
REVIEW

Role of endoplasmic reticulum stress in drug-induced
toxicity
Fabienne Foufelle1 & Bernard Fromenty2

1INSERM, UMRS 1138, Centre de Recherche des Cordeliers, Paris, France
2INSERM, UMR 991, Universit�e de Rennes 1, Rennes, France

Keywords

Adverse effects, drug, endoplasmic reticulum,

ER stress, liver, toxicity.

Correspondence

Bernard Fromenty, Fromenty, INSERM UMR

991, Facult�e de Pharmacie, 2 avenue du

Professeur L�eon Bernard, 35043 Rennes

Cedex, France. Tel: +33 2 23 23 30 44; Fax:

+33 2 23 23 53 85; E-mail: bernard.

fromenty@inserm.fr

Funding Information

No funding information provided.

Received: 18 November 2015; Accepted: 14

December 2015

Pharma Res Per, 4(1), 2016, e00211,

doi: 10.1002/prp2.211

doi: 10.1002/prp2.211

Abstract

Drug-induced toxicity is a key issue for public health because some side effects

can be severe and life-threatening. These adverse effects can also be a major

concern for the pharmaceutical companies since significant toxicity can lead to

the interruption of clinical trials, or the withdrawal of the incriminated drugs

from the market. Recent studies suggested that endoplasmic reticulum (ER)

stress could be an important event involved in drug liability, in addition to

other key mechanisms such as mitochondrial dysfunction and oxidative stress.

Indeed, drug-induced ER stress could lead to several deleterious effects within

cells and tissues including accumulation of lipids, cell death, cytolysis, and

inflammation. After recalling important information regarding drug-induced

adverse reactions and ER stress in diverse pathophysiological situations, this

review summarizes the main data pertaining to drug-induced ER stress and its

potential involvement in different adverse effects. Drugs presented in this

review are for instance acetaminophen (APAP), arsenic trioxide and other anti-

cancer drugs, diclofenac, and different antiretroviral compounds. We also

included data on tunicamycin (an antibiotic not used in human medicine

because of its toxicity) and thapsigargin (a toxic compound of the Mediter-

ranean plant Thapsia garganica) since both molecules are commonly used as

prototypical toxins to induce ER stress in cellular and animal models.

Abbreviations

APAP, acetaminophen; CHOP, C/EBP homologous protein; COX, cyclooxygenase;

CYP, cytochrome P450; ER, endoplasmic reticulum; GI, gastrointestinal; GRP, glucose-

related protein 78; GSH, glutathione; NAPQI, N-acetyl-p-benzoquinone imine; NRTI,

nucleoside reverse transcriptase inhibitor; NSAID, nonsteroidal anti-inflammatory

drug; 4-PBA, 4-phenylbutyrate; PERK, PKR-like ER kinase; PI, protease inhibitor;

PPAR, peroxisome proliferator-activated receptor; ROS, reactive oxygen species;

SREBP, sterol regulatory element-binding protein; UPR, unfolded protein response.

Introduction

Drug-induced toxicity is an important issue for public

health and the well-being of patients. Indeed, some side

effects can be severe and require a hospitalization, or even

can cause the death of some patients. These adverse

effects can also be a major concern for the pharmaceutical

companies because significant toxicity can lead to the

interruption of clinical trials, or the withdrawal of the

incriminated drugs from the market (Labbe et al. 2008;

Elangbam 2010). In the recent years, the endoplasmic

reticulum (ER) stress emerged as a potential important

event involved in drug liability, in addition to other key

mechanisms such as mitochondrial dysfunction and

oxidative stress. Thus, the main objective of the present

review was to collect the available information regarding

drug-induced ER stress and its potential role in the

occurrence of different adverse reactions. For this pur-

pose, we performed a PubMed search of literature pub-

lished in the English language using the following queries
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(by alphabetical order): adverse effect, adverse event,

adverse reaction, drug, drug-induced, ER stress, and toxic-

ity. This data mining was also completed by using Google

Scholar�. Besides the different drugs presented below, we

also included data on tunicamycin and thapsigargin since

both molecules are commonly used as prototypical toxins to

induce ER stress in cellular and animal models.

Drug-Induced Adverse Effects and Main
Mechanisms of Toxicity

Many drugs of our modern pharmacopeia are able to

induce adverse effects that can involve different tissues

such as the liver, heart, kidney, lung, skeletal muscles, adi-

pose tissue, and peripheral nerves (Marrer and Dieterle

2010; Begriche et al. 2011; Hohenegger 2012; Tocchetti

et al. 2013; Miltenburg and Boogerd 2014). Notably, a

single drug can damage several tissues in the same patient

and induce several types of lesions in a given tissue. For

instance, drug-induced liver injury includes hepatic cytol-

ysis, autoimmune-like hepatitis, cholestasis, steatosis,

steatohepatitis, cirrhosis, and hepatocellular adenoma

(Wang et al. 2013a; Leise et al. 2014). This variety of liver

lesions actually reflects the occurrence of different mecha-

nisms of toxicity and the potential involvement of several

types of hepatic cells such as hepatocytes, cholangiocytes,

stellate cells, activated lymphocytes, and Kupffer cells

(Stirnimann et al. 2010; Czaja 2011; Padda et al. 2011).

It is currently acknowledged that mitochondrial dys-

function and oxidative stress are two major mechanisms

whereby drugs can induce injuries in different tissues

such as the liver, heart, and kidney (Sardao et al. 2008;

John and Herzenberg 2009; Baillie and Rettie 2011;

Begriche et al. 2011; Deavall et al. 2012; Tocchetti et al.

2013; Miltenburg and Boogerd 2014). Actually, drugs can

induce oxidative stress via several mechanisms including

by increasing reactive oxygen species (ROS) production

by the dysfunctional mitochondria and higher NADPH

oxidase activity and by reducing cellular antioxidant

defenses (Labbe et al. 2008; Baillie and Rettie 2011;

Begriche et al. 2011; Leung et al. 2012).

Drugs can be harmful either directly or indirectly after

their biotransformation into one or several toxic reactive

metabolites by cellular enzymes such as cytochromes P450

(CYPs) (Baillie and Rettie 2011; Begriche et al. 2011;

Leung et al. 2012). Importantly, CYPs and other xenobi-

otic metabolizing enzymes (XMEs) are expressed mainly

in the liver but also in other tissues including the gas-

trointestinal (GI) tract, kidney, lung, brain, heart, and

white adipose tissue (Dutheil et al. 2009; Thelen and

Dressman 2009; Ellero et al. 2010; Knights et al. 2013;

Ravindranath and Strobel 2013). Hence, the generation of

toxic reactive metabolites can occur in liver and extra-

hepatic tissues (Gu et al. 2005; Ding and Kaminsky

2003). Finally, besides mitochondrial dysfunction and

oxidative stress, there is increasing evidence that ER stress

can be another important mechanism in drug-induced

adverse effects, as underlined in this review.

Definition and Cellular Consequences of ER
Stress

The ER plays a crucial role in the synthesis of all the pro-

teins that are secreted from cells, or inserted into organelle

membranes. Efficient protein folding in the ER requires a

tight coupling between the arrival of new proteins in the ER

lumen and the ER folding capacity. Efficient folding

requires ER-resident proteins such as chaperones and fol-

dases that are calcium-binding/buffering proteins (Coe and

Michalak 2009; Halperin et al. 2014). These proteins

include for instance calreticulin, glucose-regulated protein

78 (GRP78, also known as immunoglobulin-binding

protein or BiP), GRP94, and protein disulfide isomerase

(PDI). When the demand for protein folding increases

(e.g., enhanced protein synthesis, accumulation of mutated,

or abnormal proteins, etc) and exceeds protein folding

capacity, misfolded/unfolded proteins accumulate in the

ER lumen and trigger an ER stress. Many physiological or

pathological situations can interfere with protein folding

and can thus impact ER homeostasis such as alterations of

ER luminal calcium stores, energy depletion, redox distur-

bances, glucose starvation, lipid accumulation, viruses,

ethanol intoxication, and xenobiotics (Malhi and Kaufman

2011; Cnop et al. 2012; Cheng et al. 2013; Chen et al.

2014). Notably, ER stress is leading to the activation of the

so-called unfolded protein response (UPR), the role of

which is to maintain protein homeostasis by decreasing the

load of unfolded proteins and increasing the protein folding

capacity (Fig. 1). In addition, ER stress is also able to

activate autophagy- and proteasome-dependent proteolysis

when misfolded proteins are in excess (Hoyer-Hansen and

Jäättelä 2007; Digaleh et al. 2013).

UPR activation involves three different effectors (also

referred to as the 3 arms of the UPR): inositol requiring

1a (IRE1a), PKR-like ER kinase (PERK), and activating

transcription factor-6a (ATF6a) (Cawley et al. 2011; Dara

et al. 2011; Malhi and Kaufman 2011). One of the main

consequences of UPR activation is the inhibition of trans-

lation, in order to curb the synthesis of new proteins.

This response is mediated by the kinase PERK that phos-

phorylates the alpha subunit of eukaryotic translation-

initiation factor 2 (eIF2a) leading to a rapid reduction in

the initiation of mRNA translation and thus reducing the

load of new client proteins in the ER (Fig. 1).

Despite protein synthesis attenuation during ER stress,

there is a small subset of genes that are specifically
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transcribed and translated via the three branches of the

UPR (Fig. 1). For instance, these genes encode ER-asso-

ciated degradation (ERAD) proteins, ER chaperones (BiP/

GRP78 and GRP94), and enzymes able to expand protein

folding capacity including PDI and foldases (Kaufman

1999; Dara et al. 2011). This physiological response is also

called the adaptive UPR. In contrast, if the UPR is strong

enough and/or sustained, some deleterious consequences

can be observed such as apoptosis, which can be dependent

or not of mitochondria (Hom et al. 2007; Deniaud et al.

2008; Malhi and Kaufman 2011; Sano and Reed 2013).

Importantly, the mitochondrial-independent pathway of

apoptosis triggered by ER stress is the consequence of the

activation of different specific effectors such as the tran-

scription factor C/EBP homologous protein (CHOP, also

referred to as GADD153) and caspase 12 (Malhi and Kauf-

man 2011; Sano and Reed 2013). Depending of the stres-

sors, caspase 12 activation can require the translocation of

caspase 7 from the cytosol to the ER membranes, or a cal-

cium-mediated recruitment of calpain to the ER surface

(Nakagawa and Yuan 2000; Rao et al. 2001; Xie et al.

2002).

Another consequence of ER stress in some cells can

be the stimulation of lipid synthesis by activation of

different transcription factors such as sterol regulatory

element-binding proteins (SREBPs), CAAT/enhancer-

binding proteins (C/EBP) and peroxisome proliferator-

activated receptor-c (PPARc) (Werstuck et al. 2001;

Colgan et al. 2007; Malhi and Kaufman 2011; Lee et al.

2012). It is also important to point out that ER stress and

impaired protein folding can lead to the production of a

significant amount of ROS (Malhotra and Kaufman 2007;

Malhotra et al. 2008). Interestingly, it is estimated that

25% of the ROS generated in a cell results from the for-

mation of disulfide bonds in the ER during normal pro-

tein synthesis (Tu and Weissman 2004; Sevier and Kaiser

2008). Conversely, ROS accumulation can induce the oxi-

dation of resident ER proteins, including proteins of the

polypeptide folding machinery such as PDI and BiP (van

der Vlies et al. 2002, 2003), thus leading to an ER stress

and creating a vicious cycle (Malhotra and Kaufman

2007). To alleviate the deleterious effects of ROS, the

PERK branch of the UPR can activate the transcription of

several key antioxidant enzymes via the phosphorylation

Figure 1. The unfolded protein response (UPR). When an endoplasmic reticulum (ER) stress occurs, the cell initiates an adaptive response called

the UPR. It starts with the activation of three effectors, PKR-like ER kinase (PERK), IRE1, and ATF6, following the removal of the chaperone BiP

(GRP78) that maintains them in an inactivated state. PERK is a kinase which phosphorylates and inactivates the elongation initiation factor eIF2a,

leading to a general decrease in protein translation. However, eIF2a selectively stimulates the translation of ATF4, a transcription factor which

possesses a specific structure (uORF) on its mRNA. ATF4 then activates the synthesis of chaperones and proteins involved in autophagy, protein

secretion, and amino acid metabolism. IRE1 possesses a kinase activity leading to its autophosphorylation and activation of a RNAse activity. This

leads to the splicing of XBP1 mRNA, which is then translated into an active transcription factor. The transcription factor ATF6, which is bound to

the ER membranes as an inactive precursor is transferred via COPII-coated vesicles to the Golgi apparatus, where it is cleaved by the S1P and S2P

proteases into an active form. XBP1 and ATF6 will then activate in the nucleus the transcription of a set of factors allowing to restore ER

homeostasis including chaperones, foldases, and proteins involved in the degradation of unfolded polypeptides (ER-associated degradation). If

these mechanisms are not efficient to restore ER and cell homeostasis, the UPR will eventually activate mechanisms leading to cell apoptosis, in

particular via the transcription factor C/EBP homologous protein (CHOP).
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of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) (Cul-

linan and Diehl 2006; Flamment et al. 2012).

Drug-Induced ER Stress and Adverse Effects

Acetaminophen (APAP)

APAP is a popular drug for the management of pain and

hyperthermia (Table 1). Although APAP is usually deemed

as a safe drug, APAP intoxication after an overdose can lead

to massive hepatocellular necrosis and acute liver failure

(Craig et al. 2011). Moreover, there is evidence that the

maximum recommended dose (i.e., 4 g/day) can induce

mild to moderate hepatic cytolysis, even in healthy individ-

uals (Watkins et al. 2006; Winnike et al. 2010). APAP can

also induce acute kidney injury in some patients, either

after poisoning or at therapeutic doses (Blakely and

McDonald 1995; Kato et al. 2014). APAP-induced acute

nephrotoxicity manifests as acute tubular necrosis with

oliguric renal failure, which can occur alone or in associa-

tion with liver injury (Blakely and McDonald 1995; Jones

and Prescott 1997). APAP overdose has also been reported

to induce cardiotoxicity, pancreatitis, and ototoxicity

(Jones and Prescott 1997; Yorgason et al. 2011).

APAP is mainly metabolized in the liver into the non-

toxic glucuronide and sulfate conjugates. However, a

small amount of APAP is oxidized to the reactive

metabolite N-acetyl-p-benzoquinone imine (NAPQI) by

CYPs 2E1 (CYP2E1) and 3A4 (Gonzalez 2007; Aubert

et al. 2012). After its generation, NAPQI is normally

detoxified by glutathione (GSH) when APAP is taken at

the recommended dosage. After APAP overdose, or in the

presence of predisposing factors, high levels of NAPQI

can induce cytotoxicity. Indeed, once GSH is deeply

depleted and no longer available for NAPQI detoxication,

this reactive metabolite binds to different proteins, in par-

ticular at the mitochondrial level (Michaut et al. 2014).

This is followed by profound mitochondrial dysfunction

and ATP depletion, overproduction of ROS, c-jun

N-terminal kinase (JNK) activation, and massive hepato-

cellular necrosis (Jaeschke et al. 2012; Michaut et al.

2014). APAP-induced acute nephrotoxicity could also

involve CYP2E1-mediated generation of NAPQI, deple-

tion of GSH, and secondary oxidative stress (Hart et al.

1994; Das et al. 2010).

In vivo and in vitro investigations reported that APAP

was also able to induce an ER stress and that such delete-

rious effect could play an significant role in APAP-

induced cell death in liver, kidney, or inner ear (Lorz

et al. 2004; Nagy et al. 2007, 2010; Uzi et al. 2013;

Kalinec et al. 2014). In one of these studies, mortality

Figure 2. Potential mechanisms of drug-induced endoplasmic reticulum (ER) stress. Drugs are able to induce ER stress via different mechanisms including

proteasome inhibition, mitochondrial dysfunction, and alteration of key ER components. The latter mechanism is suspected with drugs that are

transformed into one or several reactive metabolites able to bind covalently to ER proteins and/or to induce oxidative damage of ER components secondary

to oxidative stress. Cytochromes P450 (CYPs) are often involved in the generation of reactive metabolites. The figure also indicates the respective targets of

thapsigargin and tunicamycin, which are two prototypical inducers of ER stress. Further information is provided in the text and Table 1.
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Table 1. Drugs for which adverse events have been linked to ER stress.

Drug(s) Pharmacological class Main side effects Mechanism of ER stress Additional information

Acetaminophen

(APAP)

Antalgic and antipyretic Hepatotoxicity and

nephrotoxicity, commonly

after an overdose

Currently unknown. Possible

involvement of the APAP-

derived reactive metabolite

NAPQI, which binds to

several key microsomal

proteins including PDI and

calreticulin

ER stress could be a late

event after APAP

intoxication, compared to

other deleterious events

such as mitochondrial

dysfunction and oxidative

stress

Amiodarone Antiarrhythmic and

antianginal

Hypotension, cutaneous

reactions, thyroid toxicity,

liver injury, and pulmonary

toxicity

Currently unknown ER stress could be involved

in some amiodarone-

induced adverse effects

(e.g., thyroid and lung

toxicity) in addition to

mitochondrial dysfunction

Arsenic trioxide

(As2O3)

Anticancer agent used to

treat acute promyelocytic

leukemia and other

hematologic malignancies

GI disorders, rash,

hematologic toxicity,

infections, cardiac toxicity

renal toxicity, myopathy,

neuropathy, and

hepatotoxicity

Possible involvement of

oxidative stress and

impairment of protein

folding

In addition to ER stress,

mitochondrial dysfunction

is also likely to be involved

in the pathogenesis of

some adverse effects

induced by arsenic trioxide

Bleomycin Anticancer drug used in

different malignancies such

as lymphomas, head and

neck cancers as well as

ovarian and testicular

cancers

GI disorders, cutaneous

reactions, myelosuppression,

and life-threatening

pulmonary toxicity

Currently unknown. Possible

mechanisms could involve

oxidative stress

ER stress could be involved

in bleomycin-induced

pulmonary toxicity

Bortezomib

(PS-341)

Anticancer drug used to treat

multiple myeloma and

mantle cell lymphoma

GI symptoms, fatigue,

peripheral neuropathy, and

thrombocytopenia

Proteasome inhibition ER stress is one mechanism

whereby bortezomib is able

to induced apoptosis in

cancer cells. ER stress could

be involved in bortezomib-

induced peripheral

neuropathy

Cisplatin Anticancer drug used in

various malignancies such as

testicular, gastric, lung,

breast, and ovarian cancers

GI disorders, kidney injury,

neurotoxicity,

hepatotoxicity, and

cardiotoxicity

Currently unknown. Possible

mechanisms could involve

oxidative stress and/or the

covalent binding of cisplatin

to key microsomal proteins

ER stress could be involved

in cisplatin-induced kidney

injury

Clozapine and

olanzapine

Antipsychotics GI disorders, drowsiness,

extrapyramidal symptoms,

elevation in liver enzymes,

and obesity (with related

metabolic disorders such as

insulin resistance and fatty

liver)

Currently unknown. Possible

involvement of increased

cytosolic calcium

Although fatty liver induced

by clozapine and

olanzapine could be

secondary to obesity,

hepatocyte ER stress

directly induced by these

drugs might also be

involved

Cyclosporin Immunosuppressant Infections, hypertension,

neurotoxicity,

nephrotoxicity, and

hepatotoxicity (including

cholestasis and cytolysis)

Currently unknown. In

hepatocytes, a possible

mechanism could be the

covalent binding of

cyclosporin metabolites to

pivotal microsomal proteins

Possible involvement of ER

stress in cyclosporin-

induced cholestasis.

Cyclosporin-induced ER

stress in kidney could be

indirect consequence of

vascular dysfunction

Diclofenac NSAID GI complications (including

gastric injury and intestinal

damage), hypersensitivity

Currently unknown. Possible

involvement of increased

intracellular calcium in

Possible involvement of ER

stress in diclofenac-induced

(Continued)
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Table 1. Continued.

Drug(s) Pharmacological class Main side effects Mechanism of ER stress Additional information

reactions, hepatotoxicity,

and kidney injury

gastric mucosal cells.

Because diclofenac

metabolism generates two

p-benzoquinone imines

similar to APAP-derived

NAPQI, binding to key ER

proteins could be involved

(in liver and other tissues

expressing CYPs)

GI complications and liver

toxicity

Efavirenz Antiretroviral (non-nucleoside

reverse transcriptase

inhibitor)

Rash, neuropsychological

symptoms, lipodystrophy,

and hepatotoxicity (in

particular cytolysis and

cholestasis)

Possible secondary

consequence of

mitochondrial dysfunction

and release of mitochondrial

calcium into the cytosol

Possible involvement of ER

stress in efavirenz-induced

hepatotoxicity

Erlotinib Anticancer drug used in

different malignancies

including non-small cell lung

cancer and pancreatic

cancer

Rash and GI manifestations

(in particular severe

diarrhea)

Currently unknown Possible involvement of ER

stress in erlotinib-induced

small intestinal injury and

diarrhea

Furosemide Diuretic used to treat

hypertension and edema

Dehydration, hypotension,

hyponatremia, and

hypokalemia

Currently unknown Hepatic ER stress has been

detected in mice treated by

furosemide. Extrapolation

to humans is doubtful since

this drug induces virtually

no hepatotoxicity in

patients

Indomethacin NSAID GI complications (including

gastric injury and intestinal

damage), hypersensitivity

reactions, hepatotoxicity,

and kidney injury

Currently unknown. Possible

involvement of increased

intracellular calcium (in

gastric mucosal cells)

Possible involvement of ER

stress in indomethacin-

induced GI complications

and liver toxicity

Paclitaxel (Taxol) Anticancer agent used in

different malignancies

including ovarian, breast,

and lung cancers

GI disorders, cardiac and

skeletal muscle toxicity,

myelosuppression,

neurotoxicity, and acute

liver injury (mostly hepatic

cytolysis)

Currently unknown Possible involvement of ER

stress in paclitaxel-induced

neurotoxicity

Protease inhibitors

(e.g., indinavir

and ritonavir)

Antiretroviral GI toxicity, rash, kidney

injury, hepatotoxicity

(including cytolysis,

cholestasis, and steatosis),

dyslipidemia, lipodystrophy,

insulin resistance, and type

2 diabetes

Possible involvement of

proteasome inhibition and

oxidative stress

Significant ER stress has

been showed with

atazanavir, indinavir,

lopinavir, nelfinavir,

ritonavir, and saquinavir,

but not with amprenavir,

darunavir, and tipranavir

Sertraline Antidepressant (selective

serotonin reuptake inhibitor)

Somnolence, GI disorders,

tremor, sexual dysfunction,

weight gain, and liver injury

Currently unknown. Possible

role of mitogen-activated

protein kinase (MAPK)

pathway activation

Possible involvement of ER

stress in sertraline-induced

hepatotoxicity

Thapsigargin Sesquiterpene lactone

isolated from the plant

Thapsia garganica, which

has long been used in

traditional Arabian

medicine

Severe skin irritation, salivary

hypersecretion,

gastroenteritis, nervous

disorders, and death

Inhibition of SERCA, thus

leading to severe calcium

depletion in the ER

Prototypical inducer of ER

stress. In addition to ER

stress, increase in free

cytosolic calcium is

inducing apoptosis in

different types of cells

treated with thapsigargin

(Continued)
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induced by a lethal dose of APAP (1 g/kg) was completely

prevented in CHOP knockout mice but data regarding

liver injury induced by a lower dose of this painkiller

(500 mg/kg) showed either a protection or no effect

depending of the route of APAP administration (Uzi

et al. 2013). In addition, other studies dealing with APAP

hepatotoxicity did not find markers of ER stress (Van

Summeren et al. 2011; Hur et al. 2012; van Summeren

et al. 2013). Actually, some data in mice indicated that

ER stress was a relatively late event after APAP intoxica-

tion (500 mg/kg), being significant only 12 hours follow-

ing APAP administration (Hur et al. 2012; Uzi et al.

2013). In contrast, mitochondrial alterations, ATP deple-

tion, JNK activation, oxidative stress, and increased

cytosolic calcium occurred much earlier in mouse liver

after the same dose of APAP (Burcham and Harman

1988; Jaeschke 1990; Ruepp et al. 2002; Aubert et al.

2012; Hur et al. 2012). Investigations in the human hep-

atoma HuH7 cell line also suggested that ER stress

induced by APAP occurred well after mitochondrial alter-

ations (Macanas-Pirard et al. 2005). Thus, further studies

are required to determine whether ER stress is a major

pathway involved in APAP toxicity and cell death.

The mechanism whereby APAP induces ER stress is

poorly understood. A first hypothesis could be the occur-

rence of microsomal alterations secondary to NAPQI gen-

eration. Indeed, it has been reported that APAP induced

severe GSH depletion, lipid peroxidation, and an oxida-

tive shift of the ER oxidoreductases ERp72 and PDI in

liver microsomes (Nagy et al. 2007; Letelier et al. 2011).

Furthermore, NAPQI can covalently bind to several

microsomal proteins such as GSH-S-transferase, PDI, and

calreticulin (Pumford et al. 1990; Weis et al. 1992; Zhou

et al. 1996; Shin et al. 2007). Because PDI and calreticulin

play a major role in protein folding and calcium seques-

tration within the ER (Coe and Michalak 2009), covalent

binding of NAPQI to these proteins could induce an ER

stress. Interestingly, it has been shown that other reactive

benzoquinones induced an ER stress (Wang et al. 2006).

Second, ER stress might also be a secondary consequence

of mitochondrial dysfunction, as discussed later on with

other drugs such as arsenic trioxide and efavirenz.

Amiodarone

This broad-spectrum antiarrhythmic drug also presents

an antianginal effect (Table 1). The main adverse effects

of amiodarone include hypotension, thyroid toxicity (hy-

per- or hypothyroidism), pulmonary toxicity including

bronchiolitis and pulmonary fibrosis, and hepatic lesions

such as steatosis, steatohepatitis, and cirrhosis (Dusman

et al. 1990; Fromenty and Pessayre 1995; Santangeli et al.

2012). Numerous studies have shown that mitochondrial

dysfunction is a major mechanism of amiodarone-

induced toxicity in liver and other tissues (Fromenty and

Pessayre 1995; Di Matola et al. 2000; Nicolescu et al.

2008; Begriche et al. 2011). Recently, amiodarone was

shown to induce ER stress in thyrocytes and lung epithe-

lial cells (Mahavadi et al. 2014; Lombardi et al. 2015),

but the involved mechanism was not determined in these

Table 1. Continued.

Drug(s) Pharmacological class Main side effects Mechanism of ER stress Additional information

Troglitazone Antidiabetic (via activation of

PPARc)

Severe and fatal liver injury

leading to the withdrawal

of troglitazone from the

market

Currently unknown. Possible

role of mitogen-activated

protein kinase (MAPK)

pathway activation

Possible involvement in

troglitazone-induced liver

injury in addition with

mitochondrial dysfunction

and oxidative stress

Tunicamycin Antibiotic active against

different bacteria, fungi,

and viruses

Major neurotoxicity and

death in animals. Kidney

and liver lesions are also

observed in the treated

animals

Impairment of glycosylation

of newly synthesized

proteins in the ER leading to

the disruption of their

folding

Prototypical inducer of ER

stress. Tunicamycin has

never been used in human

medicine due to its toxicity

Zidovudine (AZT) Antiretroviral (nucleoside

reverse transcriptase

inhibitor)

Lactic acidosis, myopathy,

and hepatotoxicity

(including cytolysis and

steatosis)

Currently unknown. Possible

impairment of proteasome

activity

Although ER stress could be

involved in steatosis, the

current knowledge points

to a major role of

mitochondrial dysfunction

in fat accretion induced by

zidovudine

ER, endoplasmic reticulum; CYPs, cytochromes P450; GI, gastrointestinal; PDI, protein disulfide isomerase; NAPQI, N-acetyl-p-benzoquinone imine;

NSAID, nonsteroidal anti-inflammatory drug; SERCA, sarcoplasmic/endoplasmic reticulum calcium ATPase; PPARc, peroxisome proliferator-activated

receptor-c.
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studies. In contrast, no ER stress was detected in hepato-

cytes treated with amiodarone, although it was observed

with cyclosporin A in the same investigations (Van Sum-

meren et al. 2011; van Summeren et al. 2013).

Arsenic Trioxide

Arsenic trioxide (As2O3) is used as an effective anticancer

drug for the treatment of acute promyelocytic leukemia

(APL) (Table 1). Interestingly, arsenic trioxide can be

effective in APL patients refractory to all-trans retinoic

acid and other conventional anticancer drugs such as

anthracyclines (Shen et al. 1997; Breccia and Lo-Coco

2012). This compound could also be useful in other

hematologic malignancies such as multiple myeloma and

myelodysplastic syndromes, although higher doses are

needed in these diseases (Douer and Tallman 2005;

Xu et al. 2014). As2O3 exerts its powerful therapeutic

effect in APL by promoting the degradation of a specific

oncogenic protein, the so-called PML-RARa fusion pro-

tein (Emadi and Gore 2010; Zhang et al. 2010). In con-

trast, regarding the other hematologic malignancies, this

drug could be effective by activating several pathways

leading to cancer cell apoptosis including mitochondrial

dysfunction, oxidative stress, and DNA damage (Pelicano

et al. 2003; Emadi and Gore 2010; Kumar et al. 2014; Xu

et al. 2014). Notably, some of these effects could be the

consequence of a direct interaction of arsenic trioxide

with GSH and protein thiols (Scott et al. 1993; Hughes

2002; Lu et al. 2007; Zhang et al. 2010). Some studies

also suggested that ER stress could be involved in the

anticancer action of arsenic trioxide (Du et al. 2006; Chen

et al. 2012; Chiu et al. 2015).

As2O3 can induce different adverse effects including GI

disorders, rash, hematologic toxicity (e.g., thrombocy-

topenia and neutropenia), infections, cardiac and renal

toxicity, myopathy, neuropathy, and hepatotoxicity

(Douer and Tallman 2005; Schiller et al. 2006; Echaniz-

Laguna et al. 2012). Some of these side effects can be seri-

ous and even fatal in a few cases (Westervelt et al. 2001;

Schiller et al. 2006). It is also noteworthy that chronic

arsenic poisoning via contaminated water and food is also

associated with a wide array of deleterious effects, which

overlap with arsenic trioxide toxicity (Yoshida et al. 2004;

Emadi and Gore 2010). Unsurprisingly, investigations in

noncancerous cells and in rodents suggested that some of

these side effects could be secondary to oxidative stress

and mitochondrial dysfunction (Aposhian and Aposhian

2006; Jomova et al. 2011; Mathews et al. 2013; Garcia-

Sevillano et al. 2014; Vineetha et al. 2015). Several studies

also showed that arsenic trioxide triggered ER stress in

different types of nonmalignant cells such as myoblasts,

vascular endothelial cells, pancreatic b-cells, neutrophils,

and macrophages (Binet et al. 2010; Lu et al. 2011; Yen

et al. 2012; Srivastava et al. 2013; Weng et al. 2014; King

et al. 2015). In several of these studies, ER stress was

associated with other deleterious events including loss of

the mitochondrial membrane potential, increased intracel-

lular free calcium, ROS overproduction, and apoptosis

(Lu et al. 2011; Yen et al. 2012; Srivastava et al. 2013;

Weng et al. 2014; King et al. 2015). Interestingly, arsenic

trioxide-induced ER stress could be prevented by the

GSH precursor N-acetylcysteine (Lu et al. 2011; Yen et al.

2012; Srivastava et al. 2013; King et al. 2015), or by the

mitochondrial-targeted antioxidant tiron (Weng et al.

2014). Since arsenic trioxide has been shown to increase

mitochondrial ROS production possibly via an impair-

ment of the respiratory chain (Paul et al. 2008; Vineetha

et al. 2015), ROS released from mitochondria could thus

play a significant role in arsenic trioxide-induced ER

stress. However, arsenic trioxide might also directly

induce ER stress because some authors showed with

in vitro assays that this compound was able to impair

protein folding (Ramadan et al. 2009; Jacobson et al.

2012).

Bleomycin

This anticancer drug is used to treat several types of

malignancies such as lymphomas, head, and neck cancers

as well as ovarian and testicular cancers (Table 1). Bleo-

mycin induces oxidative DNA damage and subsequent

cell death after formation of a complex with iron (or cop-

per) and oxygen, which generates free radicals able to cre-

ate DNA single- and double-strand breaks (Hecht 2000;

Chen and Stubbe 2005). Notably, this drug is also able to

oxidatively damage other cellular targets such as RNA,

proteins, and lipids (Chen and Stubbe 2005). Bleomycin-

induced adverse effects include GI disorders, myelosup-

pression, cutaneous reactions, and pulmonary toxicity, in

particular severe and life-threatening lung fibrosis (Frou-

darakis et al. 2013; Della Latta et al. 2015). The patho-

physiology of bleomycin lung toxicity seems complex, but

could involve oxidative stress, inflammation, and over-

production of profibrotic cytokine transforming growth

factor-b (TGFb) (Chen and Stubbe 2005; Kikuchi et al.

2011; Froudarakis et al. 2013; Della Latta et al. 2015).

Recent investigations suggested that ER stress could also

be involved (Zhao et al. 2014a,b; Tanaka et al. 2015). In

one of these studies, bleomycin-induced lung fibrosis was

significantly reduced in CHOP�/� mice (Tanaka et al.

2015). Although the mechanism of bleomycin-induced ER

stress was not determined in these investigations, it is

conceivable that oxidative damage of key ER components

could be involved. In this regard, previous studies

reported that N-acetylcysteine was able to alleviate
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bleomycin-induced lung injury (Hagiwara et al. 2000;

Serrano-Mollar et al. 2003; Kikuchi et al. 2011).

Bortezomib

This anticancer drug is approved for the treatment of sev-

eral types of cancers including multiple myeloma and

mantle cell lymphoma (Table 1). The mechanism of

action of bortezomib (also known as PS-341) involves the

specific inhibition of proteasome, which is responsible for

cytotoxicity and apoptosis in cancer cells (Holkova and

Grant 2012; Dou and Zonder 2014). Indeed, proteasome

inhibition secondarily leads to ER stress, ROS production,

and activation of JNK and other signaling pathways

inducing cell death (Lee et al. 2003; Fribley et al. 2004;

Holkova and Grant 2012). The most frequent adverse

events with this drug are GI symptoms, peripheral neu-

ropathy, fatigue, and thrombocytopenia (Holkova and

Grant 2012; Argyriou et al. 2014). One study suggested

that bortezomib-induced ER stress could be involved in

peripheral neuropathy, possibly by impairing myelin syn-

thesis (Shin et al. 2010).

Cisplatin

Cisplatin, also known as cisplatinum or cis-diamminedi-

chloroplatinum (II) (CDDP), is an antitumor agent used

to treat various malignancies including testicular, gastric,

lung, breast, and ovarian cancers (Table 1). Although the

formation of cisplatin-DNA adducts is deemed to be a

key mechanism leading to cancer cell apoptosis, other

mechanisms independent of DNA damage could also be

involved such as ROS overproduction, increased plasma

membrane fluidity, and ER stress (Mandic et al. 2003;

Maccio and Madeddu 2013; Dasari and Tchounwou

2014).

Cisplatin treatment can induce several types of adverse

effects including GI disorders, kidney injury, neurotoxic-

ity, hepatotoxicity, and cardiotoxicity (Kitamura 2008;

Pabla and Dong 2008; Florea and B€usselberg 2011). Many

investigations have been performed to decipher the mech-

anisms of cisplatin-induced acute kidney injury because

this frequent adverse effect limits the use of cisplatin in

cancer therapy (Kitamura 2008; Pabla and Dong 2008).

The emerging picture to explain cisplatin-induced tubular

cell injury and death is a combination of different patho-

physiological events including mitochondrial dysfunction,

ROS overproduction, increased tumor necrosis factor-a
(TNFa) generation, and ER stress (Kruidering et al. 1997;

Kitamura 2008; Pabla and Dong 2008; Servais et al. 2008;

Mukhopadhyay et al. 2012). Indeed, markers of ER stress

such as increased BiP/GRP78 and CHOP expression

and caspase 12 activation have been found in different

investigations performed in renal cells and kidneys of

rodents treated with cisplatin (Liu and Baliga 2005; Pey-

rou et al. 2007; Khan et al. 2013; Kong et al. 2013; Gao

et al. 2014; Wang et al. 2014; Chen et al. 2015). Interest-

ingly, kidneys of CHOP�/� mice showed less evidence of

cell death when treated with cisplatin (Zinszner et al.

1998). Despite these investigations, the precise mechanism(s)

whereby cisplatin is able to induce ER stress is still

unknown. Possible hypotheses could be cisplatin-induced

oxidative stress and/or irreversible binding of this drug to

key ER components. In this regard, cisplatin has been

shown to covalently bind to different proteins, including in

the microsomal compartment (Pattanaik et al. 1992; Litterst

and Schweitzer 1988; Huliciak et al. 2012).

Clozapine and olanzapine

These antipsychotic drugs are structurally similar to the

sedative and anxiolytic benzodiazepines (Table 1). The

antipsychotic action of clozapine and olanzapine is

deemed to be due to dopamine D2 receptor blockade,

although interactions with other neurotransmitter recep-

tors have been reported (Reynolds and Kirk 2010; Brosda

et al. 2014). The most common adverse effects of these

compounds include GI manifestations, drowsiness,

extrapyramidal symptoms, cardiac effects, elevation of

liver enzymes, and obesity, which can be associated with

insulin resistance and fatty liver (Melkersson and Dahl

2003; Begriche et al. 2011; De Fazio et al. 2015; Rojo

et al. 2015). Although clozapine- and olanzapine-induced

fatty liver could be secondary to obesity, investigations in

human hepatocytes also suggested a role of ER stress,

SREBP1c activation and increased hepatic lipogenesis,

possibly via a calcium-dependent pathway (Lauressergues

et al. 2012). Another study showed that olanzapine

induced ER stress and reduced insulin secretion in ham-

ster pancreatic b cells (Ozasa et al. 2013). However, the

pathophysiological significance of this effect remains

unclear since this drug classically induces hyperinsuline-

mia, even in the absence of weight gain (Melkersson and

Dahl 2003; Teff et al. 2013).

Cyclosporin

Cyclosporin (also known as cyclosporin A) is a potent

immunosuppressant isolated from the fungus Tolypocla-

dium inflatum (Table 1). This drug significantly improves

the short-term transplant survival by reducing the inci-

dence of acute allograft rejection. Like tacrolimus

(FK506), cyclosporin exerts its immunosuppressive effect

by inhibiting calcineurin, thus impairing the activation of

the nuclear factor of activated T cells (NFAT) signaling

pathway that plays a major role in T-cell-mediated
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adaptive immune response (Graham 1994; Jorgensen

et al. 2003). Unfortunately, cyclosporin treatment can

induce numerous side effects, which are sometimes severe

and require the discontinuation of the treatment. Besides

infections (that are the direct consequence of immuno-

suppression), cyclosporin can also induce hypertension,

neurotoxicity (e.g., paresthesia and tremor), nephrotoxic-

ity, and hepatotoxicity (Krupp and Monka 1990; Graham

1994; Servais et al. 2008). Liver toxicity not only includes

cholestasis but also hepatic cytolysis and steatosis (Biour

et al. 2004; Wang et al. 2013a).

Cyclosporin is extensively metabolized in liver and kid-

ney by several CYPs, which generate at least 30 different

metabolites (Kelly et al. 1999; Zheng et al. 2013). Some

of these metabolites are able to form stable adducts with

cellular proteins indicating that they are highly reactive

in nature (Nagelkerke et al. 1987; Sadrieh and Thomas

1994; Christians and Sewing 1995). Notably, oxidative

stress seems to be an important mechanism whereby

cyclosporin can lead to cytolysis in different cell types

(Wolf et al. 1997; Nishida et al. 2003; Navarro-Antolin

et al. 2007) and to kidney or liver damage in treated

rodents (Tariq et al. 1999; Kaya et al. 2008; Haleagrahara

et al. 2009). Cyclosporin-induced oxidative stress could

be the consequence of mitochondrial dysfunction and

reduced antioxidant defenses (Kaya et al. 2008; Palomero

et al. 2001; Redondo-Horcajo et al. 2010; Xiao et al.

2013).

Several studies carried out in mouse hepatocytes and

the human hepatoma cell lines HepG2 and HepaRG

showed that cyclosporin was able to induce an ER stress

(Van Summeren et al. 2011; van Summeren et al. 2013;

Szalowska et al. 2013; van den Hof et al. 2014; Sharanek

et al. 2014). Interestingly, the investigations performed in

HepaRG cells showed that reduced canalicular efflux of

taurocholate induced by high concentrations (50 lmol/L)

of cyclosporin were alleviated by 4-phenylbutyrate (4-

PBA), a chemical chaperone commonly used to protect

against ER stress (Sharanek et al. 2014). However, lower

concentrations of cyclosporin (10 lM) impaired tauro-

cholate canalicular efflux without inducing ER stress

(Sharanek et al. 2014). Notably, several studies showed

that cyclosporin is a potent inhibitor of the bile salt

export pump (BSEP) (Dawson et al. 2012; Pedersen et al.

2013). Thus, these investigations suggest that cyclosporin-

induced impairment of bile acid efflux and cholestasis

could be secondary to ER stress only for high concentra-

tions of this immunosuppressant. Whether ER stress plays

a role in cyclosporin-induced hepatic cytolysis and steato-

sis has not been addressed in the aforementioned studies.

Moreover, it is still unknown how cyclosporin can induce

ER stress in liver. A first mechanism could involve CYP-

mediated generation of reactive metabolites able to alter

key ER proteins since some of these metabolites can bind

covalently to microsomal proteins (Nagelkerke et al. 1987;

Sadrieh and Thomas 1994). Another mechanism might be

the occurrence of oxidative stress and lipid peroxidation

within the ER (Barth et al. 1991; Serino et al. 1993).

Different in vitro and in vivo investigations also

attempted to determine whether ER stress could be an

important mechanism involved in cyclosporin-induced

nephrotoxicity (Han et al. 2008; Pallet et al. 2008; Lhotak

et al. 2012; Sarro et al. 2012; Liu et al. 2015). These stud-

ies performed in cultured renal proximal tubule cells and

kidneys of treated rats clearly showed that this immuno-

suppressant agent was able to induce an ER stress (e.g.,

activation of CHOP, BiP/GRP78, and GRP94). In addi-

tion, markers of ER stress have been found in renal biop-

sies of patients with cyclosporin-induced acute or chronic

nephrotoxicity (Lhotak et al. 2012; Hama et al. 2013).

However, despite these data, a direct causal relationship

between cyclosporin-induced ER stress and nephrotoxicity

is doubtful. Indeed, numerous experimental and clinical

studies provided strong evidence that cyclosporin-induced

nephrotoxicity is mainly the consequence of reduced renal

blood flow due to afferent and efferent arteriolar vasocon-

striction (English et al. 1987; Kon et al. 1990; Smith et al.

1992; Grieve et al. 1993; Pannu and Nadim 2008). Since

hypoxia can induce an ER stress in particular in the kid-

ney (Inagi et al. 2014; Suh et al. 2014), renal ER stress

observed during cyclosporin nephrotoxicity could be a

mere consequence of vascular dysfunction induced by this

drug. Finally, it is noteworthy that cyclosporin is not able

to bind covalently to microsomal proteins in kidney, con-

trary to what happens in liver microsomes (Nagelkerke

et al. 1987; Sadrieh and Thomas 1994).

Diclofenac and indomethacin

The nonsteroidal anti-inflammatory drugs (NSAIDs)

diclofenac and indomethacin are discussed together

because of their similar pharmacological and toxicological

profiles (Table 1). Indeed, these drugs are potent nonse-

lective inhibitors of the cyclooxygenases 1 and 2 (COX1

and COX2) used for the treatment of chronic inflamma-

tory diseases such as osteoarthritis and rheumatoid arthri-

tis. As many other nonselective COX inhibitors, the most

significant side effects induced by diclofenac and indo-

methacin are GI complications such as bleeding and

ulceration, hypersensitivity reactions (e.g., anaphylaxis,

skin eruptions, and bronchospasms), and kidney injury

(Rossi et al. 1985; Richy et al. 2004; Gonzalez et al. 2009;

Castellsague et al. 2012; Wallace 2012). These drugs can

also induce hepatotoxicity, mostly cytolytic hepatitis and

cholestasis (Banks et al. 1995; Biour et al. 2004; Wang

et al. 2013a).
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The most common NSAID-induced GI toxicity seems

to be gastric injury, albeit intestinal damage could also be

a frequent side effect observed in treated patients (Wal-

lace 2012; Boelsterli et al. 2013). Numerous studies have

shown that a major mechanism of NSAID-induced gas-

tropathy is COX inhibition and the secondary decreased

production of mucosal prostaglandins, which have a

major cytoprotective action on the gastric mucosa (Rains-

ford and Willis 1982; Wallace 2012; Seminerio et al.

2014). Nevertheless, some investigations suggested that

ER stress could also be involved for some NSAIDs includ-

ing diclofenac and indomethacin (Tsutsumi et al. 2004;

Ohyama et al. 2012). In one of these studies, indometha-

cin-induced apoptosis in guinea-pig gastric mucosal cells

was partially but significantly prevented by expression of

a dominant-negative form of CHOP (Tsutsumi et al.

2004). One mechanism whereby some NSAIDs are able to

induce ER stress and apoptosis in gastric mucosal cells

could be an increase in intracellular calcium levels sec-

ondary to membrane permeabilization (Tanaka et al.

2005).

Contrary to NSAID-induced gastropathy, COX inhibi-

tion does not seem to play a primary role in NSAID-

induced enteropathy, although decreased prostaglandin

synthesis could render the intestine more susceptible to

injury. Indeed, oxidative stress, mitochondrial dysfunc-

tion, and TNFa release could be important mechanisms

in NSAID enteropathy (Wallace 2012; Boelsterli et al.

2013). Recent investigations carried out in rat intestinal

slices suggested that diclofenac could be toxic via an ER

stress in addition to mitochondrial injury and oxidative

stress (Niu et al. 2014). ER stress was also observed in

cultured rat enterocytes treated with indomethacin (Nara-

bayashi et al. 2015).

An important mechanism of diclofenac-induced hepa-

tocellular injury is the CYP-mediated generation of two

p-benzoquinone imines and possibly other reactive

metabolites triggering oxidative stress, mitochondrial dys-

function, and cell death (Bort et al. 1999; Boelsterli 2003;

Park et al. 2005). In addition, diclofenac is able to induce

direct mitochondrial dysfunction (Begriche et al. 2011;

Porceddu et al. 2012; Massart et al. 2013). Although ER

stress with CHOP induction has been observed in hepatic

cells treated with diclofenac (Franceschelli et al. 2011;

Nadanaciva et al. 2013; Fredriksson et al. 2014), it is still

unclear whether this event plays a primary role in diclofe-

nac-induced cell demise, compared to mitochondrial dys-

function. Moreover, the mechanism whereby diclofenac

induces ER stress in hepatocytes is still unknown.

Although diclofenac was shown to bind irreversibly to

hepatic microsomal proteins in several studies (Kretz-

Rommel and Boelsterli 1994; Hargus et al. 1995;

Obach et al. 2008), the targeted polypeptides are still

unidentified. It will be interesting to determine whether

diclofenac-derived p-benzoquinone imines can bind cova-

lently to the microsomal PDI and calreticulin, as does

APAP-derived NAPQI (Zhou et al. 1996). Finally, it is

noteworthy that indomethacin was also found to induce

ER stress in hepatic cells (Franceschelli et al. 2011). How-

ever, similar to diclofenac, it is still unclear whether ER

stress is the primary mechanism of liver injury induced

by indomethacin since this drug is also able to directly

impair mitochondrial function (Jacob et al. 2001; Por-

ceddu et al. 2012).

Efavirenz

Efavirenz is a non-nucleoside reverse transcriptase inhibi-

tors (NNRTIs) used to treat the human immunodefi-

ciency virus (HIV) infection (Table 1). Efavirenz can

induce several types of side effects including neuropsycho-

logical manifestations (e.g., dizziness, headache, and

depression), rash, lipodystrophy and hepatotoxicity,

which can occur as hepatic cytolysis and cholestasis (Sulk-

owski et al. 2002; Biour et al. 2004; Maggiolo 2009; Mar-

golis et al. 2014). Several studies also suggest that

efavirenz could trigger endothelial dysfunction and

increase the cardiovascular risk in HIV-infected patients

(Maggi et al. 2011; Gupta et al. 2012). The exact mecha-

nism whereby efavirenz can be toxic is still unclear. Sev-

eral studies showed that efavirenz can induce

mitochondrial dysfunction in different experimental mod-

els including human hepatic cells (Apostolova et al. 2010;

Blas-Garc�ıa et al. 2010), primary rat neurons (Purnell and

Fox 2014) and different brain regions of treated mice

(Streck et al. 2011). A recent study reported that efavirenz

was able to induce an ER stress in human hepatic Hep3B

cells, with an upregulation of CHOP, BiP/GRP78, and

phospho-eIF2a (Apostolova et al. 2013). However, inves-

tigations demonstrated that this deleterious effect was

actually secondary to mitochondrial dysfunction and the

release of mitochondrial calcium into the cytosol (Apos-

tolova et al. 2013). Two recent studies also showed that

efavirenz-induced ER stress in human endothelial cells

(Bertrand and Toborek 2015; Weiß et al. 2015), but the

involved mechanism was not determined in these investi-

gations.

Protease inhibitors

Protease inhibitors (PIs) are antiretroviral drugs fre-

quently used for the treatment of HIV-infected patients

(Table 1). This important pharmacological class includes

numerous compounds such as amprenavir, atazanavir,

darunavir, indinavir, lopinavir, nelfinavir, ritonavir, saqui-

navir, and tipranavir. Taken as a whole, these drugs can
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induce GI toxicity such as nausea and diarrhea, rash, liver

and kidney injury, dyslipidemia, lipodystrophy, insulin

resistance, and type 2 diabetes (Gougeon et al. 2004;

Pannu and Nadim 2008; Izzedine et al. 2009; Caron-

Debarle et al. 2010; Margolis et al. 2014). As regards hep-

atotoxicity, different types of lesions have been described

in treated patients such as cytolysis, cholestasis, steatosis,

and cirrhosis (Biour et al. 2004; Wang et al. 2013a). Some

PIs such as indinavir, lopinavir, and ritonavir are sus-

pected to increase the risk of cardiovascular diseases

including myocardial infarction (Bavinger et al. 2013;

Margolis et al. 2014).

PIs are toxic via different pathways, in particular by

inducing mitochondrial dysfunction and oxidative stress

and by promoting inflammation (Gougeon et al. 2004;

Caron et al. 2007; Caron-Debarle et al. 2010; Mencarelli

et al. 2012; Bociaga-Jasik et al. 2013; Cassol et al. 2013;

Reyskens et al. 2013). Several studies also reported that

some PIs are able to induce ER stress in different types of

cells (e.g., macrophages, adipocytes, hepatocytes) and

tissues (e.g., liver, intestine) (Zhou et al. 2005; Gupta

et al. 2007; Cao et al. 2010; Touzet and Philips 2010; Wu

et al. 2010; Zha et al. 2010, 2013; Br€uning 2011; Zhou

2011; Br€uning et al. 2012; Apostolova et al. 2013; Taura

et al. 2013; Wang et al. 2013b). In these investigations,

ER stress was consistently observed with atazanavir, indi-

navir, lopinavir, nelfinavir, ritonavir, and saquinavir. In

contrast, amprenavir, darunavir, and tipranavir induced

only a weak or no ER stress in the different tested experi-

mental models (Wu et al. 2010; Zhou 2011; Taura et al.

2013; Zha et al. 2013). Notably, some of these studies

brought evidence that PI-induced ER stress was involved

in lipid metabolism alterations, inflammation, cell apop-

tosis, and tissue damage, in particular by using CHOP�/�

mice or cells (Zhou et al. 2005; Cao et al. 2010; Wu et al.

2010; Zha et al. 2010, 2013; Zhou 2011; Wang et al.

2013b). According to these investigations, ER stress could

thus be an important mechanism whereby some PIs are

able to induce metabolic disturbances such as lipodystro-

phy, hepatic steatosis and cytolysis, dyslipidemia, and

some cardiovascular complications. Lastly, it is notewor-

thy that PI-induced ER stress and hepatocyte damage

have been shown to be potentiated by ethanol exposure

(Kao et al. 2012; Hu et al. 2015). Interestingly, one of

these studies reported that the combination of PIs and

ethanol significantly induced ER stress and cell death in

mouse hepatocytes but not in mouse Kupffer and stellate

cells (Hu et al. 2015). These experimental data could be

clinically relevant because previous investigations reported

a greater risk of PI-induced severe hepatic injury in

patients abusing alcohol (Nunez et al. 2001).

The precise mechanisms whereby some PIs can induce

ER stress is still unclear, although two hypotheses have

been proposed. The first mechanism could be PI-induced

inhibition of proteasome activity (Parker et al. 2005;

Pyrko et al. 2007; Bono et al. 2012). Indeed, several stud-

ies carried out with other compounds (e.g., bortezomib)

showed that specific impairment of proteasome function

can potently trigger ER stress (Lee et al. 2003; Fribley

et al. 2004; Bono et al. 2012). In this context, ER stress

occurs because the proteasome cannot degrade the few

misfolded proteins that are normally but constantly pro-

duced within the ER (Fribley and Wang 2006; Xu et al.

2005). Proteasome inhibition has been shown for atazana-

vir, indinavir, lopinavir, nelfinavir, ritonavir, and saquina-

vir, although the potency of this inhibitory effect seemed

variable between these drugs (Schmidtke et al. 1999;

Pajonk et al. 2002; Piccinini et al. 2002; Parker et al.

2005; Bono et al. 2012). The second potential mechanism

could involve PI-induced oxidative stress, as suggested by

some investigations (Touzet and Philips 2010; Taura et al.

2013). However, the precise origin of oxidative stress has

not been addressed in these studies.

Thapsigargin

This sesquiterpene lactone of the Mediterranean plant

Thapsia garganica is a prototypical and powerful inducer

of ER stress (Zinszner et al. 1998; Rutkowski et al. 2008;

Kammoun et al. 2009) (Table 1). More precisely, thapsi-

gargin induces ER stress by inhibiting sarcoplasmic/endo-

plasmic reticulum calcium ATPase (SERCA) (Fig. 2),

thus leading to severe depletion of ER calcium (Kaufman

1999; Denmeade and Isaacs 2005; Sch€onthal 2012). In

addition to ER stress-induced activation of downstream

effectors that can trigger cell death, the concomitant

increase in free cytosolic calcium is also a potent

proapoptotic signal in different types of cells (Jiang et al.

1994; Treiman et al. 1998; Kim et al. 2008). In mast cells,

thapsigargin-induced augmentation in cytosolic calcium

is leading to the release of histamine, which could

explain the potent skin irritating effects of Thapsia gar-

ganica (Jacobsen et al. 1987; Doan et al. 2015). Other

toxic effects of this plant can include salivary hypersecre-

tion, gastroenteritis, vomiting and diarrhea, nervous dis-

orders, fever, and death in the most severe cases of

intoxication (Bnouham et al. 2006; Hammiche et al.

2013). Despite its significant toxicity, Thapsia garganica

has long been used in traditional Arabian medicine for

the treatment of different illnesses including rheumatic

pains, women infertility, and pulmonary diseases (Trei-

man et al. 1998; Bnouham et al. 2006; Hammiche et al.

2013). In the past few years, different thapsigargin ana-

logs have been developed as potential drug candidates for

the treatment of prostate cancers (Isaacs 2005; Dubois

et al. 2013; Doan et al. 2015).
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Tunicamycin

This glucosamine-containing antibiotic produced by

Streptomyces lysosuperificus is active against different types

of microorganisms including gram-positive bacteria,

fungi, yeast, and viruses (Table 1). Early investigations

have demonstrated that this antibiotic was able to inhibit

the synthesis of N-glycoproteins in yeast and bacteria

(Kuo and Lampen 1974; Bettinger and Young 1975) as

well as in animals and plants (Fig. 2) (Takatsuki and

Tamura 1971; Tkacz and Lampen 1975; Ericson et al.

1977). More specifically, tunicamycin impairs the transfer

of N-glucosamine to the polyisoprenoid lipid dolichol

phosphate, the first step in the synthesis of the lipid-

linked oligosaccharide that is used as a precursor for the

N-glycoproteins (Ericson et al. 1977; Bieberich 2014).

Notably, this biosynthetic step takes place within the ER

in eukaryotic cells (Bieberich 2014). Consequently,

impairment of glycosylation of newly synthesized proteins

is leading to the disruption of their folding in the ER

(Kaufman 1999; Sch€onthal 2012). In addition, this alter-

ation of peptide conformation can secondarily prevent

the cellular secretion of some proteins such as different

immunoglobulins (Hickman et al. 1977; Elbein 1981).

Tunicamycin has never been used in human medicine

because of its major toxicity. In particular, acute tuni-

camycin administration in rodent, cattle and sheep is

leading to severe neurotoxicity with disturbed conscious-

ness, convulsions, and paralysis, which can occasionally

lead to the death of the treated animals (Leaver et al.

1988; Bourke and Carrigan 1993). The lesions in the brain

are mainly vascular and it is deemed that blood vessel

damage could secondary lead to brain ischemia and

hypoxic neuronal damage (Finnie and O’Shea 1988; Lea-

ver et al. 1988). Indeed, tunicamycin damages the

endothelial cells of small blood vessels with marked

dilatation of the rough ER (i.e., typical of the presence of

ER stress), which appears to strongly distort their cyto-

plasm and cause stenosis of the blood vessel lumen (Fin-

nie and O’Shea 1988; Finnie and O’Shea 1990a).

Tunicamycin-induced direct endothelial toxicity has also

been observed in vitro in vascular endothelial cells (Finnie

and O’Shea 1990a; Galan et al. 2014; Suganya et al.

2014). Nevertheless, in vitro studies also showed that tuni-

camycin can induce neuronal cell death in different types

of neurons (Chang and Korolev 1996; Kosuge et al. 2006;

Galehdar et al. 2010). Some of these in vitro investigations

demonstrated that tunicamycin-induced endothelial and

neuronal cell death was linked to ER stress (Kosuge et al.

2006; Galehdar et al. 2010; Suganya et al. 2014).

In addition to its neurotoxicity, tunicamycin is also

able to induce acute liver and kidney injuries in the

intoxicated animals (Zinszner et al. 1998; Finnie and

O’Shea 1989; Finnie and O’Shea 1990b; Marciniak et al.

2004; Rutkowski et al. 2008; Carlisle et al. 2014). Notably,

tunicamycin-induced acute kidney injury is blunted in

CHOP knockout mice, or in mice treated with the chemi-

cal chaperone 4-PBA (Marciniak et al. 2004; Carlisle et al.

2014). In liver, the lesions observed in tunicamycin-

intoxicated animals include steatosis, bile ductular hyper-

plasia, swollen hepatocytes, and the presence of apoptotic

bodies (Finnie and O’Shea 1989; Finnie and O’Shea

1990b; Finnie et al. 2004; Rutkowski et al. 2008). Interest-

ingly, swollen hepatocytes are characterized by a marked

dilatation of the rough ER (Finnie and O’Shea 1989; Fin-

nie et al. 2004). The precise mechanism of tunicamycin-

induced hepatic steatosis is still elusive. Although some

data suggested that tunicamycin could favor de novo lipo-

genesis in particular via a SREBP1c-dependent pathway

(Kammoun et al. 2009; Lee et al. 2012), other investiga-

tions did not support this mechanism (Rutkowski et al.

2008; Jo et al. 2013). Alternatively, tunicamycin could

favor intrahepatic lipid accumulation by other mecha-

nisms including reduced expression and activity of the

transcription factor PPARa, a master regulator of fatty

acid oxidation (Rutkowski et al. 2008; Yamamoto et al.

2010; Chikka et al. 2013), impairment of triglyceride

excretion (Zhang et al. 2011), or increased lipid delivery

to the liver (Jo et al. 2013; Bogdanovic et al. 2015).

Zidovudine

This nucleoside reverse transcriptase inhibitor (NRTI) is

the first antiretroviral drug marketed for the treatment of

HIV (Table 1). Other NRTIs include stavudine (d4T),

lamivudine (3TC), didanosine (ddI), and tenofovir.

Despite their pharmacological interest, these drugs can

unfortunately induce a large array of side effects, which

are sometimes fatal, such as hepatotoxicity, renal dysfunc-

tion, myopathy, pancreatitis, peripheral neuropathy,

lipodystrophy, and lactic acidosis (Izzedine et al. 2009;

Caron-Debarle et al. 2010; Begriche et al. 2011; Margolis

et al. 2014). NRTI-induced liver injury includes hepatic

cytolysis, microvesicular and/or macrovacuolar steatosis,

steatohepatitis, and cirrhosis (Biour et al. 2004; Massart

et al. 2013; Wang et al. 2013a). Numerous investigations

have shown that the main mechanism involved in NRTI

toxicity is mitochondrial dysfunction, as these drugs can

reduce mitochondrial DNA (mtDNA) levels in various

tissues via DNA polymerase c inhibition (Gaou et al.

2001; Igoudjil et al. 2006; Schon and Fromenty 2016). A

recent study showed that zidovudine-induced hepatic

steatosis in mice was associated with an ER stress, with a

concomitant increase in SREBP1c expression and reduced
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PPARa expression (Banerjee et al. 2013). However,

mtDNA levels and mitochondrial function were not mea-

sured in this study and thus it remains unclear whether

zidovudine-induced ER stress was the main mechanism of

fat accumulation in mouse liver. In addition, the mecha-

nism whereby zidovudine could induce an ER stress is

still unknown, although a previous study showed that this

drug was able to significantly inhibit the proteasome

activity (Piccinini et al. 2002).

Other drugs

The antidepressant sertraline and the antidiabetic troglita-

zone can be toxic for the liver (Table 1) (Biour et al.

2004; Wang et al. 2013a). Importantly, troglitazone

caused several cases of fatal liver failure and was thus

withdrawn from the market (Labbe et al. 2008). The role

and mechanisms of ER stress in sertraline and troglita-

zone-induced hepatotoxicity have been discussed in a

recent review (Chen et al. 2014). Hepatic ER stress has

also been detected in a mouse model of liver toxicity

induced by the diuretic drug furosemide (Table 1) (Qu

et al. 2014). However, extrapolation of these experimental

data to humans is doubtful because furosemide induces

virtually no hepatotoxicity in treated patients (Biour et al.

2004; McGill et al. 2015).

Erlotinib is an anticancer drug that can induce severe

diarrhea requiring an interruption of the treatment

(Table 1) (Reck et al. 2011). A recent study provided

some evidence that erlotinib-induced ER stress in rat

small intestine epithelial cells was involved in apoptosis

and reduced expression of E-cadherin (Fan et al. 2014).

These effects might explain why erlotinib can impair the

gut barrier integrity and induce diarrhea (Fan et al.

2014). ER stress could also be involved in the neuronal

toxicity of the anticancer drug paclitaxel (Table 1) (Tan-

imukai et al. 2013), in addition to microtubule stabiliza-

tion (Gornstein and Schwarz 2014).

Concluding Remarks and Remaining Issues

The present review underlines that ER stress could be

involved in different adverse effects induced by drugs

belonging to different pharmacological classes. However, it

is still unclear whether ER stress is a common key patho-

physiological signal involved in drug-induced toxicity. This

may be because ER stress has not been frequently assessed

in the context of drug-induced side effects, in contrast to

other mechanisms of toxicity such as mitochondrial dys-

function and oxidative stress. It is also noteworthy that a

great number of studies reported only a mere association

between ER stress and cellular (or tissue) alterations.

Hence, it is difficult to ascertain from these reports that ER

stress is bona fine involved in drug-induced toxicity. In con-

trast, some of the aforementioned studies brought causal

relationship by using CHOP-/- mice or cells (Zinszner et al.

1998; Marciniak et al. 2004; Wu et al. 2010; Zhou 2011;

Uzi et al. 2013; Wang et al. 2013b; Zha et al. 2013; Tanaka

et al. 2015). Thus, future investigations should use these

experimental models, or similar ones with knockout of

other major proteins involved in ER stress such as IRE1,

PERK, or ATF6 (Fig. 1).

As previously mentioned, some investigators used

4-PBA in order to determine whether this chemical chap-

erone could alleviate drug-induced cellular (or tissue)

damage. However, besides being protective against ER

stress, 4-PBA presents other biological effects. For

instance, 4-BPA was shown to be a histone deacetylase

(HDAC) inhibitor and an autophagy inducer, to regulate

Hsp70 expression and to present antioxidant and anti-

inflammatory properties (Iannitti and Palmieri 2011;

Suaud et al. 2011; Roy et al. 2012; Rekha et al. 2015).

Thus, protection afforded by 4-BPA might not be fully

related to ER stress defense.

In some studies, the presence of ER stress is based on

the assessment of only a few UPR markers such as BiP/

GRP78 and CHOP. However, accurate ER stress monitor-

ing should include several markers activated by the three

canonical arms of the UPR, as underscored in previous

reviews (Samali et al. 2010; Cawley et al. 2011; Hiramatsu

et al. 2011). Since the detection of cleaved ATF6, phos-

pho-PERK, and phospho-IRE1 is rather difficult, different

downstream targets of these three effectors can be studied

(Samali et al. 2010). Hence, in addition to BiP/GRP78

and CHOP, other UPR markers should be investigated at

the mRNA and/or protein level such as spliced X-box

binding protein 1 (XBP1), homocysteine-inducible ER

protein (HERP), ER degradation enhancer mannosidase

alpha-like 1 (EDEM1), phospho-eIF2a, and ATF4 (Samali

et al. 2010; Cawley et al. 2011; Hiramatsu et al. 2011). In

addition, investigations on drug-induced ER stress should

systematically include a positive control such as tuni-

camycin or thapsigargin.

It must be also pointed out that the exact mechanism

of ER stress was not addressed in most of the studies

cited in this review. In contrast, investigations performed

with a few drugs suggested that ER stress could be sec-

ondary to oxidative stress (i.e., arsenic trioxide), protea-

some inhibition (i.e., bortezomib), or increased cytosolic

calcium (i.e., efavirenz) (Fig. 2). The data reported with

efavirenz are particularly interesting because ER stress and

elevated cytosolic calcium were found to be secondary to

mitochondrial dysfunction (Apostolova et al. 2013).

Notably, mitochondrial dysfunction induced by other fac-

tors including toxins can secondarily cause an augmenta-

tion in cytosolic calcium (Luo et al. 1997; Sheehan et al.
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1997; Biswas et al. 1999; Amuthan et al. 2002). Since

numerous drugs are able to impair mitochondrial func-

tion (Labbe et al. 2008; Begriche et al. 2011; Porceddu

et al. 2012; Jones et al. 2014), it will be important to

determine whether some of these drugs are also able to

induce an ER stress by increasing cytosolic calcium.

Another mechanism of drug-induced ER stress that

deserves to be carefully addressed is the covalent binding

of reactive metabolites to ER proteins (Fig. 2). Indeed,

drugs can be toxic because of their biotransformation by

CYPs into one or several reactive metabolites, as previ-

ously discussed. Importantly, CYPs are mainly located in

the ER membranes, although some CYPs could be also

found in mitochondria (Avadhani et al. 2011; Knockaert

et al. 2011). In addition, it is noteworthy that CYPs are

expressed in various tissues, as previously mentioned.

Thus, covalent binding of reactive metabolites to ER pro-

teins could occur with some drugs in different tissues and

might lead to ER stress and side effects.

Mitochondrial dysfunction can secondarily lead to ER

stress, as previously mentioned. However, a reciprocal

relationship has also been showed in some pathophysio-

logical situations. For instance, ER stress induced by thap-

sigargin and tunicamycin can secondarily promote

mitochondrial calcium accumulation and opening of the

mitochondrial permeability transition (MPT) pore as well

as other mitochondrial alterations leading to cell death

(Hom et al. 2007; Deniaud et al. 2008). Actually, there is

a close connection between ER and mitochondria and the

physical association of the two organelles creates a struc-

ture known as the mitochondria-associated ER membrane

(MAM) (Csordas et al. 2006; Hayashi et al. 2009). In the

physiological context, this connection allows a constant

transfer of calcium between ER and mitochondria (Csor-

das et al. 2010; Giacomello et al. 2010). During ER stress,

calcium can be massively transferred to the mitochondria

through these ER-mitochondria microdomains, or as a

consequence of increased cytosolic calcium (Mandic et al.

2003; Benali-Furet et al. 2005; Deniaud et al. 2008; Tim-

mins et al. 2009). Hence, induction of ER stress can sec-

ondarily augment the mitochondrial overload of calcium

and thus favor mitochondrial membrane permeabilization

and the release of proapoptotic factors such as cyto-

chrome c and apoptosis-inducing factor (Deniaud et al.

2008; Pinton et al. 2008; Timmins et al. 2009; Fonseca

et al. 2013). In the context of drug-induced toxicity, it

will thus be important to gain more information regard-

ing the relationship between ER stress and mitochondrial

dysfunction and to determine whether some drugs can

specifically interact with MAM. This may help to find

strategies to prevent, or alleviate, some adverse effects that

can be severe and life-threatening in some patients.
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