as 
homosexuality, ethnic differences and disabilities. gov-
ernments have spent time and money to accommodate 
people with visual and hearing impairments, helping them 
to navigate public places and find employment, for 
instance – we should take the same steps for autistics” 
(77). as suggested by Waterhouse and gillberg, it might 
be better to abandon the belief that there is a single 
defining aSD brain dysfunction (78). Instead, we should 
understand the diversity of aSD (or autismS). Consider-
ing autism not as a single entity, but as a continuum of 
human diversity and tackling this heterogeneity using 
information coming from different fields of research 
(including direct information from the affected individu-
als and their families (79)) should allow a better diagnos-
tic, care and integration of individuals with autism (77).   
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