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Abstract

Genetic oscillators, such as circadian clocks, are constantly perturbed by molecular noise arising 

from the small number of molecules involved in gene regulation. One of the strongest sources of 

stochasticity is the binary noise that arises from the binding of a regulatory protein to a promoter 

in the chromosomal DNA. In this study, we focus on two minimal oscillators based on activator 

titration and repressor titration to understand the key parameters that are important for oscillations 

and for overcoming binary noise. We show that the rate of unbinding from the DNA, despite 

traditionally being considered a fast parameter, needs to be slow to broaden the space of 

oscillatory solutions. The addition of multiple, independent DNA binding sites further expands the 

oscillatory parameter space for the repressor-titration oscillator and lengthens the period of both 

oscillators. This effect is a combination of increased effective delay of the unbinding kinetics due 

to multiple binding sites and increased promoter ultrasensitivity that is specific for repression. We 

then use stochastic simulation to show that multiple binding sites increase the coherence of 

oscillations by mitigating the binary noise. Slow values of DNA unbinding rate are also effective 

in alleviating molecular noise due to the increased distance from the bifurcation point. Our work 

demonstrates how the number of DNA binding sites and slow unbinding kinetics, which are often 

omitted in biophysical models of gene circuits, can have a significant impact on the temporal and 

stochastic dynamics of genetic oscillators.

I. Introduction

Genetic oscillatory networks are ubiquitous in nature and perform important functions. For 

example, the cell-cycle oscillator regulates cell growth and division, whereas the circadian 

clock regulates the behavior of organisms with respect to daily changes in light. These 

genetic oscillators are used by living systems to reliably coordinate various periodic internal 

processes with each other as well as with their rhythmic environment. However, this 

presents a challenge at the cellular level because oscillators have to maintain proper timing 

(temporal coherence of oscillation) in the presence of stochastic noise that arises from the 

small number of regulatory molecules in cells [1].

A simple mechanism to mitigate the effect of molecular noise would be to increase the 

number of molecules of each species [2–4]. While the number of RNAs and proteins made 

per gene can be large, most cells are fundamentally constrained to one to two gene copies 
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and are subject to binary noise in the first step of gene regulation (i.e., transcription factor 

binding to DNA) [5,6]. This binary gene regulation noise manifests itself as a stochastic 

temporal pattern of all-or-none gene activity depending on whether the promoter is bound by 

the regulatory protein. Recent work shows that slow DNA binding-unbinding kinetics (also 

called the nonadiabatic limit) can exacerbate the binary noise and have profound 

consequences on gene expression [7], epigenetic switching [8], and oscillation [3,4,9,10]. 

Faster kinetic rates and complex gene promoter architectures have been proposed as a way 

to suppress the effect of this binary noise. For example, increasing the DNA binding and 

unbinding rate can increase temporal coherence of oscillations via more precise sampling of 

the concentration of transcription factors [3,9–11] or by increasing the distance from a 

bifurcation point [4,12]. However, transcription factors often have slow DNA unbinding 

rates [13–17], which suggests that these mechanisms are not generally applicable. The 

cooperative binding of a transcription factor to multiple binding sites has also been shown to 

increase temporal coherence of oscillations [18]. However, multiple binding sites do not 

always lead to cooperativity and transcription factor binding to a single DNA site may often 

be enough to effectively activate or repress transcription.

To better understand the potential mechanisms that suppress the binary gene regulation 

noise, in particular the influence of slow DNA unbinding rates and multiple binding sites, 

we study an activator-titration circuit (ATC) that has been theoretically shown to oscillate 

[19]. The ATC consists of a constitutively expressed activator that promotes the expression 

of the inhibitor, which then titrates the activator into an inactive heterodimer complex (Fig. 

1). Studying the ATC has two advantages. First, it lies at the core of animal circadian clocks 

[20] and oscillatory NF-κB signaling [21,22] and has served as a model of natural genetic 

oscillators [10,19,23–26]. Second, the ATC generates the necessary nonlinearities through 

protein titration [27] and does not require cooperative binding of activator to the inhibitor 

promoter. Thus, by studying a titration-based oscillator, we can better explore the kinetic 

effects of multiple binding sites on coherence independently of the effects that might arise 

from cooperativity. To obtain general insights that are not specific to activation, we also 

study a repressor-titration circuit (RTC), which consists of a self-repressor and a 

constitutively-expressed inhibitor (Fig. 1). This novel titration-based oscillator is analogous 

to the ATC but uses repression instead of activation for the transcriptional regulation.

We first characterize these oscillators and how they depend on several key parameters in 

Sec. II. We deliberately constrain ourselves to physiological parameters found in a simple 

eukaryote, Saccharomyces cerevisiae, commonly known as budding yeast. We show that, in 

addition to slow mRNA degradation, slow DNA unbinding rates of transcription factors are 

important for providing the necessary delay in the negative feedback loop for oscillatory 

solutions. Thus, both the DNA unbinding rate and mRNA degradation rate can set the period 

of oscillation. We then demonstrate that the addition of multiple, independent binding sites 

has nontrivial effects on the ATC and the RTC. While multiple binding sites lengthen the 

period of both oscillators due to an effective increase in the delay of negative feedback, they 

dramatically increase the oscillatory solution space of the RTC only. This is because 

multiple, independent binding sites generate ultrasensitivity (i.e., strong nonlinear response 

to changes in regulatory protein concentration) in repression-based promoters only, and thus 
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only RTC can benefit from this effect. In Sec. III, we use stochastic Gillespie simulations to 

understand the extent to which DNA unbinding rates and numbers of binding sites suppress 

the molecular noise in ATC and RTC oscillators. We show that multiple binding sites 

increase the temporal coherence of oscillations by alleviating the binary noise resulting from 

discrete gene states. We also show that slower values of DNA unbinding rates are best for 

coherent oscillations in simple titration-based oscillations. Last, we compare and contrast 

our results on temporal coherence with those of previous models of genetic oscillators in 

Sec. IV.

II. Biophysical Model of ATC and RTC

Oscillators require negative feedback with nonlinearity and time delays [28]. 

Mechanistically, negative feedback on gene expression can occur transcriptionally via 

repressors [29–31] or post-transcriptionally via phosphorylation [32–34], degradation 

[32,34,35], or titration of activators into inactive complexes by inhibitors [10,19,23–26]. The 

ATC is a minimal two-gene circuit that can oscillate through the use of protein titration both 

as a source of nonlinearity and indirect negative feedback. In the first phase of oscillation, 

high levels of free activator homodimerize, bind the promoter, and overproduce inhibitor 

until all free activator has been titrated into inactive heterodimer. In the second phase of 

oscillation, the remaining activator will unbind from the inhibitor promoter and be 

sequestered by inhibitor, thus causing the promoter to return to low levels of expression of 

inhibitor. The levels of inhibitor will eventually decline to a point where free activator can 

reaccumulate and restart the cycle.

In the RTC, protein titration is used exclusively as a source of nonlinearity and the negative 

feedback is directly achieved through autorepression. In the first phase of oscillation, high 

levels of free repressor will homodimerize, bind directly to its own promoter, and repress its 

transcription. The free repressor will be titrated away by the constitutively expressed 

inhibitor. In the second phase of oscillation when free repressor levels are low, the 

remaining repressor will unbind from the promoter, returning to high levels of transcription 

and the rapid overproduction of free repressor. As we will show below, the indirect versus 

direct nature of negative feedback in ATC and RTC is responsible for many of the 

differences between these two titration-based oscillators.

A. ATC and RTC oscillators with a single DNA binding site

Even simple genetic circuits such as the ATC and RTC include many reactions and 

parameters (Fig. 2). An exhaustive search over all the parameter space was not feasible, and 

we decided to constrain our parameter space by studying synthetic gene circuits that could 

be built in budding yeast. Synthetic genetic oscillators have been useful tools to understand 

the properties of natural oscillators. For example, a synthetic oscillator built in bacteria [36] 

was useful in understanding entrainment capabilities of genetic oscillators, as well as 

elucidating sources of stochasticity that affected entrainment. Surprisingly, all synthetic 

genetic oscillators built to date have neglected protein titration, a common mechanism in 

natural oscillators. To this end, we built a mathematical model of ATC and RTC oscillators 

using a basic leucine zipper (bZIP) transcription factor that dimerizes and binds DNA and a 

rationally designed inhibitor that titrates free bZIP into an inactive heterodimer. These 
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synthetic components have been successfully used in yeast [37] and, importantly, many of 

the protein-protein and protein-DNA binding affinities of this bZIP and inhibitor pair are 

known [38,39]; see Table I. We fixed these parameters and scanned through a range of other 

biophysical parameters to understand which ones affect oscillation. Our results should help 

guide future experimental implementation of synthetic ATC and RTC oscillators in yeast.

The biophysical model of our ATC and RTC circuits is based on chemical mass-action 

kinetics where the dynamic variables are the mean concentrations of all molecular species. 

The ordinary differential equations (ODEs) that correspond to the reactions in Fig. 2 are the 

following:

(1a)

(1b)

(1c)

(1d)

(1e)

(1f)

With [rX] and [rI] described by:

(2a)

(2b)

for the ATC, where X = A (activator), and

(3a)
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(3b)

for the RTC, where X = R (repressor). The first two equations represent the dynamics of 

promoter DNA where [G0] and [G1] are the mean concentrations of free and bound 

promoter, respectively. The molar concentration of total DNA [GT] = [G0] + [G1] = 1/(NA V) 

= 1/24 nM where NA is the Avogadro constant and V is the yeast cell volume; see Table I. 

Here we consider only a single DNA binding site, but we will later expand our analysis to 

include multiple binding sites. At any instant, the promoter is either free or bound. The 

probability of free or bound promoters is equal to the ratio of concentrations [G0]/[GT] or 

[G1]/[GT], respectively. The other equations describe the mean concentration dynamics of 

the respective molecular species such as mRNA (rI, rX), monomeric protein (I or X), and 

dimeric proteins (X2, XI), where X stands for the activator A or repressor R, respectively. The 

regulatory homodimer X2 associates with G0 at a rate α to form G1, which dissociates at the 

rate θ. The rI and rX are the inhibitor and activator (repressor) mRNAs. For the ATC, the 

activator mRNA [rX] is transcribed constitutively at the rate ρ0, where as the inhibitor 

mRNA is transcribed at rates ρf and ρb from free and bound DNA, respectively [Eqs. (2a) 

and (2b)]. In contrast, for the RTC, the repressor mRNA is transcribed at rates ρf and ρb 

[Eqs. (3a) and (3b)] while inhibitor mRNA rI is constitutively transcribed at the rate ρ0. We 

assume that all mRNA species are degraded at the same rate δm and translated into proteins 

with the same rate β. The activator (repressor) X protein dimerizes into active homodimer X2 

and forms inactive heterodimer XI with the inhibitor protein I at the same rate γ. The 

homodimer and heterodimer dissociation rates are ε1 and ε2, respectively. We assume that 

all protein species are stable and diluted by cell growth at rate δp.

B. DNA Unbinding Kinetics Influence Oscillation

Our parameters were restricted to physiological values from yeast (see Table I). Most 

parameters were kept fixed, but we varied four key parameters. The first parameter was the 

mRNA production rate (ρf) of free, unbound promoter because a desired expression level 

can easily be selected from existing promoter libraries [40]. Second, we varied the 

activation-repression strength (f), which is the ratio of the larger ρ divided by the smaller ρ. 

Thus, f = ρb/ρf for the ATC and f = ρf/ρb for the RTC. The ratio f can be tuned by appropriate 

choice of activation or repression domains fused to our bZIP transcription factor [41–43]. 

The third parameter was the mRNA degradation rate (δm), which is known to set the time 

scale of the ATC oscillator [19]. Last, we varied the DNA unbinding rate (θ) because it is 

our point of focus and this parameter can vary between different transcription factors. The 

DNA dissociation constant (Kd) fixes the DNA binding rate α = θ/Kd; see the Appendix for 

details.

We divided the physiological range of each variable parameter into 30 values (on a 

logarithmic scale) and evaluated the long-term dynamics of a total of (30)4 parameter sets 

per circuit. We solved the ODEs over time for each set of (ρf, f, δm, θ). A solution was 

classified as oscillatory if the trough of activator or repressor homodimer concentration was 

below the Kd of DNA binding and if the peak was above 2Kd; see the Appendix for 

justification. We noticed that ρf had the smallest effect on the number of oscillatory 
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solutions and, thus, we plot the marginal frequency distribution of oscillatory solutions over 

f, δm, and θ in Fig. 3. We see that strong activators (large f for the ATC), stable mRNAs 

(small δm), and slow DNA unbinding rates (small θ) generally favor oscillation. The last two 

parameters dictate the time scale of the delay in the negative feedback loop. Increased delay 

supports oscillation and, thus, the largest number of oscillatory solutions occur at the 

smallest θ and δm for both RTC [Fig. 3(a)] and ATC [Fig. 3(b)]. The parameter space of 

stable oscillations is larger in ATC relative to RTC for a single binding site because of the 

additional step and delay in the negative feedback loop: Negative feedback through the 

activator in the ATC is indirect (i.e., activator regulates the expression of inhibitor, which 

then inhibits its activity), whereas the self-repressor in the RTC is direct (i.e., repressor 

regulates its own expression).

The period of oscillation τ should be set by the time scale of the slowest parameters in the 

delay. The negative feedback in our circuits is dominated by DNA unbinding rate θ and 

mRNA degradation rate δm [19]. This relationship can be seen in Fig. 4 where the DNA 

unbinding rate sets the oscillation period at low θ. An increase in θ leads to the mRNA 

degradation rate (δm) becoming the slower time scale at which point τ becomes flatter and 

less dependent on θ. Eventually, a bifurcation occurs at a critical, maximum value of θmax 

which leads to loss of the stable limit cycle. A similar relationship exists for the mRNA 

degradation rate δm; see Fig. S2.

C. Multiple DNA binding sites affect ATC and RTC oscillators differently

This role of DNA unbinding rate in generating delays led us to hypothesize that multiple 

DNA binding sites should increase the parameter space of oscillations and lengthen the 

period of the oscillators. We reasoned that if the occupancy of any binding site by a 

transcription factor activates or represses transcription, then the effective unbinding rate (θn) 

from a state of saturated DNA binding to the unbound DNA state (G0, where the 

transcription rate changes) should decrease with the increasing number of binding sites (n). 

We can show that θn = θ/Hn, where Hn is the nth harmonic number (see the Supplemental 

Material [44]).

The addition of multiple DNA binding sites to our model will modify Eqs. (1a), (1b), and 

(1f) by increasing the number of promoter states that can be bound by X2; see Fig. 5 and the 

Supplemental Material [44]. For three binding sites (n = 3), our new Eqs. (1a) and (1b) are

(4)

where the total concentration of DNA [GT] = [G0] + [G1] + … + [Gn] is fixed to 1/(NA V) = 

1/24 nM. For three binding sites (n = 3), the term −α[G0][X2] + θ[G1] in Eq. (1f) is replaced 

with:
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(5)

where Gi denotes the promoter states with i of total n binding sites occupied by activator (X 

= A) or repressor (X = R) dimers. The factors in front of each term represents the amount of 

degeneracy of each state, i.e., each Gi has i bound states, thus i ways of switching to Gi−1. 

Therefore, we have the term iθ[Gi]. At the same time, each Gi has n − i vacant sites, so it has 

n − i ways of switching to the state Gi+1. Thus, we have the term (n − i)α[Gi][X2].

The addition of two more independent DNA binding sites dramatically increased the 

oscillatory space of the RTC [Fig. 3(c)], while slightly decreasing the oscillatory space of 

the ATC [Fig. 3(d)]. These opposite results arise from a compound effect. First, two extra 

binding sites decreased the effective unbinding rate for the promoter to be fully vacated by 

half (θ/H3 ≈ θ/2). This decrease in effective θ increased the delay and resulted in some 

improvement in oscillations for both RTC and ATC. This effect is best observed in the 

increased period of both oscillators (Fig. 4). The second, more dominant effect is the 

fundamental difference in how the promoter sensitivity changes with multiple, independent 

binding sites. It is well established that nonlinear promoter responses facilitate oscillation 

[28]. We use the logarithmic sensitivity (S) to quantify the nonlinearity in the promoter 

response, where S = dlogP/dlog[X2] [45]. P is the synthesis rate of the promoter and [X2] is 

the activator or repressor homodimer concentration that regulates the promoter. As shown 

previously [45,46], an increase in the number of independent repressive binding sites will 

increase the magnitude of S and create an ultrasensitive promoter response, (i.e., |S| > 1, see 

the Supplement Material [44]). However, increasing the number of independent activating 

binding sites cannot generate an ultrasensitive promoter response (|S| ≤ 1); see the discussion 

in Ref. [45]. In fact, the logarithmic sensitivity for activation actually decreased with the 

number of binding sites at our physiological concentrations (see the Supplemental Material 

[44]). This difference is the reason why the RTC and ATC oscillators exhibited fundamental 

differences to increased number of binding sites. Our work shows that synthetic repression-

based oscillators are preferable designs because the RTC gets an effective boost in promoter 

ultrasensitivity simply by adding multiple, independent binding sites.

We also tested whether synergistic repression or activation might change our results. 

Synergistic activation or repression occurs when the states that have more than one binding 

site occupied (i.e., G2 and G3) are activated or repressed f2-fold instead of f-fold because 

they can interact with RNA polymerase at several interfaces [45]. Although this synergy 

increased the activation or repression strength, it did not significantly change the oscillatory 

parameter space [Figs. 3(e) and 3(f)].

III. Stochastic Simulations

Deterministic simulations were useful for understanding how DNA unbinding rate and the 

number of binding sites affect the phase space and period of oscillation. However, they 

cannot provide insights into the loss of temporal coherence that arises from stochastic gene 

expression. To this end, we used the Gillespie algorithm [47] to simulate stochastic chemical 
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reaction kinetics and investigate how DNA binding-unbinding dynamics and the addition of 

binding sites affect the temporal coherence of ATC and RTC oscillators.

For each ATC and RTC, we quantified temporal coherence by calculating the 

autocorrelation function of mRNA transcripts levels (repressor mRNA for the RTC and 

inhibitor mRNA for the ATC); see Fig. 6. In the absence of noise, an undamped oscillatory 

signal will have an undamped, periodic autocorrelation function. The presence of noise will 

stochastically perturb period and phase, such that the autocorrelation now exhibits 

dampening or loss of temporal coherence. We quantified the loss of coherence by measuring 

the rate of exponential decay (e−t/τ0) of the envelope of a periodic [cos(2πt/τ)] 

autocorrelation function (see the Appendix for details). Similarly to other studies [4,18], our 

metric for temporal coherence is the normalized autocorrelation function decay rate, which 

is the ratio of time scales τ0/τ. A larger ratio indicates better temporal coherence. We varied 

the DNA unbinding rate (θ) and number of binding sites (n) to understand the role of each 

feature in resisting molecular noise.

A. DNA unbinding rate

Our results show that ATC and RTC oscillators with smaller DNA unbinding rates exhibit 

better temporal coherence (Fig. 7). Lower θ increases the temporal coherence of the 

oscillations because of the increased distance of the dynamical system from the bifurcation 

point (θmax); see Fig. 8. Eventually there is another bifurcation at small θmin, but these 

unbinding rates are unphysiological and do not affect our conclusions regarding biophysical 

ATC and RTC oscillators. Strikingly, some θ > θmax, which do not show deterministic 

oscillation, exhibit oscillation in the presence of noise. This phenomenon is consistent with 

coherence resonance [48] which has been observed in other excitable, genetic circuits near 

oscillatory bifurcation points [12,24].

B. Multiple DNA binding sites

Increasing the number of binding sites (n) also increased the temporal coherence of ATC 

and RTC oscillators over all DNA unbinding rates (Fig. 7). To better understand this result, 

we must consider the effect of stochastic binding and unbinding of regulators on the 

variance of gene expression. In the phase of changing activator or repressor concentrations, 

the binding sites start being occupied or vacated. Each additional binding site introduces an 

additional DNA binding state. Because we treat the expression level of all bound DNA 

states as equivalent (ρb), the spontaneous binding and unbinding events that occur between 

states that have at least one binding site occupied have no effect on transcription; see Fig. 5. 

These “protected” states act as a buffering mechanism to mitigate the effects of binary noise 

on temporal coherence.

IV. Discussion

We analyzed the properties of two titration based genetic oscillators, the ATC and the RTC. 

The focus of our study was to understand how the number of DNA binding sites and slow 

unbinding kinetics in promoters mitigate or exacerbate the binary gene regulation noise. 

First, we showed that multiple DNA binding sites and slow unbinding kinetics were 
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important for providing the necessary delay in the negative feedback loop for oscillatory 

solutions. The role of slow DNA binding-unbinding in providing delay for oscillations is 

consistent with prior work on a small negative feedback oscillator [9]. Second, we used 

stochastic simulation to show that slower DNA unbinding rates exhibited better temporal 

coherence, a result which appears at odds with previous work on circadian clocks and NF-

κB oscillators [3,10,12] and which is more in line with the results obtained for a small 

negative feedback oscillator model [9]. Previous work showed that slower DNA unbinding 

kinetics negatively affected the temporal coherence for two reasons. First, slow DNA 

unbinding increased the stochasticity of gene expression due to imprecise concentration 

sampling, which decreased the temporal coherence of oscillations [3,10]. Second, slower 

DNA unbinding (θ) pushed the dynamical system towards θmin bifurcation point, which 

made it less robust to noise [12]. These results differ from ours because the delays in the 

circadian clock and NF-κB models rely on slow intermediate steps (e.g., phosphorylation 

and/or nuclear transport) in the negative feedback loop. Unlike our titration-based oscillators 

in Fig. 8, these models do not have θmax and still oscillate at infinitely fast unbinding rates 

where the promoters are in dynamic equilibrium.

We observed the opposite effect for our titration-based oscillators because physiological θ 

overlaps the θmax bifurcation point for ATC-RTC. Thus, lowering θ always increases the 

robustness in ATC-RTC because the dynamical system is moving away from θmax and 

deeper into oscillatory parameter space. This phenomenon likely explains the similar results 

presented in Ref. [9]. The influence of DNA unbinding rate on temporal coherence depends 

on the structure of the underlying bifurcation diagram of each oscillator as a function of θ. 

Changes in topology, mechanism, and parameters can change the bifurcation diagram and, 

thus, the influence of DNA unbinding rate on temporal coherence of oscillation may also 

change.

Last, we demonstrate that multiple independent binding sites consistently increased the 

temporal coherence of oscillations by alleviating the binary noise resulting from binary gene 

states. Our results agree with previous work, which showed that multiple, cooperative DNA 

binding sites increased the coherence of circadian clocks [18]. However, in contrast to our 

results, the temporal coherence of circadian clocks peaked at three binding sites and then 

decreased with additional sites. The difference likely arises from our slower DNA binding-

unbinding rates, where the ATC and RTC oscillators spend significant time in protected 

states that are buffered against molecular noise. In contrast, the circadian clock model 

spends very little time in the intermediate protected states between fully free or fully bound 

promoters and, therefore, the increased coherence is only due to cooperativity [18]. The idea 

of buffering to reduce noise in gene circuits has been discussed in the context of decoy 

binding sites [49]. However, this requires fast DNA binding-unbinding, where as buffering 

through promoter states requires slow DNA binding-unbinding. We note that increased 

temporal coherence due to protected states is a stochastic effect because the addition of 

binding sites consistently increased the coherence of ATC oscillators, despite occasionally 

pushing it past the bifurcation point at θmax ]Fig. 6(b)].
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Appendix A: Parameter Values

To constrain the physiological parameters of our models, we used data from large-scale 

studies of the yeast transcriptome and proteome; see Table I. These data provide typical 

ranges and values for our parameters. First, we converted numbers of molecules into 

nanomolar (nM) concentrations using the cell volume V = 40 fL for haploid yeast. For the 

ATC, we assumed that the basal mRNA transcription would be low. Thus, ρf for the ATC 

was constrained to values from the bottom 5th percentile to the median of all mRNA 

synthesis rates [50]. Similarly, ρf for the RTC was constrained to values from the median to 

top 95th percentile. In the case of the ATC, the constraint ρf < ρ0 < ρb ensured that the 

inhibitor can completely titrate the constitutively expressed activator when the inhibitor is 

maximally produced at ρb but not when it is expressed at the basal rate ρf. Similarly, for the 

RTC, the constraint ρb < ρ0 < ρf ensures that constitutively expressed inhibitor can 

completely titrate the repressor when the repressor is produced at the repressed rate ρb but 

not ρf. We set  to satisfy both conditions. mRNA degradation rate ranged from 

the bottom 5th percentile to top 95th percentile values for all genes [50]. To obtain a rough 

approximation for the translation rates, we assumed a constitutive gene expression model for 

all genes:

(A1)

(A2)

At steady state, . Protein concentrations and degradation rates were taken from 

Refs. [51,52]. We calculated β for all genes and used the median value in our model. We 

also assumed that our activators, repressors, and inhibitors are not actively degraded and are 

diluted by growth. Thus, δp = ln(2)/T, where T = 90 min is the duration of the yeast cell 

cycle. The proteins in our models were based on a mammalian transcription factor basic 

leucine zipper (bZIP) protein C/EBPα and its dominant-negative inhibitor (3HF) [37]. We 

used previously measured rates for protein-protein interaction kinetics [37]. Since we did not 

know the DNA unbinding rate for C/EBPα, we considered the range for the known DNA 

unbinding rates for other bZIP proteins [13–16]. The thermodynamic dissociation constant 

(Kd) of C/EBPα to its specific DNA binding site is known [39]. We set the DNA association 

rate to α = θ/Kd. Finally, we varied the activation-repression strength f from 1 to 30 to 

consider both strong and weak activation-repression.
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Appendix B: Methods

We scanned the parameter space for oscillations by running simulations on MATLAB 

(Mathworks) using ode15s for 2000 min and recording the minima and maxima of the 

activator or repressor homodimer during the last 1000 min. We imposed the following 

restrictions: (1) the last minimum should be below Kd so DNA binding is not saturated, and 

(2) the last maximum should be greater than 2Kd so the change in transcription is noticeably 

altered. While this restriction slightly underestimates the number oscillatory solutions, it 

ensures that a synthetic version of these circuits would produce detectable oscillations. We 

verified that our definition gave similar results to a less stringent criterion for oscillation.

We used the direct Gillespie method to perform the stochastic simulations [53]. We ran the 

simulations for 106 min and recorded the concentration of the regulated mRNA (inhibitor for 

the ATC and the repressor for the RTC). We then normalized the concentration such that the 

average would be zero and evaluated the autocorrelation function. We then fit the function 

C(t) = e−t/τ0cos(2πt/τ) to the first 1500 min of the autocorrelation function to measure the 

decay constant τ0 and period τ. The ratio τ0/τ describes how rapidly the envelope of 

autocorrelation function decays per oscillation period.
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Fig. 1. 
(a) In the activator-titration circuit (ATC), the activator is constitutively produced at a 

constant rate and activates the expression of the inhibitor, which, in turn, titrates the 

activator into inactive complex. (b) In the repressor-titration circuit (RTC) the constitutively 

expressed inhibitor titrates the self-repressing repressor.
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Fig. 2. 
A biophysical model for ATC (a) and RTC (b) with explicit transcription, translation, 

protein-protein, and protein-DNA interactions. Each arrow corresponds to a reaction rate in 

Eqs. (1)–(3). Neither of these titration-based oscillators have been built or studied by 

synthetic biologists.
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Fig. 3. 
(Color online) Parameter space of oscillatory solutions on a logarithmic scale for RTC (top) 

and ATC (bottom) with increasing DNA binding sites. The color map shows the number of 

ρf values that exhibited oscillations for each combination of f, δm, andθ. [(a) and (b)] Single 

DNA binding site for RTC and ATC, [(c) and (d)] three independent binding sites for RTC 

and ATC, and [(e) and (f)] three synergistic binding sites for RTC and ATC, where 

repression (activation) strength is f2 when more than one repressor (activator) is bound.
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Fig. 4. 
The DNA unbinding rate θ sets the period of the oscillations for RTC (a) and ATC (b) at 

slow unbinding rates. The mean period of oscillatory solutions for a given θ is shown (solid 

black line) with the shaded area representing the range of periods.
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Fig. 5. 
Transitions between promoter states for multiple DNA binding sites (n = 3). Gi denotes the 

set of promoter states with i out of total n binding sites occupied by activator (X = A) or 

repressor (X = R) dimers. Our model conservatively assumes that the binding of X2 does not 

affect the binding or unbinding of the next transcription factor to an adjacent site (no 

cooperativity). We also assume that the transcription rate is equal to ρb for G1,G2, … Gn 

promoter states.
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Fig. 6. 
Sample stochastic trajectories for one and three binding sites for RTC (a) and ATC (c), and 

their autocorrelation functions [(b) and (d)]. The variable parameter values (θ, δm, ρf, f) were 

fixed to (0.02 min−1, 0.0159 min−1, 0.8928 min−1, 3.63) for the RTC and (0.02 min−1, 

0.0186 min−1, 0.1781 min−1, 30) for the ATC. We chose parameters that produced 

oscillation over the largest range of DNA unbinding rates. The rest of the parameters are 

given in Table I.
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Fig. 7. 
The normalized autocorrelation function decay rate for the RTC (a) and ATC (b) for varying 

θ and number of binding sites. All parameters, except θ, are the same as in Fig. 6. Boxed, 

outlined regions are parameters past the bifurcation point (θmax) where deterministic 

oscillations are unsustainable and damped, yet exhibit stochastic excitable oscillations.
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Fig. 8. 
Bifurcation diagram of the RTC (a) and ATC (b) oscillators as a function of DNA unbinding 

rate (θ). All parameters, except θ, are the same as in Fig. 6. There are two bifurcation points 

(θmax,θmin) and the amplitude of mRNA oscillation is shown by the upper and lower 

branches. Physiological values of θ are to the right of the dashed vertical line.
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Table I

Parameter values.

Parameter Min Max Reference

θ (min−1) 0.0188 34.5 [13–16]

ATC ρf (min −1) 0.0509 0.1781 [50]

RTC ρf (min −1) 0.1781 0.8928 [50]

δm (min −1) 0.0159 0.1516 [50]

f 1 30

ATC ρb (min −1) fρf

RTC ρb (min−1) ρf/f

α (nM −1 min−1) θ/3.344 nM [39]

ρ0 (min −1)

β (min −1) 14.1 [50–52]

δp (min−1) 0.0077

γ (nMmin −1) 0.6 [37]

ε1 (min −1) 6 [37]

ε2 (min−1) 0.024 [37]

V (fL) 40 [27]
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