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Abstract

There are still debates on whether the hydration of ions perturbs the water structure, and what is 

the degree of such disturbance; therefore, the origin of Hofmeister effect on protein stabilization 

continues being questioned. For this reason, it is suggested to use the ‘specific ion effect’ instead 

of other misleading terms such as Hofmeister effect, Hofmeister series, lyotropic effect, and 

lyotropic series. In this review, we firstly discuss the controversial aspect of inorganic ion effects 

on water structures, and several possible contributors to the specific ion effect of protein stability. 

Due to recent overwhelming attraction of ionic liquids (ILs) as benign solvents in many enzymatic 

reactions, we further evaluate the structural properties and molecular-level interactions in neat ILs 

and their aqueous solutions. Next, we systematically compare the specific ion effects of ILs on 

enzyme stability and activity, and conclude that (a) the specificity of many enzymatic systems in 

diluted aqueous IL solutions is roughly in line with the traditional Hofmeister series albeit some 

exceptions; (b) however, the specificity follows a different track in concentrated or neat ILs 

because other factors (such as hydrogen-bond basicity, nucelophilicity, and hydrophobicity, etc) 

are playing leading roles. In addition, we demonstrate some examples of biocatalytic reactions in 

IL systems that are guided by the empirical specificity rule.
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INTRODUCTION

As a new type of designable solvents, ionic liquids (ILs) have gained tremendous focus in 

biocatalysis, aiming to replace conventional volatile organic solvents and their solutions. A 

number of enzymatic systems have been evaluated in neat ILs or IL solutions; these 

enzymatic systems include various hydrolases (EC 3, e.g. lipases, proteases, thermolysin, α-

chymotrypsin, lysozyme, β-glycosidase, cellulase, epoxide hydrolase and penicillin 

amidase), oxidoreductases (EC 1, e.g. horseradish peroxidase, alcohol dehydrogenase, 

laccase and lignin peroxidase), lyases (EC 4, e.g. oxynitrilase), and whole cells.1–4 To 

improve the stability and activity of enzymes, a variety of methods have been developed by 

different groups, such as enzyme immobilization (on solid support, sol–gel, or cross-linked 
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enzyme aggregates), physical or covalent attachment to PEG, rinsing with n-propanol 

methods (PREP and EPRP), water-in-IL microemulsions, IL coating, and the design of 

enzyme-compatible ILs.5, 6

More importantly, several mechanistic overviews7–9 have highlighted some important 

properties of ILs that influence the enzyme’s behaviors in ionic solvents; these properties 

include IL polarity, hydrogen-bond (H-bond) basicity and nucleophilicity of anions, 

Hofmeister series, IL hydrophobicity, and IL viscosity, etc. However, there is a mixed 

understanding of the existence of specific ion effect of ILs on protein stabilization and 

enzyme activation, and how the specific ion effect is different in diluted solutions of ILs 

from that in concentrated or neat ILs. The present review aims to survey relevant literatures 

surrounding the theme of specific ion effect of ILs, and provide mechanistic insights into 

how different factors contribute to the specific ion effect at different IL concentrations. In 

particular, we discuss the specific ion effect of inorganic ions in aqueous solutions, followed 

by the structural properties of ILs and their aqueous solutions, and then the specific ion 

effects in aqueous ILs and concentrated/neat ILs, and lastly some examples of ion 

specificity-guided biocatalytic reactions.

SPECIFIC ION EFFECT OF INORGANIC IONS IN AQUEOUS SOLUTIONS

In 1888, Franz Hofmeister proposed the ion specificity based on his observation of ions 

exhibiting sequential capabilities in precipitating the proteins (globulins from blood serum 

and hen’s egg).10, 11 The order of these ions in salting out proteins is so called the 

‘Hofmeister series’ (Fig 1) although later this concept also became associated with other 

phenomena in physical, colloid, polymer and surface chemistry.12, 13 At low concentrations 

(< 0.1 M), ions affect the protein stability and enzyme activity primarily through 

electrostatic interactions.14, 15 At higher salt concentrations (usually > 0.1–0.3 M,14, 15 but 

not too concentrated such as up to 3.0 M16), the Hofmeister ion effect becomes important 

when the ionic dispersion forces exceed the electrostatic forces. The Cremer group17 

observed that at low salt concentrations (< 200–300 mM), the charge pairing between anions 

and the positively charged lysozyme surface (pH 9.4) is gradually reaching its saturation; at 

this stage, the liquid–liquid phase transition temperature of lysozyme is directly related to 

the size and hydration thermodynamics of the anions and thus follows an inverse Hofmeister 

series (ClO4
− > SCN− > I− > NO3

− > Br− > Cl−). Under higher salt conditions, the liquid–

liquid phase transition is influenced by the polarizability of the anions and thus exhibits a 

direct Hofmeister series (Cl− > NO3
− > Br− > ClO4

− > I− > SCN−). On the other hand, the 

Falconer group18 suggested that anion and cation effects on the structural stability of 

lysozyme at pH 7 follow the Hofmeister series at high concentrations (> 20 mM), but fail to 

follow the Hofmeister (or inverse Hofmeister) series at low concentrations (< 5 mM).

Several theories have been developed to understand the Hofmeister series, including salt-in 

and salt-out interactions,19, 20 water-structure changes (low/high density water) and protein 

preferential hydration,14, 21–26 hydrophobic interactions,26–28 excluded volume,29–31 

preferential interactions,32–34 electrostatic interactions,35, 36 ionic dispersion potentials,37, 38 

etc. However, there is a lack of unified theory that can fully interpret the Hofmeister effect 

due to the complex nature of ion-water-protein interactions.
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Early literatures often related the protein stability with the hydration behavior of ions.19, 37 

Highly hydrated ions (e.g. Mg2+, Ca2+, Li+, CH3COO−, SO4
2−, and HPO4

2−) tend to interact 

strongly with water molecules and increase the ‘structuring of water’, resulting in a lower 

fluidity (or a higher viscosity) of the solution than that of pure water. For this reason, these 

ions are referred as ‘structure-makers’ or ‘kosmotropes’ (see Fig 1). In contrast, some other 

ions are poorly hydrated in aqueous solutions, such as SCN−, I−, NO3
−, BF4

−, Cs+, 

(NH2)3C+ (guanidinium), and (CH3)4N+ (tetramethylammonium). These ions have weak 

interactions with water molecules and reduce the ‘structuring of water’, leading to a higher 

fluidity of the solution. Thus, this effect is called the ‘negative hydration’,47, 48 and these 

ions are often denoted as ‘structure-breakers’ or ‘chaotropes’ (see Fig 1). Based on this 

theory, the capacity of an ion in strengthening the ‘water structure’, known as 

kosmotropicity (vs. chaotropicity), is directly associated with the degree of ion hydration. As 

discussed in our earlier review,49 the ion kosmotropicity can be quantified by various 

thermodynamic parameters including Jones-Dole viscosity B-coefficients, structural 

entropies, structural volumes, structural heat capacities, NMR B′-coefficients, and ion 

mobility, etc. These parameters provide valuable information of the interactions involved in 

the ion hydration from different aspects, and possibly reveal the mechanism behind some 

phenomena and properties. Jones-Dole viscosity B-coefficients are the most commonly used 

and widely available parameter for evaluating the ion kosmotropicity. The B-coefficients 

can be derived from the Jones-Dole empirical equation (eqn 1) of the relative viscosities of 

electrolyte solutions as functions of their concentrations,50

(1)

where η is the viscosity of the solution and η0 is the viscosity of the solvent (both of them 

have the same unit, for example Pa·s), while c is the molar concentration (mol·cm−3). The A-

coefficient (also known as the Falkenhagen coefficient51), representing the solute-solute or 

electrostatic interactions, can be calculated theoretically. However, A-values are usually 

small and negligible for non-electrolytes;40 therefore, they are often neglected in the 

calculations. The B-coefficient represents the solute-solvent interactions (short-range 

dispersion forces), while D-coefficient indicates the solute-solute interactions as well as the 

solute-solvent interactions.52 For most salts at low concentrations [(< 0.5 M)40 or (< 0.1 M 

for binary strong electrolytes)53], the D or higher coefficients can be neglected although they 

are required at higher concentrations.40 Positive B-values typically indicate ions as 

kosmotropes since strongly hydrated ions exhibit a larger change in viscosity with 

concentration, while negative B-coefficients imply chaotropes for weakly hydrated ions.40 

However, hydrophobic solutes tend to have unusually large B-coefficients due to so called 

‘hydrophobic hydration’.49 For example, tetramethylammonium cation (Me4N+) has a 

positive B-value as high as 0.123,40 but this ion is considered as a structure-breaker.23, 54–58 

Some groups40, 59–61 recommend the use of first derivatives of B-values over temperature 

because the sign of dB/dT could be more indicative in measuring the structure-making or 

breaking property than the sign or quantity of B-coefficients. The negative sign of dB/dT 

means structure-making (kosmotropic) while the positive sign suggests structure-breaking 

(chaotropic). In aqueous solutions of inorganic salts, many studies (see our earlier review16) 
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have suggested that the ion effect on the enzyme activity follows the Hofmeister series: 

kosmotropic anions and chaotropic cations stabilize the enzyme, while chaotropic anions 
and kosmotropic cations destabilize it.

However, some contradictory experimental results argued whether the water structure is 

indeed influenced by the presence of ions.62, 63 Leberman and Soper64 found that some salts 

[e.g. 2 M Na2SO4 and 2 M (NH4)2SO4] disturbed more water H-bonding than 4 M NaCl and 

4 M NH4Cl based on the water-water HH correlation functions obtained from the neutron 

diffraction using isotope substitution. Nucci and Vanderkooi65 examined the temperature 

excursion infrared response of the O–H stretch of aqueous salt solutions by a two-state H-

bonding model, and found that ions do change the H-bond network of water and there is a 

strong correlation between salt effects on the Hofmeister series. They also noted that the 

specific ion–protein interactions cannot be excluded, and could be a co-factor along with the 

changes in bulk solvation properties. Thomas and Elcock66 conducted molecular dynamics 

(MD) simulations (1 μs) of the unbiased association of pairs of hydrophobic molecules 

(methane– methane and neopentane–neopentane) in different salt solutions, and found that 

the Hofmeister effects can be quantitatively predicted from the H-bond ratio from 

simulations of pure salt solutions containing no hydrophobic solute. Thus, they indicated 

that salt-induced changes in water structure is more important than preferential interactions 

between salt and hydrophobic solutes to the understanding of Hofmeister effects. On the 

other hand, the Saykally group67 measured the oxygen K-edge X-ray absorption spectrum 

(XAS) of aqueous sodium halide solutions (up to 4 M), and found ions greatly perturb the 

electronic structure of adjacent water molecules because of the direct perturbation of 

unoccupied orbitals on water by anions; however, such perturbation is not necessarily due to 

any significant distortion of the H-bond network beyond the first solvation shell. This 

group68 further confirmed monovalent cations (such as Li+, Na+, K+, NH4+ and C(NH2)3+) 

cause no considerable perturbation of the unoccupied molecular orbitals of water molecules 

in the vicinity of cations while the XAS spectral changes are mainly due to water-chloride 

interactions; however, they also observed that divalent cations (i.e. Mg2+ and Ca2+) induce a 

redistribution of charge among water molecules in the solvation shell and result in spectra 

changes. Krekeler and Delle Site69 conducted first-principle Car–Parrinello molecular 

dynamics of the hydration of monovalent and divalent ions, and suggested the preferential 

orientation of water molecules is only seen in the first shell and the water–water interaction 

plays a critical role in the first shell regardless of the size or the charge of ions. Based on the 

orientational correlation time of H2O molecules in 1–6 M solutions of three salts [i.e. 

Mg(ClO4)2, NaClO4, and Na2SO4] acquired from the femtosecond pump-probe 

spectroscopy, Omta et al70, 71 suggested that ions have negligible effect on the H-bond 

structure in liquid water. Their results indicate the anion interactions with water molecules 

(OH···ClO4- and OH···SO4
2−). Therefore, simple ions have no significant impact on the 

water structure, at least beyond the first hydration shell; even di- and tri-valent ions cause no 

appreciable change to the density or orientation of water more than two water molecules (5 

Å) away.72

While the debate on the effect of ions on water structure continues, some groups suggest the 

bulk water structure is not greatly affected by ions and thus the kosmotropicity concept 
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should be abandoned;73 instead, the Hofmeister series should be explained by the ion impact 

on protein hydration, and direct ion-protein interactions. Before we discuss other 

explanations of Hofmeister effect, it is necessary to outline how protein/enzyme molecules 

interact with solutes (denaturants or stabilizers). As shown in Fig 2, solute 1 is a denaturant 

that has a stronger interaction with protein molecules than with water molecules. Solute 1 

excludes those co-factors of enzymes that are essential for the enzyme activity. This 

category (solute 1) includes chaotropic anions (because they are less hydrated), kosmotropic 

cations (such as Ca2+ strongly salts in the peptide group19), organic solutes (especially 

hydrophilic ones including urea33), and other ions (such as guanidinium GdnH+) that have 

strong interactions with protein surface. The strong interactions may expose the hydrophobic 

cores of the protein, causing its denaturation. Solute 2 is a stabilizer that has a stronger 

interaction with water molecules than with protein molecules. This category includes 

kosmotropic cations and anions (because they are strongly hydrated and salt out nonpolar 

groups;19 they ‘drag’ water molecules away from the protein which allows the protein to 

refold74), and organic solutes that have weak binding interactions with the protein.

Several major alternative explanations of Hofmeister series are discussed below. The first 

theory is the preferential hydration of proteins.14, 21–26 Strongly hydrated anions tend to 

strongly interact with water molecules; as a result, they preferentially hydrated by water 

molecules instead of interacting directly with the enzyme surface. On the contrary, weakly 

hydrated anions have a low water affinity and a high polarizability, and therefore bind to the 

protein-water interface resulting in protein destabilization. Through examining the aqueous 

potassium salt solutions using femtosecond optical Kerr effect spectroscopy, Hou et al.75 

found that the hyperpolarizability of six aqueous anions increased in the order: HPO4
2− < 

HSO4
− < CO3

2− < CH3COO− < NO3
− < SCN−, which correlates with the Hofmeister series 

(except CO3
2−). The role of cations is different. The presence of kosmotropic cations tends 

to minimize the effect of kosmotropic anions because a strong ion-pairing affinity between 

kosmotropic cations and anions decreases the amount of free anions in the solution. In 

aqueous solutions, ion pairs are easily formed between cations and anions with similar water 

affinity, such as kosmotrope-kosmotrope and chaotrope-chaotrope; the strengthen of these 

interactions (known as the ‘law of matching water affinity’) is in a decreasing order of 

kosmotrope-kosmotrope > kosmotrope-water > water-water > chaotrope-water > chaotrope-

chaotrope.21, 53 Zhang et al.76 examined the hydration and interactions of a globular protein 

(bovine serum albumin, BSA) in concentrated salt solutions (up to 3.0 M) by small-angle 

neutron scattering (SANS). They suggested a hydration shell with a hydration level of ~0.30 

g g−1 protein; they also indicated that the effective protein–protein interactions in 

concentrated salt solutions can be evaluated by the second virial coefficient, which follows 

the reverse order of the Hofmeister series: i.e. (NH4)2SO4 < Na2SO4 < NaOAc < NaCl < 

NaNO3 < NaSCN. To study the specific ion effect on interfacial water structure neighboring 

to a BSA monolayer adsorbed at the air/water interface, the Cremer group77 employed the 

vibrational sum frequency spectroscopy (VSFS) and suggested that specific anion effects are 

controlled by the charge state of the interfacial layer rather than its detailed chemical 

structure: for the positively charged protein layer at pH 2 and 3, more chaotropic anions 

induced more attenuation of water structure; for the protein layer at its isoelectric point (pH 
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5), more chaotropic anions lead to greater increase in water structure (although it’s weak); 

for the negatively charged protein layer (pH 9), no obvious effect could be detected.

A second important account for the Hofmeister series is the direct interactions between ions 

and protein. In aqueous solutions, protein molecules may interact with water molecules and 

ions via a variety of hydrophilic, polar, or charged moieties. In particular, the charge groups 

include dehydrated, chaotropic amide and amino groups, and the hydrated, kosmotropic 

carboxyl groups. Based on the ‘law of matching water affinity’, chaotropic anions have a 

greater affinity towards chaotropic amide of the peptide group, whilst the interaction 

between kosmotropic cations and the kosmotropic carboxyl moiety is weak due to the 

presence of water molecules in their nearest hydration shells.78 This explains the opposite 

trend of cations and anions in influencing the protein stability, and also the stronger effect of 

anions than cations. Sedlák et al.78 further pointed out that the hydration condition 

determines the direct interactions between the ions and the protein peptide bonds, which 

leads to Hofmeister effects of protein stability; the protein stability is more correlated with 

anion charge density than cation charge density. Gokarn et al.15 observed that anions 

selectively and preferentially accumulate at the surface of hen-egg white lysozyme even at 

low (< 0.1 M) salt concentrations. At a given ion normality of 50 mN, the protein’s effective 

charge (Q*) decreased in the order F− > Cl− > Br− > NO3
− > I− > SCN− > ClO4

− ≫ SO4
2−, 

which corresponds to the opposite order of anion association to the protein surface, and thus 

suggests that the SO4
2− anion interacts directly with the protein surface although it is highly 

hydrated. On the other hand, the cations have no apparent impact on the effective charge of 

the protein, which is almost unchanged for all the cations studied (Li+, Na+, K+, Rb+, Cs+, 

GdnH+, and Ca2+). On the contrary, the Jungwirth group79 suggested that the destabilizing 

effect of weakly hydrated Hofmeister anions (such as Br− or I−) is not caused by the direct 

interactions with the backbone amide groups, but rather due to the affinity of large soft ions 

toward hydrophobic groups and residues of proteins. A further study by this group and the 

Cremer group80 examined the specific binding sites of Hofmeister ions with an uncharged 

600-residue elastin-like polypeptide, and suggested that the interaction between large soft 

anions (SCN− and I−) and the polypeptide backbone through a hybrid binding site 

comprising the amide nitrogen and the adjacent α-carbon. Cl− anions have a much weaker 

binding to this site, SO4
2− is excluded from the backbone as well as hydrophobic side chains 

of the polypeptide. The Gibb group81 found that chaotropic anions have a strong affinity 

towards the hydrophobic concavity, which surpasses the affinity between anions and amide 

groups; therefore, they implied that protein solubilization in solutions of chaotropes is 

mainly due to the direct binding of chaotropes to concavity in the molten globule state of a 

protein. Paterová et al.82 conducted the NMR and MD studies of ion interactions with 

capped and uncapped triglycine, and noted (a) a direct Hofmeister series for the capped 

peptide, which means that strongly hydrated ions (e.g., SO4
2−) are repelled from the peptide 

bond while weakly hydrated ions (e.g., I− and SCN−) interact with the peptide bond, and (b) 

a reversed Hofmeister series for the uncapped peptide due to anion interactions with the 

positively charged, uncapped N-terminus. It is also suggested that the same specific anion 

effect could be extrapolated for interactions with the positively charged side chains of 

lysine, arginine, and (protonated) histidine. Based on a two-scale MD simulation approach, 

Schwierz et al.83 observed a direct Hofmeister series for anions at the negatively charged 
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hydrophobic surfaces or positive polar surfaces, but a reversal effect for the negative polar 

or positive nonpolar surfaces. As reviewed by Yang,9 the direct interactions between ions 

and enzyme may lead to several changes to the enzyme including surface pH, net charge, 

active site and catalytic mechanism.

Thirdly, it has been known that the Hofmeister ions affect the surface tension and surface 

potential at the air–water interface.22 Based on a surface-bulk partitioning model to assess 

the Hofmeister effect on the surface tension of water, Pegram and Record84, 85 suggested 

that those anions (such as SCN−) that interact favorably with protein surface exposing 

protein surface to water, tend to accumulate at the air–water interface; other anions (such as 

F−) that are excluded from protein surface and cause dehydration of protein surface, tend to 

be excluded from the air–water interface. A recent phenomenological theory developed by 

groups of Dér and Ramsden86, 87 indicates that the Hofmeister effect could be explained by 

the salt-induced changes of hydrophobic/hydrophilic properties of protein–water interfaces, 

quantitatively by the protein–water interfacial tension. This theory establishes the correlation 

between interfacial tension and protein structural stability, which is associated with protein 

conformational fluctuations. Therefore, this theory could interpret the salt effects on protein 

conformation, dynamics as well as stability, and could even explain the unusual observation 

of chaotropes stabilizing some proteins.

Due to the ongoing controversial discussion on the origin of Hofmeister series, Friedman88 

suggested the use of term ‘specific ion effect’ instead of other misleading terms such as 

Hofmeister effect, Hofmeister series, lyotropic effect, and lyotropic series.

STRUCTURAL PROPERTIES OF ILS AND THEIR AQUEOUS SOLUTIONS

Imidazolium ILs could form H-bonded polymeric supramolecules, so-called organized 

‘nano-structures’, with polar and non-polar regions in solid, liquid and solution states, or 

even in the gas phase.90, 91 For imidazolium-based ILs, each cation coordinates with at least 

three anions while each anion coordinates with three cations, resulting in a H-bonded 

polymeric network like [(R1R2Im)x(X)x-n]n+[(R1R2IM)x-n(X)x]n− (where R1R2IM represents 

1,3-dialkylimidazolium cation, and X is the anion). As shown in Fig 3, upon the addition of 

more solvent molecules (such as acetonitrile, chloroform or water), the supramolecular 

network turns into various stages of structures such as aggregates and inclusion compounds, 

charged and neutral clusters, triple ions, contact ion pairs, solvent-shared ion pairs and loose 

ion pairs.89 Watanabe et al.92 probed the structures of protic and aprotic ILs ([MMIM]

[Tf2N], [MIM][Tf2N] and [Im][Tf2N]) by high-energy total scattering (HETS) experiments 

and MD simulations, and found that the closest cation–anion orientation varies without 

substantial longer range ordering of r > 12 Å by the N-methyl substitution to proton, 

resulting in the second layer consisting of ions of the same sign configuration changes. 

Additionally, they noticed that the O atoms of Tf2N− anions preferentially form H-bonds 

with the NH hydrogens of the protic imidazolium and the F atoms locate right above and 

below the imidazolium ring, and also the NH···O H-bond is short and linear while the 

C2H···O bond is long and bent. Very recently, the Ludwig group93 studied the H-bonding in 

[Cholinium][Tf2N] [Cholinium = (2-hydroxyethyl)-trimethylammonium] by far infrared 

spectra, and observed H-bonding between ions of like charge (in addition to H-bonding 
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between cations and anions), i.e. forming cooperative H-bonds as OH···OH···O=S (O=S in 

Tf2N− anion) between hydroxyl groups of two choliniums resembling those in alcohol 

dimers. When comparing with [Me3NPr][Tf2N], the enhanced H-bond network in 

[Cholinium][Tf2N] leads to a higher melting temperature, a larger viscosity and a lower 

conductivity.

Many ILs contain hydrophilic and lipophilic segments, which turn these ILs into 

amphiphilic compounds. The self-organization of amphiphilic ILs in solutions to form 

aggregates and micelles have been reported by both experimental and computer simulation 

methods, which has been reviewed by a number of literatures.94, 95 The aggregation 

property of dialkylimidazolium ILs has been shown to be similar to that of 

alkyltrimethylammonium salts (cationic surfactants) despite the higher self-organization 

ability and long-range ordering of ILs. Since the subject has been extensively reviewed, we 

only discuss a few recent examples herein. The Voth group96 conducted MD simulations of 

ILs, and found that OMIM+ cations are more prone to aggregate in water and form micelle-

like structures than BMIM+ cations, while BMIM+ interacts stronger with water than 

OMIM+ leading the slower rotation of water at xw > 0.61 (xw is the mole fraction of water). 

Additionally, they noticed that changing the anion from BF4
− to Cl− also slows the diffusion 

of cations and water molecules because Cl− anions tend to have a stronger electrostatic 

interaction with other particles in IL/water mixtures; since at low water mole fractions, the 

water structure depends on the strength of water–anion attractions, water molecules are more 

likely to form clusters in [OMIM][BF4]/water mixtures than in [OMIM]Cl/water mixtures at 

low concentrations. Greaves et al.97 examined the structures of aqueous protic ILs by small- 

and wide-angle X-ray scattering (SWAXS) and IR spectroscopy, and observed 

nanostructured aggregates in neat protic ILs; these aggregate structures are maintained upon 

dilution with minimal change in the size, and the water is present predominately as bulk 

water. Azadbakht et al.98 determined the critical micelle concentrations (cmc) of [C18MIM]

[BF4] and [C18MIM][PF6] as 0.04 mM and 0.02 mM respectively based on the tensiometry 

method; the smaller cmc value for the latter IL was explained as the PF6
− ion has a larger 

size and more ability in forming H-bonds with water than BF4
− does, and thus minimizes the 

surface charge of cations. On the contrary, based on 1H NMR chemical shift analysis, Inoue 

and Misono99 found that higher solvophilicity of polyoxyethylene (POE)-type nonionic 

surfactants in [BMIM][PF6] (vs [BMIM][BF4]) was due to weaker H-bond interaction 

between BMIM+ and PF6
− than that between BMIM+ and BF4

−.

It has been known that the hydration of organic cations is quite different from inorganic 

ions. Due to the hydrophobic nature of their alkyl groups, large organic cations (such as 

tetraalkylammoniums) in aqueous solutions are surrounded by water molecules forming 

“cagelike” structures, so called the ‘hydrophobic hydration’.100 The hydrophobic hydration 

results in a negative enthalpy change, due to multiple van der Waals interactions, and a 

negative entropy change due to the increased order in the surrounding water. As discussed 

by Wen,100 tetraalkylammonium cations are highly hydrated; for example, the hydration 

numbers of Me4N+, Et4N+, n-Pr4N+ and n-Bu4N+ are 16, 21, 27 and 32 respectively (or 25, 

30, 35, and 40 respectively based on other studies). Despite these organic cations are large in 

size, single-charged, they are not necessarily chaotropes because of the hydrophobic 
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hydration.28, 101, 102 Marcus54 indicated that Me4N+ is a chaotrope, Et4N+ is a borderline 

ion, n-Pr4N+, n-Bu4N+ and n-Pe4N+ are kosmotropes. A similar classification was 

confirmed by Kay et al55 and other groups.23, 56–58 In addition, these organic cations have 

larger B-coefficients than inorganic ions, even chaotropic Me4N+ ions have B-coefficients of 

0.123.49, 103 As pointed out in a review by von Hippel and Schleich,104 Me4N+, Et4N+, n-

Pr4N+, n-Bu4N+ and n-Pe4N+ ions exhibit an increasing order of destabilizing the ‘native’ 

form of collagen and ribonuclease; this is consistent with more kosmotropic cations 

destabilizing the protein. The Rogers group105 determined phase diagrams of kosmotropic 

inorganic salts (K3PO4, K2HPO4, K2CO3, KOH, and (NH4)2SO4) in salting out ILs, and 

further established the chaotropicity of ILs decreasing in the order of [Bu4P]Cl > [Bu4N]Cl 

≫ [BuPy]Cl ≫ [BDMIM]Cl [BMIM]Cl.

The interactions between ILs and water molecules provide valuable insights into the IL 

hydration behavior. Typically, there is a strong H-bonding interaction between water 

molecules with basic anions of ILs (such as Cl−) as confirmed by negative excess chemical 

potentials of aqueous ILs.106 Mele et al.107 examined the cation–cation, cation–water, and 

cation–anion interactions in [BMIM][BF4] (with 0–0.52 mole fraction of water) by NMR 

spectroscopy through intermolecular nuclear Overhauser enhancements (NOEs), and found 

that increasing water content in IL progressively increases H-bonds between the cation and 

water (as H-bond acceptor) instead of C(sp2)–H···F interactions, and also increases the H-

bonds between anion and water (as H-bond donor). In addition, they indicated that the 

presence of tight ion pairs in the neat IL even with a small amounts of water. The Koga 

group108 suggested that the influence of BMIM+ cation on water structure is similar to that 

of fructose or increased temperature, where water molecules interaction with the cation 

leading to the reduction of H-bonds of bulk water region. Xu et al.109 compared the relative 

chemical shifts of protons in [EMIM][BF4] upon dilution with water, and found the strength 

of H-bonds between water and three aromatic protons decreasing in the order of (C2)H···O > 

(C4)H···O > (C5)H···O; they also suggested that the ion pairs of this IL are dissociated 

rapidly when xwater > 0.9. Singh and Kumar110 compared the changes of OH (water) and CH 

(imidazoliums) vibrational stretching bands in aqueous mixtures of ILs using FT-IR 

spectroscopy, and observed that the blue shift of OH bands usually increases with the IL 

concentration and decreases in the order of different ILs: [BMIM][CH3SO4] > [BMIM]

[C8H17SO4] > [BMIM][BF4] > [OMIM]Cl. A higher blue shift of OH bands represents a 

stronger interruption of H-bonding network of water. In addition, the high hydration 

numbers of these ILs (14.3, 18.7, 12.7 and 12.8 respectively) along with 1H NMR spectra of 

aqueous ILs imply the significant interactions between water and alkyl chains, imidazolium 

rings and anions (i.e. hydrophobic hydration of cations and hydration of anions). The Mu 

group111 evaluated the H-bonding interactions between [EMIM][OAc] and several 

deuterated solvents including D2O in their whole concentrations by attenuated total 

reflectance infrared spectroscopy (ATR-IR) and 1H NMR, and reported that with the 

increase in deuterated solvent concentration, the H-bonding interaction among IL molecules 

decreases while that between IL and solvent molecules increases. Zhang et al.112 studied the 

H-bonding interactions between [EMIM][EtSO4] and water by ATR-IR, 1H NMR 

spectroscopy, and quantum chemical calculations, and noted that with the increase in water 

content, H-bonding of –SO3 group (in ethyl sulfate) and water is strengthened while H-
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bonding between C-H (in cations) and water is weakened; water preferentially interacts with 

ethyl sulfate anions. At high contents (xwater > 0.6), water molecules begin to interact with 

the hydrogen atoms on the imidazolium ring, yielding a stable new complex. They also 

suggested a decreasing order of interaction strength as EMIM+ – water – EtSO4
− > EMIM+ 

–SO4
− > EtSO4

− – water > EMIM+ – water. Bernardes et al.113 investigated the aqueous 

solutions of [EMIM][EtSO4] by MD simulations, and obtained several interesting results: 

(1) Four distinct structural regimes were identified with four concentration ranges: isolated 

water molecules (xwater < 0.5); chain-like water aggregates (0.5 < xwater < 0.8); bicontinuous 

system (0.8 < xwater < 0.95); and isolated ions or small ion clusters (xwater > 0.95), 

respectively. (2) Two different percolation limits were identified: (a) that of water in the IL 

network (xwater 0.8), and (b) that of the IL in water (xwater 0.95), upon further dilution, the 

polar IL network begins to break into smaller aggregates and loses its continuous nature. (3) 

When xwater = 0.996, 60% of cations and anions become isolated, which implies that at this 

concentration the solvation energy of EMIM+ and EtSO4
− by water obviously compensates 

the electrostatic interaction energy between the cation and anion, leading to their separation. 

Danten and coworkers114 examined the interactions of water in BMIM+ – based ILs 

(carrying anions of BF4
−, PF6

−, OTf−, and Tf2N−) using density functional theory (DFT) 

calculations as well as vibrational spectroscopic tools (IR absorption and Raman scattering), 

and found that water molecules preferentially interact with two distinct anions by forming 

associations of type (A···H–O–H···A) at low water concentrations, not in the form of H-

bonding of water either with F-atoms (PF6
− and BF4

− anions) or with the O-atoms of the 

sulfonyl groups (OTf− and Tf2N− anions). The strength of water–anion interaction in water 

diluted in ILs decreases in the order of OTf− > Tf2N− BF4
− > PF6

−. Ficke and Brennecke115 

determined the excess enthalpies of binary IL and water systems, and found several 

interesting interactions: (a) appending a hydroxyl group to the ethyl chain of EMIM+ cation 

increases IL/IL interactions; (b) electron-withdrawing fluorine groups on the OTf− anion 

lead to drastically increased weaker IL/water interactions when comparing with the MeSO3
− 

anion; (c) increasing the cation’s alkyl chain length from ethyl to butyl reduces the cation/

water interactions. The Castner group116 determined the diffusivity of water in [BMPyrr]

[Tf2N] and [BMPyrr][OTf] using the pulsed-gradient spin-echo NMR method, and reported 

that the ratio of water diffusivity to that of cation (Dwater/Dcation) is about 10–20, implying 

that hydrodynamic descriptions are not useful on the molecular scale, and this ratio 

decreases with increasing temperature for both ILs.

The Dupont group91 proposed that the inclusion of other molecules and macromolecules 

into the polymeric IL network results in the formation of polar and nonpolar regions; the 

aqueous solution of free enzymes could be surrounded by the IL network, which supports 

the retaining of native structures of proteins by preserving the essential water of proteins and 

the preferential solvophobic interactions. When the enzyme-in-water droplets are dissolved 

(or dispersed) into the IL network (in polar regions), the enzyme’s active conformation 

could be conserved by the network (see Fig 4).117 The inclusion of enzyme molecules in 

such highly ordered supramolecular structures of ILs prevents the protein from thermal 

unfolding.118 However, since enzymes are not soluble in most common ILs, enzyme 

molecules (in particular, immobilized enzymes) are practically suspended in reaction media 

with low or little water; as a result, the IL network theory is not always suitable for 
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explaining the enzyme activity and stability. The impact of individual anions on enzyme 

inactivation also cannot be explained by the IL network.

SPECIFIC ION EFFECT OF ILS ON PROTEIN STRUCTURES AND ENZYME 

ACTIVITIES

Aqueous IL solutions

In diluted aqueous solutions, hydrophilic ILs become (partially) dissociated and solvated 

individual ions, and these individual ions may interact with the enzyme directly. In aqueous 

solutions of inorganic salts, many studies (see our earlier review16) have concluded that the 

ion effect on the enzyme activity followed the ion kosmotropicity (Hofmeister series): 

kosmotropic anions and chaotropic cations stabilize the enzyme, while chaotropic anions 

and kosmotropic cations destabilize it. A list of studies are compiled in Table 1 (in terms of 

protein stability, and enzyme activity/stability) and some representative examples are 

discussed in details below. A series of studies42, 43, 49, 119–124 in our laboratory have 

demonstrated that the same principle is loosely applicable to the enzyme activity in diluted 

IL aqueous solutions. In our first study, the activities of Amano protease P6 (from 

Aspergillus melleus) in 0.7 M IL aqueous solutions were affected by anions in a decreasing 

order of CH3COO−, CF3COO− > Cl−, Br− > OTs− > BF4
− (which is coherent with the 

decreasing order of anion’s kosmotropicity), and affected by cations in a decreasing order of 

EMIM+, BuPy+ > BMIM+ > EtPy+.119 In a second study,43 our group carried out the 

kinetic hydrolysis of enantiomeric phenylalanine methyl ester catalyzed by Bacillus 

licheniformis protease in aqueous solutions of several hydrophilic ILs (0.5 M). The protease 

enantioselectivity was in a decreasing order with these anions: PO4
3− > citrate3−, 

CH3COO−, EtSO4
−, CF3COO− > Br− > OTs−, BF4

− (decreasing kosmotropicity), and in 

the presence of these cations: EMIM+ > BMIM+ > HMIM+ (decreasing chaotropicity). The 

overall IL kosmotropicity can be measured by the δ value (difference in viscosity B-

coefficients of anion and cation). In general, a high enzyme enantioselectivity was observed 

in the solution of IL with a high δ value. After measuring the NMR B′-coefficients of a 

number of ions (see Fig 5, which is consistent with Fig 1 in general), our group42 further 

found a linear correlation between the enzyme enantioselectivity in aqueous solution and the 

δ′ parameter (difference in NMR B′-coefficients of anion and cation) of ILs, suggesting that 

high enzyme enantiomeric ratios (E) could be achieved in solutions of ILs with high δ′ 

values. Other groups125–127 also reported low/no activities of β-glycosidase in aqueous 

solutions of [BMIM][BF4], which could be explained by the chaotropic nature of BF4
− in 

solutions127 (Note: in neat or concentrated ILs containing anions of BF4
−, the chaotropic 

property of anion may not influence the enzyme activity; therefore, many studies observed 

certain enzyme activities in BF4
− based ILs). Our group120 also conducted the enzymatic 

hydrolysis of DL-phenylalanine methyl ester in aqueous solutions of ILs (0.5 M) containing 

anions of chiral- or ω-amino acids, and reported higher enantiomeric excess (ee) and yields 

in ILs containing anions of D-amino acids rather than in those containing anions of L-

isomers. The likely explanation is that amino acid anions are more kosmotropic than 

zwitterionic amino acids,121 and D-amino acids are more kosmotropic than L-isomers.122 

The use of ILs with kosmotropic anions (OAc− and CF3COO−) in activating hydrolases in 

aqueous solutions was further demonstrated in two of our studies.123, 124
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Recently, Fujita et al.45, 128, 129 evaluated the stability of cytochrome c in ILs containing 

20% (wt) water and its relevance to the kosmotropicity of individual ions; the cation’s effect 

on the protein stability followed a decreasing order of Cholinium+ > BMPyrr+ > BMIM+, 

which is also a decreasing order of cation chaotropicity; the anion’s effect on the protein 

stability followed a decreasing order of H2PO4
− > Bu2PO4

− > OAc− > lactate− > MeSO4
−, 

which is the decreasing order of anion kosmotropicity (B-coefficients at 25 °C: H2PO4
− = 

0.340,40 OAc− = 0.246,40 MeSO4
− = 0.18841; lactate might be considered as a kosmotropic 

anion130). This group131 further dissolved various metallo proteins (cytochrome c, 

peroxidase, ascorbate oxidase, azurin, pseudoazurin and D-fructose dehydrogenase) in 

hydrated [Cholinium][H2PO4] (with 30 wt% water), and observed that proteins maintained 

their active sites and secondary structures in the ionic medium. In addition, they found that 

some proteins retained their activities in hydrated [Cholinium][H2PO4] and D-fructose 

dehydrogenase showed substantially improved thermal stability in the ionic solution.

Constantinescu et al.44, 132 concluded that the thermal stability of ribonuclease A (RNase A) 

in aqueous solution of ILs (typically 0–2 M) follows the Hofmeister series. In their study, 

differential scanning calorimetry (DSC) was employed to measure the effect of ILs on the 

thermal denaturation of RNase A near 60 °C. In terms of decreasing protein stability, the 

cation series are

K+ > Na+ ~ Me4N+ > Li+ > Et4N+ ~ EMIM+ > BMPyrr+ > BMIM+~Pr4N+ > 

HMIM+ ~ Bu4N+ and K+ > Na+ ~ Me4N+ > Cholinium+ > EMIM+ ~ 

Guanidinium+ > BMIM+

and the anion series follows

SO4
2− > HPO4

2− > Cl− > EtSO4
− > BF4

− ~ Br− > MeSO4
− > OTf− > SCN− ~ dca− 

> Tf2N−

The cation series suggests the higher the cation’s hydrophobicity, the higher the cation’s 

kosmotropicity, and the lower the protein stability in general. The anion series offers the 

opposite: the higher the anion’s kosmotropicity, the higher the protein stability in general 

(with small differences in the position of neighboring ions from our earlier discussion). 

Constatinescu et al.132 also indicated ILs could improve the stability of the native state, 

accelerate refolding, and suppress irreversible aggregation; in addition, all ILs evaluated 

could suppress protein aggregation under certain conditions, regardless of their protein 

stabilizing/destabilizing effect. Yang et al.46 found that mushroom tyrosinase is more active 

in aqueous [BMIM][BF4] than in aqueous [BMIM][MeSO4]; however, the enzyme stability 

follows a decreasing order of KMeSO4 > NaBF4 > KPF6. Yang et al.133 determined the 

activity and stability of alkaline phosphatase in up to 1.0 M inorganic salt solutions; they 

found the initial reaction rate or Vmax/Km exhibits a bell-shaped relationship with the (B− –

B+) values of the salts, where B− and B+ are Jones–Dole viscosity B-coefficients for anions 

and cations respectively, and the highest activities are obtained by salts (such as NaCl, KCl, 

and KNO3) where the anion and cation have similar kosmotropic/chaotropic properties. This 

effect is likely due to the influence of cations and anions on the enzyme’s surface pH, active 

site, and catalytic mechanism. The enzyme’s thermal stability increases with the B− or (B− – 

B+) values, where anions seem to be more essential to the enzyme stabilization. Such a 
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correlation may be explained by the ion effect on the enzyme surface solvation, as well as 

the ion interaction with surface and internal structure of the enzyme.

The Hinderberger group134 probed the impact of ILs on the tertiary structure of human 

serum albumin (HSA) by using continuous wave electron paramagnetic resonance (EPR) 

spectroscopy and nanoscale distance measurements with double electron–electron resonance 

(DEER) spectroscopy. They observed that the protein begins to unfold in 15% (v/v) 

[BMIM][BF4] and more hydrophobic alkyl chains promote strong protein-IL interactions; 

however, the binding capacity and the tertiary structure of HSA is mostly maintained in 25% 

(v/v) [Cholinium][H2PO4]. This can be explained by the Hofmeister series: [BMIM][BF4] 

contains a kosmotropic cation and a chaotropic anion while [Cholinium][H2PO4] consists of 

a chaotropic cation and a kosmotropic anion. Urea is a non-ionic chaotrope, and is a known 

protein denaturant that preferentially interacts with the protein surface and interrupts H-

bonds of proteins.135 Attri et al.136 observed that [Et3NH][OAc] reduces the denaturing 

property of urea on α-chymotrypsin in aqueous solutions based on studies using circular 

dichroism (CD), fluorescence and NMR methods; the likely reason is that kosmotropic 

acetate ion interacts with urea and water via H-bonds, minimizing the urea-enzyme 

interactions. The Yang group137 found that the activity of Penicillium expansum lipase in 

4.14% (w/v) ILs follows the Hofmeister series: for cations [MMIM][MeSO4] > [EMIM]
[MeSO4] > [BMIM][MeSO4], [Me4N][OAc] > [Bu4N][OAc], [Me3NH][MeSO3] > 
[Bu4N][MeSO3], and [Me3NH][H2PO4] > [Et3NH][H2PO4] > [Bu3NH][H2PO4]; for 

anions [Cholinium][OAc] > [Cholinium][MeSO3] > [Cholinium][NO3], [Bu4N][OAc] > 
[Bu4N][MeSO3]. They also observed a similar Hofmeister cation effect on mushroom 

tyrosinase, for activity in 5.85%, (w/v) ILs: [MMIM][MeSO4] > [EMIM][MeSO4] > 
[BMIM][MeSO4], [Me4N][OAc] > [Bu4N][OAc], and [Me3NH][H2PO4] > [Et3NH]
[H2PO4]; for stability in 5% (w/v) ILs: [MMIM][MeSO4] > [EMIM][MeSO4] > [BMIM]
[MeSO4].

Attri and Venkatesu138 determined the transfer free energies (ΔG′tr) of a homologous series 

of cyclic dipeptides from water to aqueous protic ILs (30%, 50% and 70%, v/v) from 

solubility measurements at 25 °C under atmospheric pressure. They observed that ΔG′tr 
values are positive in all cases studied, and decrease in the order of [Et3NH][HSO4] > 
[Et2NH2][HSO4] > [Et3NH][OAc] > [Et2NH2][OAc] > [Et3NH][H2PO4] > [Et2NH2]
[H2PO4]. A higher ΔG′tr value indicates a stronger unfavorable interaction between an IL 

and cyclic dipeptide; therefore, the biocompatibility of these ILs is the reverse order of the 

above ΔG′tr sequence, which follows the Hofmeister series: kosmotropic anions and 

chaotropic cations stabilize proteins [viscosity B-coefficients (dm3 mol−1 at 25 °C):40 

H2PO4
− (0.340) > OAc− (0.246) > HSO4

− (0.127), Et3NH+ (0.385) > Et2NH2
+ (0.293)]. Lu 

et al.139 found that anodic peak current of horseradish peroxidase (HRP) at bare glassy 

carbon electrode (GCE) can be correlated with the catalytic activity and the secondary 

structure of HRP. Therefore, the current signals in the presence of ILs could quantify the 

impact of ions on the structural stability of HRP. The effect of cations and anions (up to 1.0 

M) on the HRP structural stability seems to follow the Hofmeister series:

(Cations) Me4N+ > Cholinium+ > EMIM+ > BMPip+ > BMPyrr+ > BMIM+ > 

BuPy+ > HMIM+,
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(Anions) Cl− > Br− > NO3
− > BF4

− > OTf− > SCN− > dca−

Weibels et al.140 evaluated the activities of yeast alcohol dehydrogenase in 0.5 M ILs, and 

noticed that all ILs studied lower the turnover number (kcat) when comparing with the 

reaction in buffer whilst the apparent dissociation constant of the substrate (KM) varies. 

Overall, the enzymatic efficiency kcat/KM follows the series below:

(Anion) Cl− > Br− > EtSO4
− > OTf− > BF4

− > dca− > SCN− (same EMIM+ cation)

(Cation) Na+ > Me4N+ > Cholinium+ > EMIM+ > Et4N+ > Bu4N+ > Guanidinium+ 

> BMIM+ (same Cl− anion)

This group argued that the observed Hofmeister series could be explained by the 

hydrophobic interactions as a controlling factor for ion-specific effects on the enzymatic 

activity.

Yan et al.141 studied the interaction bovine serum albumin (BSA) and [CnMIM]Br (n = 4, 6, 

8, 10) (up to 8.0 mM) by fluorescence, UV–Vis and FT-IR spectroscopy, as well as the 

density functional theory (DFT). Their data suggest that these ILs bind with BSA through 

two types of interactions: (a) H-bonding between cationic headgroups and Asp/Glu amino 

acid residues at the BSA surface, and hydrophobic interaction between cationic hydrocarbon 

chains and hydrophobic amino acid residues in the core of BSA. Since the hydrophobic 

interaction increases with the alkyl chain length, it is the predominated interaction of 

[C10MIM]Br with BSA; on the other hand, H-bonding and van der Waals force are primary 

interactions between [CnMIM]Br (n = 4, 6, 8) with BSA. An excellent review by Yang9 

systematically discussed the possible mechanisms of Hofmeister effects of ILs on the 

enzyme activity and stability. The above experimental studies have shown that the 

kosmotropic effect of ILs on enzymes may be applicable to diluted aqueous solutions of 

ILs,16, 43, 119 as well as some concentrated ILs (such as 20 wt% water45). However, it is not 

quite clear if such an effect exists in neat or concentrated ILs, and how the IL 

hydrophobicity may influence the kosmotropicity. For example, PF6
− is a chaotropic 

anion,49 and denatures enzymes when dissolved in aqueous solutions as Na+ or K+ salt 

(more denaturing than BF4
− and MeSO4

− for mushroom tyrosinase46). However, PF6
− based 

ILs (such as [BMIM][PF6]) are hydrophobic, and thus the solubility and degree of 

dissociation of ILs in water become limited. Meanwhile, it is also known PF6
− based ILs 

containing low water contents are usually enzyme stabilizing.1 Therefore, the Hofmeister 

effect may not be suitable for explaining the enzyme’s behaviors in these hydrophobic ILs 

or their mixtures with water. Without sufficient water to hydrate them, kosmotropic or 

borderline anions (such as acetate, lactate and chloride) of ILs bearing high H-bond 

basicities tend to interact strongly with enzymes causing their inactivation (see a later 

section H-bond basicity and nucleophilicity of anions). Consequently, the enzyme 

stabilization/activation kosmotropic anions (such as OAc− and Cl−) in diluted aqueous 

solutions become enzyme-inactivating agents in ILs with low water contents (see a simple 

illustration in Fig 6). For example, several papers43, 119, 123, 142 have reported the enzyme 

activation at low-concentrations of chloride-based ILs in water, but inactivation at high 

concentrations.
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On the other hand, there are a number of studies that indicate enzyme activities in aqueous 

ILs do not follow Hofmeister series or even follow a reverse order (see Table 1). A few 

selected examples are discussed below. The Yang group137 found that the activity of 

mushroom tyrosinase in 5.85% (w/v) ILs follows a reverse Hofmeister series: [Cholinium]

[OAc] < [Cholinium][MeSO3] < [Cholinium][NO3] and [Bu4N][OAc] < [Bu4N][MeSO3]; 

the likely explanation is that kosmotropic anions interact with Cu2+ of the metalloenzyme, 

resulting in lower activities. Curto et al.143 observed the activity of lactate oxidase in 0.5 M 

choline-based ILs follows a decreasing order with anions as Cl− > H2PO4
− > NO3

− > 

Levulinate− > HCOO−. The viscosity B-coefficients for these anions at 25 °C (in dm3 mol−1) 

are: Cl− (−0.005), H2PO4
− (0.340), NO3

− (−0.043) and HCOO− (0.052).40 The B-coefficient 

for Levulinate− is unknown, but is estimated to be greater than that of butanoate (0.419).40 

Therefore, the kosmotropicity of these anions based on B-coefficients and known 

Hofmeister series16 can be listed in a decreasing order of Levulinate− > H2PO4
− > HCOO− 

> Cl− > NO3
−, which is not in agreement with the order of lactate oxidase activities. This 

group143 also measured the secondary structure of lactate oxidase by CD spectroscopy, and 

found a considerable decrease of α-helices and increase of β-sheets in hydrated [Cholinium]

[H2PO4] (25%, w/w). However, the changes in its secondary structure lead no appreciable 

impact on the activity and stability of lactate oxidase. Baker et al.144 examined the 

equilibrium unfolding behavior of site-specific tetramethylrhodamine-labelled yeast 

cytochrome c in aqueous ILs (up to 2.5 M), and found the protein denaturation is highly 

anion-dependent. However, they noted that Hofmeister theory seems inadequate for 

providing reason explanations, and more complex factors (such as H-bonding and other 

specific solvent–solute interactions) should be considered. Kumar and Venkatesu145 

observed the transition temperature (Tm) of myoglobin decreasing in 0.01 – 0.04 M 

[BMIM]+ – based ILs in the order of anions as Br− > Cl−> HSO4
− > SCN− > CH3COO− > 

I−; this sequence is not consistent with the known Hofmeister series. Similarly, this group146 

further determined the Tm values of α-chymotrypsin from fluorescent measurements in 0.01 

M salt solutions, which decrease for the sodium salts in the order of SO4
2− > Br− > I− > 

SCN− > CH3COO− > Cl−, and for [BMIM]+ –based ILs in the order of CH3COO− > Br− > 

Cl− > HSO4
− > SCN− > I−. These sequences do not seem to follow the Hofmeister series. 

[BMIM]+-based ILs carrying anions of CH3COO−, Cl− and Br− enhance the thermal 

stability of α-chymotrypsin, while HSO4
−, SCN− and I− containing ILs act as protein 

denaturants.

Enzyme activation by low concentrations of ILs

A number of studies reported that enzymes are activated/stabilized by low concentrations of 

ILs. The Rogers group142 observed that the cellulase’s fluorescence intensity associated with 

tryptophan increased in low concentrations of [BMIM]Cl (up to ~10%) and then drastically 

decreased at higher salt concentrations. Our group observed that proteases could be activated 

by a low concentration (e.g. 0.5 M) of [EMIM][EtSO4]43 or [BMIM][CF3COO].123 Baker 

and Heller179 studied the structures of human serum albumin (HSA) and equine heart 

cytochrome c in aqueous [BMIM]Cl by CD spectroscopy and small-angle neutron scattering 

measurements. They found that both proteins maintain most of their higher-order structures 

in up to 25% (v/v) [BMIM]Cl, and become highly denatured in 50% (v/v) [BMIM]Cl; in 

addition, HSA dimerizes at high concentrations of [BMIM]Cl, while cytochrome c 
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exclusively retains the monomeric form. Domínguez et al.180 found that laccase from 

Trametes versicolor could be activated by 10% (v/v) [BMIM]Cl, but inactivated by the same 

concentration of [EMIM][EtSO4] (slight inactivation) or [HMIM]Br (substantial 

inactivation).

Yang et al.46 reported that the activity of mushroom tyrosinase increases with IL 

concentration at up to 5% (v/v) for [BMIM][BF4] and 2% (v/v) for [BMIM][MeSO4], and 

then declines with a higher IL concentration. The catalytic efficiency (Vmax/Km) increases 

initially with IL content and then decreases, showing a bell-shaped relationship with the IL 

concentration. Choline acetate is an IL consisting of a kosmotropic anion and a chaotropic 

cation. The Huang group181 found that at low concentrations (up to 5 mM), choline acetate 

could improve the hydrolytic activity of Candida rogusa lipase in AOT/water/isooctane 

reverse micelles (Fig 7), and cause no lipase conformational changes as evidenced by 

fluorescence spectra. Infrared spectra suggest stronger H-bonds between choline acetate and 

water than those between water molecules; as a result, the addition of a low content of 

choline acetate improves the nucleophilicity of water, accelerating the attack of water 

molecules on the acyl enzyme intermediate and increasing the lipase’s catalytic efficiency.

Li et al.182 examined the hydrolytic activity of Candida rugosa lipase in aqueous solutions 

of a serious ILs [CnMIM]X (n = 2, 4, 6, 8, 10, or 12; X = Cl−, Br−, BF4
− or PF6

−), and found 

that the lipase activities increase with the IL contents to optimum concentrations and then 

decline with higher IL concentrations. In general, the optimum concentrations decrease with 

the alkyl chain length of cations, and are several-fold lower than their corresponding critical 

micelle concentration (CMC). Filice et al.183 studied the activities of immobilized lipases in 

a low concentration (0.01 M) of ILs (based on BF4
−, PF6

−, NO3
−, and MeSO4

−), and 

observed that some IL solutions could activate the lipases. For example, an engineered 

variant (σ-L230C) of Geobacillus thermocatenolatus lipase (GTL) showed seven-fold 

improvement of activity in [EMIM][PF6] and five-fold improvement of activity in [EMIM]

[MeSO4] during the monodeacetylation of peracetylated glucal; this lipase variant also 

exhibited a higher regioselectivity in the hydrolysis of peracetylated glucal (from 78% to 

96% yield of the C-3 monodeprotected product) in the [BDMIM][PF6] solution. In addition, 

the addition of [EMIM][PF6] improved the regioselectivity of Candida rugosa lipase in the 

hydrolysis of peracetylated thymidine (from 72% to 81% yield of C-5 monodeprotected 

product), however, the use of BF4
− –based ILs generally led to lower enzyme activities. CD 

and fluorescence measurements suggested that a low concentration of ILs could cause 

conformational changes in the tertiary structure of the lipase.

Concentrated or neat ILs

As discussed earlier, cations and anions of concentrated or neat ILs form complex polymeric 

network through interactions like electrostatic attractions and H-bonding (Fig 3). Therefore, 

several key properties, such as H-bond basicity and nucleophilicity of anions and IL 

hydrophobicity, begin to play critical roles in enzyme stabilization and activation. Some 

examples are listed in Table 1 and a few representative studies are discussed in-depth below.
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H-bond basicity and nucleophilicity of anions—H-bond basicity and nucleophilicity 

are two different concepts,† but are often closely related. For molecules containing the same 

nucleophilic atoms of the same charge, the stronger base is usually the stronger nucleophile 

in aprotic solvents. Relying on the solvatochromic measurements, several studies have 

suggested the order of anion’s basicity as the following (in decreasing orders):

Basicity series #1:184 OTf− (CF3SO3
−) > Tf2N− > PF6

−

Basicity series #2:185 Cl− > Br− > SCN− > OAc− > I− > NO3
− > OTf− > ClO4

− > BF4

Basicity series #3:186 Cl− > Br− > OAc− > OTf− > ClO4
− > BF4

−

Basicity series #4:187 Cl− > Br− > CH3OSO3
− > SCN− > BF4

− ~ OTf− > PF6
−

Basicity series #5:188 OAc−, Me2PO4
−, MeHPO3

− > EtSO4
− > MeSO4

− > BF4
− > 

Tf2N− > PF6
−

Based on the above series and other discussions in literatures,189, 190 a summary of the 

basicity of selected anions is illustrated in Fig 8. These anions are divided into three 

categories (basic, neutral and acidic), and some of them are ranked in the order of basicity. 

Basic anions include halides, acetate, dicyanamide (dca−), lactate and methyl sulfate; these 

anions are good H-bond donors and tend to form H-bonds with proteins resulting in enzyme 

denaturation and/or inactivation at high salt concentrations. Neutral anions include those 

tending to form hydrophobic ILs (Tf2N− and PF6
−) and others tending to form hydrophilic 

ILs (BF4
−, OTf−, SCN−, NO3

− and CH3SO3
−). These anions have weak abilities in forming 

H-bonds; i.e., if enzymes are inactivated in ILs containing neutral anions, the H-bond 

basicity is unlikely the main reason. Acidic anions (such as amphoteric H2PO4
− and HSO4

−) 

are not common anions in ILs for biocatalysis. However, the Ohno group45, 128 found that 

choline dihydrogen phosphate (m.p. 119°C) containing 20% (wt) water could dissolve and 

stabilize cytochrome c.

Bernson and Lindgren191 dissolved lithium salts LiX in poly(propylene glycol) (MW = 

3000) with hydroxy end-groups. Using IR spectroscopy, they observed that the shifts of –– 

OH stretching band depend on the strength of H-bond formed between the – OH group and 

the anion, as well as the coordination of cations with the -OH group. The strength of anion 

coordination is further dependent on the H-bond basicity of the anion, and is summarized 

from the IR band shifts as (in an increasing order),

PF6
− < BF4

− < ClO4
− < OTf− < I− < Br− < Cl−

In general, this basicity series is consistent with the basicity order from solvatochromic 

measurements (Fig 8). From experimental data of IR and ESI-MS, Dupont91 suggested the 

strength of H-bond basicity in a similar increasing order of

BPh4
− < PF6

− < BF4
− < CF3COO−

†Basicity refers to the ability of a base to accept a proton, and is a matter of equilibrium. Nucleophilicity of a Lewis base refers to the 
relative reaction rate of different nucleophilic reagents towards a common substrate, most usually involving the formation of a bond to 
carbon; nucleophilicity is a matter of kinetics (rate).
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On the other hand, the ionic association strength of LiX salts was also examined in a variety 

of aprotic solvents including glymes (see a short review in the Supporting Information of 

Ref192). The approximate ionic association strength in aprotic solvents is listed below in an 

increasing order:192, 193

beti−, Tf2N− < PF6
− < ClO4

−, I− < SCN− < BF4
− < CF3SO3

− < Br− < NO3
− < 

CF3COO− < Cl−

This order represents the strength of an anion in interacting with solvated cations through 

ionic attraction, or could be implied to represent the strength of interactions between the 

anions and charged regions of macromolecules (such as proteins). This ionic association 

strength series resembles the anion’s H-bond basicity order in Fig 8.

In the following sections, a number of enzymatic reactions in ILs demonstrate how the 

nucleophilicity and basicity of anions contribute to the enzyme activity and stability. The 

first group of examples focused on the effect of anion’s nucleophilicity. Kaar et al162 

observed that free Candida rugosa lipase was only active in hydrophobic [BMIM][PF6], but 

inactive in all hydrophilic ILs based on NO3
−, OAc− and CF3COO− during the 

transesterification of methylmethacrylate with 2-ethyl-1-hexanol. They indicated that the 

latter three anions are more nucleophilic than PF6
−, and thus could interact with the enzyme 

causing the protein conformation changes. In this example, the solvent hydrophobicity is 

another important factor in influencing the enzyme activity (see a later section 

‘Hydrophobicity’). Hernández-Fernández et al194 reported that the stability of CALB (lipase 

B from Candida antarctica) in ILs was in the following order: [HMIM][PF6] > [HMIM]

[Tf2N] > [HMIM][BF4], and [BMIM][PF6] > [BMIM][dca], and the stability of Penicillin G 

acylase was in a similar order of [BMIM][Tf2N] > [BMIM][PF6] > [BMIM][BF4]. They 

explained the decreasing stability were in general consistent with the increasing order of 

nucleophilicity in Fig 8 (PF6
− < BF4

− < Tf2N− < dca−), where the more nucleophilic anions 

tend to interact with the positively charged sites on enzymes and to modify the enzyme’s 

conformation. On the other hand, they also pointed out that the enzyme stability was in 

agreement with the hydrophobicity of ILs: both enzymes were more stable in hydrophobic 

ILs than in hydrophilic ones. However, in another study, a contradictory result was reported. 

Irimescu and Kato195 carried out the CALB-catalyzed enantioselective acylation of 1-

phenylethylamine with 4-pentenoic acid, and found that the reaction rates relied on the type 

of IL anions (reaction rates in a decreasing order of OTf− > BF4
− > PF6

−, same cations). 

Thus, this example implies a higher anion nucleophilicity leading to a higher enzymatic 

activity. In a second acylation reaction of 2-phenyl-1-propylamine with 4-pentenoic acid, 

however, Irimescu and Kato195 observed that PF6
− based ILs afforded fastest reaction rates, 

followed by OTf− and BF4
− based ILs. The rather confusion findings may be due to the fact 

that the enzymatic reaction is affected by multiple factors of ILs such as nucleophilicity, 

hydrophobicity, viscosity and impurity. Lee et al196 measured the initial transesterification 

rates of three lipases (Novozym® 435, Rhizomucor miehei lipase, and Candida rugosa 

lipase) in different ILs under the same water activity (aw), and observed the anion effect on 

the initial rates followed a decreasing order of Tf2N− > PF6
− > OTf− > SbF6

− ~ BF4
−. They 

explained that OTf− and BF4
− are more nucleophilic than PF6

−. The second factor could the 
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IL hydrophobicity because lipases seemed more active in hydrophobic ILs than in 

hydrophilic ones.

The second group of examples focused on the effect of the anion’s H-bond basicity. 

[BMIM]Cl could effectively dissolve cellulose197, 198 because chloride ions (as H-

acceptors) interact with the cellulose -OH group and break the H-bonding network of 

cellulose.199 Because of the same reason, this IL induced the inactivation of cellulase (from 

Trichoderma reesei).142 Similarly, Lee et al200 observed a dramatic decrease of the lipase 

activity in [OMIM][Tf2N] in a higher concentration of [OMIM]Cl. Based on the multiple 

salvation interactions, [BMIM]Cl showed the largest H-bond basicity among ILs considered 

in a study by Anderson et al,201 and thus could dissolve complex polar molecules such as 

cyclodextrins and antibiotics.202 Lou et al164 reported that Novozym® 435 showed no 

ammonolysis activity towards (R,S)-p-hydroxyphenylglycine methyl ester in [BMIM]Br and 

[BMIM][NO3], implying the denaturing nature of these two ILs. Lau et al163 suggested that 

the low CALB activity in [BMIM][Lactate] was caused by the secondary structure changes 

of the protein, which was further triggered by the H-bonding interaction between lactate 

anions and peptide chains. Dicyanamide (dca−) based ILs such as [BMIM][dca] are capable 

of dissolving carbohydrates,203, 204 however, [BMIM][dca] is an enzyme-denaturing 

IL166, 205, 206 probably due to the high H-bond basicity of the anion. Fujita et al45 detected a 

low stability of cytochrome c in [BMIM][MeSO4], [BMIM][Lactate] and [BMIM][OAc] all 

containing 20 wt% water, implying the high H-bond basicity and enzyme-denaturing nature 

of MeSO4
−, lactate and OAc−. Our group207 also suggested both free and immobilized 

CALB in [EMIM][OTf] were about as inactive as in [BMIM][dca]. Bermejo et al208 

observed that free CALB lost 35% of its initial activity once being dissolved in [HOPMIm]

[NO3], but maintained 80% of the remaining activity after 3 months of incubation in this IL. 

The CALB activity loss in [HOPMIm][NO3] was primarily due to the denaturing effect of 

NO3
− as discussed earlier. On the other hand, the less denaturing property of this IL (vs. 

[BMIM][NO3]) may be explained by two reasons: (1) the HOPMIm+ cation is larger than 

BMIM+, and as a result, the molar concentration of NO3
− in [HOPMIm][NO3] is lower than 

that in [BMIM][NO3]; (2) [HOPMIm][NO3] contains a hydroxyl group, which may 

favorably interact with NO3
− and thus reduce the interaction between NO3

− and the lipase. 

Zeuner et al.176 carried out the esterification of glycerol with sinapic acid catalyzed by 

Feruloyl esterase A from Aspergillus niger (15% v/v aqueous buffer, 18% v/v glycerol, and 

67% v/v IL), and found the enzyme is active in PF6
− –based ILs ([BMIM][PF6] and 

[(HOCH2CH2)MIM][PF6] but inactive in BF4
− –based ILs. The COSMO-RS simulations 

suggest that BF4
− is a stronger H-bond acceptor than PF6

−, disrupting the H-bond based 

enzyme structure. The Yang group209 obtained up to 86% conversion of corn oil to biodiesel 

in [BMIM][PF6] catalyzed by Penicillium expansum lipase; however, they obtained no 

enzymatic activity in other ILs containing anions of MeSO4
−, OAc−, NO3

−, and H2PO4
−. 

Bekhouche et al.210 examined the activity and stability of formate dehydrogenase from 

Candida boidinii (FDH, EC: 1.2.1.2) in three ILs (i.e. [MMIM][Me2PO4], [BMIM][OAc], 

[MMIM][CH3HPO2(OCH3)]) by activity assays and steady-state fluorescence spectroscopy 

(using iodide as the dynamic quencher or acrylamide as the static quencher). They found the 

third IL is more denaturing than the first two and each IL induces a different denaturation 

mechanism. The enzymatic activity was reduced in the presence of 30% (v/v) [MMIM]
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[Me2PO4], 10% [BMIM][OAc] or 10% [MMIM][CH3HPO2(OCH3)], and was totally 

inactivated in 70% (v/v) [MMIM][Me2PO4], 30% [BMIM][OAc] or 20% [MMIM]

[CH3HPO2(OCH3)].

Hydrophobicity—‘Hydrophobicity’ could be considered as a subset concept of ‘polarity’. 

However, it is practically important to differentiate ‘hydrophobicity’ from ‘polarity’ because 

the former one is often related to the miscibility with water.211 The hydrophobicity of ILs 

can be quantified by the log P scale, a concept derived from the partition coefficient of ILs 

between 1-octanol and water. The partition coefficient (KOW or P) is a ratio of 

concentrations of un-ionized compound between the two phases. The log P is defined as the 

partition coefficient at the unlimited dilution concentration of solute,

(2)

where Co is the IL concentration in the octanol phase and Cw is the IL concentration in the 

aqueous phase. For the simplicity, it is common to use extremely low concentrations of IL in 

the experiment instead of extrapolating the IL concentration to zero (eqn 2). However, since 

ILs dissociate into ions in water and current KOW values were reported as the ratio of 

concentrations of both undissociated and dissociated ILs in two phases, most log P values of 

ILs (Table 2) should be strictly called log D, where D is the distribution coefficient, the ratio 

of the total concentrations of all forms of IL (ionized and un-ionized) between two phases. 

Alternatively, the intrinsic partition coefficients of ILs should be calculated from the 

apparent partition coefficients (D).212

From a practical point of view, the log P values (or log KOW at low concentrations) of ILs in 

Table 2 are valuable for comparing the hydrophobicity of ILs with conventional organic 

solvents. In general, ILs are very hydrophilic in nature based on the negative log P values 

(or log KOW) for most ILs (including water-immiscible Tf2N− and PF6
− ones); however, by 

convention, we usually refer those ILs that are poorly miscible with water (e.g. Tf2N− and 

PF6
− types) as hydrophobic ILs. The discrepancy between different measurements of the 

same ILs might be caused by different initial concentrations of ILs (as high concentrations 

leading to higher KOW values212, 215), and different experimental techniques.

The Russell group162 measured the log P values (< −2.0) of several ILs, and suggested that 

they are very hydrophilic in nature based on the Laane’s scale;218–220 they also observed 

that free lipase (Candida rugosa) was only active in hydrophobic [BMIM][PF6] (log P = 

−2.39), but inactive in other hydrophilic ILs including [BMIM][CH3COO] (log P = −2.77), 

[BMIM][NO3] (log P = −2.90) and [BMIM][CF3COO].162 Similarly, Nara et al221 achieved 

higher transesterification activities of lipases in [BMIM][PF6] than in [BMIM][BF4]. The 

Goto group also reported higher activities of PEG-modified lipase222 and subtilisin223 in 

more hydrophobic ILs such as [EMIM][Tf2N]. Zhang et al224 reported low penicillin 

acylase stabilities in [BMIM][BF4] and [BMIM][dca]. Lou and Zong165 studied the 

enantioselective acylation of (R,S)-1-trimethylsilylethanol with vinyl acetate catalyzed by 

lipases in several ILs, and indicated the activity, enantioselectivity and thermostability of 

Novozym® 435 increasing with the IL hydrophobicity ([BMIM][PF6] > [OMIM][BF4] > 
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[C7MIM][BF4] > [HMIM][BF4] > [C5MIM][BF4] > [BMIM][BF4]). Paljevac et al225 

reported that the cellulase activity decreased in the order of IL hydrophobicity: [BMIM]

[PF6] > [BMIM][BF4] > [BMIM]Cl. The Víllora group226 observed a lower stability of 

penicillin G acylase in [BMIM][BF4] than in hydrophobic ILs (Tf2N− and PF6
−), 

particularly in the absence of substrate. A recent study227 on the alcoholysis of vinyl 

butyrate and 1-butanol by free CALB suggested that the lipase activities were generally 

much lower in water-miscible ILs (such as BF4
−, dca−, NO3

− and OAc−, etc.) than in water-

immiscible ones (PF6
− and Tf2N−), and the enzyme’s activities increased with the cation’s 

hydrophobicity (EMIM+ < BMIM+ < HMIM+ < OMIM+). Ha et al228 also found 

Novozym® 435 was less active and stable in hydrophilic ILs (BF4
− and OTf−) than in other 

hydrophobic ILs (Tf2N− and PF6
−). Lee et al196 reported that Novozym® 435 was more 

thermally stable in hydrophobic ILs than in hydrophilic ones following the order of [BMIM]

[Tf2N] > [BMIM][PF6] > [BMIM][OTf] > [BMIM][BF4] > [BMIM][SbF6]. Shen et al229 

noticed that during the kinetic resolution of racemic cyanohydrins, Amano lipase PS showed 

a high enantioselectivity (80% eep) in hydrophobic [OMIM][PF6], but poor 

enantioselectivities (< 5% eep) in hydrophilic [HMIM][BF4] and [HMIM]Cl. Hernández-

Fernández et al194 concluded that both free CALB and penicillin G acylase (PGA) were 

more stable in hydrophobic ILs than in hydrophilic ones: in the case of CALB, the stability 

was in a decreasing order of [HMIM][PF6] > [HMIM][Tf2N] > [HMIM][BF4], and [BMIM]

[PF6] > [BMIM][dca], as well as [OMIM][PF6] > [HMIM][PF6] > [BMIM][PF6]; in the 

case of PGA, the stability was in a decreasing order of [BMIM][Tf2N] > [BMIM][PF6] > 

[BMIM][BF4]. However, the hydrophobic cations showed an adverse effect on the PGA 

stability: [EMIM][Tf2N] > [BMIM][Tf2N], and [BMIM][PF6] > [OMIM][PF6]. The effect 

of nucleophilicity of these anions has been discussed previously. These examples implied 

that the high hydrophobicity (large log P) of ILs could be beneficial to the enzyme 

stabilization.

Through a systematic investigation of Novozym® 435-catalyzed transesterification in over 

20 ILs, our group166 observed that the lipase activity increased with the log P value of ILs to 

a maximum, and then declined with a further increase in log P (a bell shape). Our previous 

discussion implied that the enzyme is active in hydrophobic solvents (with a high log P). 

However, a higher log P of the solvent also means a more thermodynamic ground-state 

stabilization of substrates,230 which might reduce the conversion of substrates. This could 

explain the decreasing reaction rate in very hydrophobic ILs. Similarly, Lou et al164 found 

the initial rates of Novozym® 435-catalyzed ammonolysis of (R,S)-p-hydroxyphenylglycine 

methyl ester increased with the hydrophobicity of BF4
− based ILs to a maximum (C3MIM+ 

< C4MIM+ < C5MIM+ < C6MIM+), and then decreased with a further increase in the IL 

hydrophobicity (C6MIM+ > C7MIM+ > C8MIM+).

As discussed previously, the stabilization of substrates could be one reason. But the 

possibility of hydrophobic interactions between large IL molecules and the enzyme cannot 

be fully excluded. For example, the Atkin group231 investigated the stability and activity of 

hen’s egg white lysozyme in aqueous solutions of four protic ILs (25–75 wt%); the protein 

denaturing-renaturing CD experiments and the activity measurements of lysozyme indicated 

that the highest catalytic activity and most complete refolding was achieved in solutions of 
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[(EtOH)NH3][HCOO], followed by [PrNH3][HCOO], and then [EtNH3][HCOO] and 

[(MeOEt)NH3][HCOO]. It is believed that the protein-IL interactions include the 

electrostatic interaction of IL cations with negatively charged residues in the protein, H-

bonds between amine protons and the protein, as well as the hydrophobic interactions 

between alkyl chains in ILs and hydrophobic regions of the protein. Since electrostatic 

interactions between [(EtOH)NH3]+ and lysozyme is about the same as for [EtNH3]+, the 

hydroxyl group in [(EtOH)NH3]+ probably reduces the strength of hydrophobic interactions 

with the protein. Another possibility is that the hydroxyl group interacts with the anion 

formate via H-bonds, reducing the interaction of formate with the protein. The IL viscosity-

induced mass transport was not a limiting factor in the study because [(EtOH)NH3][HCOO] 

is several times more viscous that other three ILs. In summary, the hydrophobicity factor of 

ILs is a combination effect of anion’s H-bond basicity and cation’s hydrophobic effect.

Klähn et al.232, 233 carried out MD simulations of CALB in imidazolium or guanidinium–

based ILs containing anions of NO3
−, BF4

− or PF6
−. They confirmed that the CALB 

stability is mainly influenced by anions and follows a decreasing order of PF6
− > BF4

− ≫ 

NO3
−, and long decyl side chains, polar methoxy groups and guanidinium-based cations 

induce more CALB destabilization than short methyl groups, other non-polar groups and 

imidazolium-based cations. Two destabilization mechanisms are identified: (a) 

Destabilization of protein surface by Coulomb interactions with anions carrying a localized 

charge and strong polarization, or with polar cations. This type of destabilization shows a 

roughening of the protein surface, loss of compactness, and unraveling of α-helices. Smaller 

anions and a high anion surface charge lead to stronger Coulomb interactions. (b) 

Destabilization of protein core by direct hydrophobic interactions of protein core with long 

alkyl chains or hydrophobic ILs, which leads to a disintegration of β-sheets, diffusion of ions 

into CAL-B and increasing protein–IL van der Waals interactions. Due to van der Waals 

interactions with the aliphatic residues at the active site entrance, the butyl group of 

[BMIM]+ cations can easily diffuse into the active site of CALB; this could affect the 

binding between substrate molecules and active sites.

Other factors—Since hydrophobicity is not the only factor in controlling the hydrolase 

activity, complications arose in interpreting some biocatalytic reactions. De Diego et al234 

conducted the transesterification of vinyl propionate and 1-butanol catalyzed by free and 

immobilized lipases from Candida antarctica (CALA and CALB), Thermomyces 

lanuginosus (TLL) and Rhizomuncor miehei (RML). Most of the enzyme preparations 

(except free CALA) showed higher activities in more hydrophobic [OMIM][PF6] than in 

[BMIM][PF6], but lower activities in other more hydrophobic based ILs ([OMIM][BF4] < 

[HMIM][BF4] < [BMIM][BF4], and [BDMIM][PF6] < [BDMIM][BF4]). Another study by 

Irimescu and Kato195 on the lipase-catalyzed acylation of primary amines indicated lower 

reaction rates in ILs with longer alkyl chains in cations, and the water miscibility of ILs was 

not a main factor in influencing the reaction rate. Some studies also obtained relatively high 

enzyme activities in hydrophilic ILs (such as [BMIM][BF4], [EMIM][BF4], [BMIM][OTf] 

and [MMIM][MeSO4]).163, 235–239 The Bruce group240 evaluated the activities of proteases 

(chymotrypsin and subtilisin) dissolved in several protic hydroxylalkylammonium-based ILs 

(containing ~1–2 wt% water), and found that subtilisin was only active in 

Zhao Page 22

J Chem Technol Biotechnol. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



diethanolammonium chloride and chymotrypsin was inactive in these protic ILs. They 

further indicated that subtilisin retained its secondary and tertiary structures in 

diethanolammonium chloride as confirmed by the far and near UV CD spectra. Therefore, 

multiple factors must be considered when explaining the enzymatic systems like these.6

Amyloid fibrilization represents a process where the peptide assembles from monomers to 

oligomers and then into fibrils; this process is associated with the protein destabilization 

since the development of amyloid fibrils results from the formation of intramolecular H-

bonds. The

Byrne group159 determined the rates of amyloid fibrilization of Aβ16–22 peptide in 90% 

(v/v) protic triethylammonium-based ILs, and found these rates decrease with IL anions in 

the order of HSO4
−, H2PO4

− > CF3COO− > lactate− > OTf− > CH3SO3
−. The reverse of this 

series is the protein stabilization order, which is roughly a reverse Hofmeister series. The 

competitive H-bonding between the anion and water contributes to the self-assembly of 

Aβ16–22 peptide into amyloid fibrils; kosmotropic anions leads to faster amyloid 

fibrilization (“salt-in”) while chaotropic anions such as mesylate) suppress the formation of 

amyloid fibrilization (“salt-out”).

ION SPECIFICITY-GUIDED BIOCATALYTIC APPLICATIONS

The empirical ion specificity rules at different concentrations of ILs could provide some 

general guidance for designing/selecting enzyme-compatible ionic solvents. [EMIM][OAc] 

contains a chaotropic cation and kosmotropic anion, a unique combination for enzyme 

stabilization when it is used at low concentrations.43, 49, 119 Our group124 carried out the 

enzymatic chiral hydrolysis of amino acid esters catalyzed by Bacillus licheniformis 

protease in [EMIM][OAc] solutions, and obtained high enantioselectivities in up to 4.0 M 

[EMIM][OAc] despite lower yields of L-amino acid beyond 2.0 M IL concentrations. In 

addition, Wang et al.241 found that aqueous solutions of [BMIM][OAc] are highly 

compatible with cellulases. At first, they observed a high stability of a mixture of cellulases 

and β-glucosidase in [EMIM][OAc] solutions; after incubated in 15% and 20% (w/v) 

[EMIM][OAc] aqueous solutions at 50°C for 3 h, the enzyme mixture still retained 77% and 

65% of its original activity respectively. In addition, the cellulase mixture exhibited a high 

activity in 15% [EMIM][OAc], leading to 91% conversion of Avicel® cellulose and up to 

54% conversion of yellow poplar biomass into reducing sugars.

Bekhouche et al.242 suggested that [MMIM][Me2PO4] consists of a chaotropic cation and a 

kosmotropic anion, and found that formate dehydrogenase (FDH) from Candida boidinii 

maintained 76% of its activity in 20% (v/v) [MMIM][Me2PO4] (vs 100% activity in 

carbonate buffer). This group also indicated that FDH grafted with ILs (e.g. [Cholinium]Cl, 

[HO-EMIM]Cl and [HO-PrMIM]Cl) via covalent coupling exhibited a more tolerance to 

ionic media (such as in 70% (v/v) [MMIM][Me2PO4], the modified enzymes retained ca. 

30–45% of their activity in aqueous buffer). They also concluded that more chaotropic 

grafted cation (such as cholinium) leads to a higher stabilizing effect on the enzyme in 

aqueous media. Thomas et al.156 found that xylanase and the arabinofurosidases maintained 

high or even enhanced hydrolytic activities in up to 20% (v/v) aqueous solutions of 
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[MMIM][Me2PO4], [EMIM][Me2PO4] and [EMIM][OAc]. Yamamoto et al.243 evaluated 

aqueous solutions of N-alkylpyridinium chlorides and N-alkyl-N-methylpyrrolidinium 

chlorides for the refolding of denatured lysozyme, and found that less hydrophobic and 

chaotropic ILs (i.e. N-ethyl, N-butyl and N-hexylpyridinium chlorides, and N-butyl-N-

methylpyrrolidinium chloride) could suppress protein aggregation and thus are effective for 

refolding the protein (46–69% yields). On the other hand, although more hydrophobic ILs 

such as N-octylpyridinium chloride and N-dodecylpyridinium chloride could fully prevent 

aggregation at lower concentrations, these salts interact directly with the protein via 

hydrophobic interactions and are not effective in improving refolding yields.

Hydroxyl- or ether-functionalized cations tend to be less hydrophobic and more chaotropic; 

as a result, such a modification often leads to more enzyme-compatible ILs. As shown in Fig 

9, each of the Ammoeng family ILs is an ionic mixture containing multiple alkyloxy groups, 

which have both hydrophilic and hydrophobic properties like polyethylene glycols (PEGs). 

The Xu group244–249 judiciously selected a group of commercial tetraammonium-based ILs 

as reaction media for the enzymatic glycerolysis. In particular, Ammoeng 100 (also known 

as [CPMA][MeSO4]‡) and 102 are capable of dissolving triglycerides and have shown to be 

lipase-compatible during the glycerolysis reaction;245, 246 trioctylmethylammonium 

bis(trifluoromethylsulfonyl)imide ([TOMA][Tf2N]) and its mixture with Ammoeng 102 

have also been evaluated as suitable solvents for the enzymatic glycerolysis.248–250 De 

Diego et al234 have further confirmed higher transesterification activities of both free and 

immobilized CALB in [CPMA][MeSO4] than in several PF6
− and BF4

− based ILs; however, 

the other two lipases from Thermomyces lanuginosus (TLL) and Rhizomuncor miehei 

(RML) seemed less active in [CPMA][MeSO4] than in PF6
− and BF4

− based ILs. Xu and 

co-workers245, 247 utilized the Conductor-like Screening Model for Real Solvents (COSMS-

RS) to derive various parameters (such as misfit, H-bonding and van der Waals interaction 

energy) to understand the multiple interactions in ILs; the model also provides guidance in 

designing the structures of cations and anions.251 Similarly, the Kroutil group153 found that 

alcohol dehydrogenase is more active in hydroxyl-functionalized ILs than ordinary ILs, even 

at 50–90% (v/v) IL concentrations; the enzyme activity decreased in the order of [(HO-

Et)3MeN][MeSO4] > Ammoeng 101 > Ammoeng 100 > Ammoeng 102. The Kragl group252 

found an IL in the Ammoeng family - Ammoeng 110 (Fig 9d) –is quite effective in forming 

aqueous two-phase (ATP) for the purification of active enzymes (two different alcohol 

dehydrogenases); the IL is capable of stabilizing the enzymes and enhancing the solubility 

of hydrophobic substrates. It is interesting to mention that oxygen-containing ILs (such as 

Ammoeng series, and [C2OHmim]Cl) were used as additives in the enantioselective 

hydrolysis of diester malonates by pig liver esterase (PLE), and less than 1% of these ILs 

and 10% isopropanol/water were sufficient to improve the activity of PLE (up to four times) 

as well as the enantioselectivity.253

Based on the lyoprotectant effect of tris(hydroxymethyl)aminomethane (Tris) as excipient in 

horseradish peroxidase lyophilization,254 Das et al255 mimicked the structure of Tris and 

rationally designed a new IL known as tetrakis(2-hydroxyethyl)ammonium 

‡From the name of cocosalkyl pentaethoxy methylammonium methylsulfate.
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triflouromethanesulfonate (Fig 10); they reported that horseradish peroxidase in this new IL 

was 10 times more active than in methanol and at least 30–240-fold more active than in 

conventional ILs. Abe et al256 synthesized an alkyloxy-containing hydrophobic IL named 2-

methoxyethyl(tri-n-butyl)phosphonium bis(trifluoromethane)sulfonamide ([MeOCH2CH2-

Bu3P][Tf2N]), and observed a faster reaction rate (lipase PS-catalyzed transesterification of 

secondary alcohols) in this IL than in diisopropyl ether. Vafiadi et al257 employed two 

functionalized ILs [C2OHmim][PF6] and [C5O2mim][PF6] as solvents for the feruloyl 

esterase-catalyzed esterification of glycerol with sinapic acid, and achieved high conversion 

yields (72.5% and 76.7% respectively in two ILs under optimal conditions). These two ILs 

are considered as amphiphilic (hydrophilic cation and hydrophobic anion), and have 

relatively low viscosities.

Li et al.258 covalently attached ether-functionalized ILs (containing carboxylic acid group) 

to Candida rugosa lipase (CRL) by using the coupling reagent N,N′-carbodiimide (see Fig 

11). The modified lipase showed improved catalytic activity, thermostability, organic 

solvent tolerance, and adaptability to temperature and pH changes in olive oil hydrolysis 

reaction. In particular, a higher CRL activity is associated with more kosmotropic anions of 

ILs (H2PO4
− > Cl− > BF4

−), and the use of a small glycol molecule (PEG 350 vs PEG 750) 

leads to a more active enzyme. The CD spectra suggest that the chemical modification by 

ILs resulted in an increase in β-sheet and a decrease in α-helix content of secondary 

structures of CRL.

SUMMARY

Molecular level structures of ILs and their solutions are controlled by complex interactions 

of electrostatic attraction, H-bonds and dispersion forces depending on the concentration of 

ILs. Clearly, there is a need for more experimental and simulation studies to further 

visualize the microstructures of ILs and IL solutions. The interactions between proteins and 

IL solutions depend on some microscopic properties such as ion hydration, ion effect on 

protein hydration, and direct interactions between ions and proteins, and could be influenced 

by some macroscopic parameters such as viscosity B-coefficients of ions, H-bond basicity, 

and hydrophobicity. In diluted aqueous IL solutions, the ion specificity of many enzymatic 

systems is in line with the traditional Hofmeister series/kosmotropicity despite a number of 

exceptions, however, the specificity in concentrated or neat ILs is determined by H-bond 

basicity and nucelophilicity of anions, IL hydrophobicity and other factors. Due to the 

complex nature of many enzymatic systems, the specific ion effect may provide some 

empirical guidelines but not universal rules. Hopefully, these simple guidelines could lead to 

more custom design of enzyme-compatible ILs and biocatalytic systems.
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NOTATION

IL Cations

EMIM+ 1-ethyl-3-methylimidazolium

BMIM+ 1-butyl-3-methylimidazolium

BIM+ 1-butylimidazolium

BDMIM+ 1-butyl-2,3-dimethylimidazolium

PMIM+ 1-methyl-3-propylimidazolium

HMIM+ 1-hexyl-3-methylimidazolium

OMIM+ 1-octyl-3-methylimidazolium

ONIM+ 1-nonyl-3-octylimidazolium

C18MIM+ 1-methyl-3-octadecylimidazolium

BMPip+ 1-butyl-1-methylpiperidinium

BMPyrr+ 1-butyl-1-methylpyrrolidinium

EtPy+ 1-ethylpyridinium

BuPy+ 1-butylpyridinium

Me3NPr+ N,N,N-trimethyl-N-propylammonium

IL Anions

BF4
− tetrafluoroborate

PF6
− hexafluorophosphate

OAc− acetate

Tf2N− bis(trifluoromethane)sulfonamide, (CF3SO2)2N−

beti– bis(perfluoroethylsulfonyl)imide, (C2F5SO2)2N−

OTf− triflate (i.e. trifluoromethanesulfonate)

dca− dicyanamide

MeSO4
− methyl sulfate

EtSO4
− ethyl sulfate

OTs− tosylate
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Fig. 1. 
The Hofmeister series as an order of the ion effect on protein stability22, 39 (viscosity B-

coefficients in dm3·mol−1 at 25 ºC are taken from the Marcus collection40 except those of 

EtSO4
− and MeSO4

− were from Ref;41 the positions of EtSO4
− and MeSO4

− are based on 

the consideration of B-coefficients, NMR B′-coefficients42 and enzyme stability 

studies43–46).
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Fig. 2. 
Illustration of interactions between solutes and protein.
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Fig. 3. 
2D illustration of the structure of a neat IL to its infinite dilution in the presence of other 

solvent molecules. Most of these structures have been confirmed by experiments and/or 

simulations (red spheres = anions, blue spheres = cations, black spots = solvent molecules 

and the lines represent the hydrogen bonds and/or other weaker interactions) (Reproduced 

by permission from Ref,89 © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim).
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Fig. 4. 
Enzymes with a small amount of water are firmly trapped in the network of ILs (Reproduced 

by permission from Ref,117 © 2007 the Biochemical Society).
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Fig. 5. 
NMR B′-coefficients of some ions.42
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Fig. 6. 
Illustration of interactions of enzyme in acetate-containing IL: (a) between acetate anion 

with water molecules in diluted IL solution, and (b) between acetate anion and enzyme 

molecule in concentrated IL.
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Fig. 7. 
Illustration of choline acetate influencing the nucleophilicity of water molecules near the 

lipase in AOT reverse micelles (Adapted from Ref,181 with permission from Elsevier).
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Fig. 8. 
Comparison of H-bond basicity of selected anions in ILs.
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Fig. 9. 
Structures of tetraammonium-based ILs (AmmoengTM series).
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Fig. 10. 
Structure of tetrakis(2-hydroxyethyl)ammonium triflouromethanesulfonate.
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Fig. 11. 
Candida rugosa lipase (CRL) modified by covalent linkage to a glycol-functionalized IL 

(Reproduced with permission from Ref.258 Copyright (2015) American Chemical Society).
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Table 2

log P (or log KOW at low concentrations a) values of ILs at 25 °C

Solvent log P/log KOW Reference

1 dichloromethane 1.25 selected value by Ref 213

2 THF 0.46 selected value by Ref 213

3 t-butanol 0.35 selected value by Ref 213

4 acetone −0.24 selected value by Ref 213

5 acetonitrile −0.34 selected value by Ref 213

6 [EMIM][Tf2N] −1.18 214

log KOW (−1.05 to −0.96) (0.28−2.8 mM) calculated from Ref 215

7 [BMIM][Tf2N] 0.11 166

log KOW (−0.96 to −0.21) (0.15−2.2 mM) calculated from Ref 215

0.33 216

−1.74 212

8 [HMIM][Tf2N] 0.64 166

log KOW (0.15 to 0.22) (0.32−0.38 mM) calculated from Ref 215

0.65 216

9 [OMIM][Tf2N] 0.79 214

log KOW (0.80−1.05) (0.099−0.21 mM) calculated from Ref 215

10 [EMMIM][Tf2N] log KOW (−1.15 to −0.92) (0.32−2.9 mM) calculated from Ref 215

11 [PMMIM][Tf2N] log KOW (−0.92 to −0.62) (1.4−2.8 mM) calculated from Ref 215

12 [HMMIM][Tf2N] log KOW (0.13 to 0.25) (0.36−0.49 mM) calculated from Ref 215

13 [BMIM][PF6] −1.66 calculated from Ref 215

−2.39 162, 216

−2.38 172, 212

−2.06 214

−2.35 165

14 [HMIM][PF6] −1.86 216

15 [OMIM][PF6] −0.35 214

−1.33 216

16 [ONIM][PF6] −2.19 172

17 [BMIM]Cl −2.40 calculated from Ref 215

18 [BMIM]Br −2.48 calculated from Ref 215

19 [EMIM][OAc] −2.53 166

20 [BMIM][OAc] −2.77 162

21 [EMIM][CF3COO] −2.75 166

22 [HMIM][ CF3COO] −2.30 166

23 [BMIM][NO3] −2.90 162

−2.42 calculated from Ref 215
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Solvent log P/log KOW Reference

24 [BMIM][dca] −2.32 166

25 [EMIM][BF4] −2.57 166

26 [BMIM][BF4] −2.51 166

−2.44 165, 172

−2.52 calculated from Ref 215

27 [OMIM][BF4] −1.34 166

−1.14 214

28 [EtPy][ CF3COO] −2.57 166

29 [EtPy][Tf2N] −0.90 166

30 [BuPy][Tf2N] −0.26 166

31 [Cholinium][Tf2N] log KOW = −0.57 (calculated value) 217b

Note:

a
log KOW values calculated from Ref215 were converted from initial values of KOW measured at room temperature (24 ± 2 °C), and the 

concentration range given for each log KOW was the IL concentration range in water phase;

b
This reference also provides KOW values for a number of pyridinium and imidazolium ILs based on Tf2N− and B(CN)4−.
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