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SUMMARY

The discovery of long non-coding RNA (lncRNA) has dramatically altered our understanding of 

cancer. Here, we describe a comprehensive analysis of lncRNA alterations at transcriptional, 

genomic, and epigenetic levels in 5,037 human tumor specimens across 13 cancer types from the 
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Cancer Genome Atlas (TCGA). Our results suggest that the expression and dysregulation of 

lncRNAs are highly cancer-type specific compared to protein-coding genes. Using the integrative 

data generated by this analysis, we present a clinically guided small interfering RNA screening 

strategy and a co-expression analysis approach to identify cancer driver lncRNAs and predict their 

functions. This provides a resource for investigating lncRNAs in cancer and lays the groundwork 

for the development of new diagnostics and treatments.

Graphical Abstract

INTRODUCTION

Cancer is a genetic disease involving multi-step changes in the genome. The human genome 

contains ~20,000 protein-coding genes (PCGs), representing less than 2% of the total 

genome (Ezkurdia et al., 2014), whereas up to 70% of the human genome is transcribed into 

RNA, yielding many thousands of non-coding RNAs (Derrien et al., 2012; Mattick and 

Rinn, 2015). Long non-coding RNAs (lncRNAs) are operationally defined as transcripts that 

are larger than 200 nt that do not appear to have protein-coding potential (Kapranov et al., 

2007; Mattick and Rinn, 2015). Similar to protein-coding transcripts, transcriptional control 

of lncRNAs is subject to typical histone modification-mediated regulation, and lncRNA 

transcripts are processed by the canonical spliceosome machinery (Cabili et al., 2011; 

Derrien et al., 2012; Guttman et al., 2009; Ravasi et al., 2006). Compared to their protein-

coding counterparts, lncRNA genes are composed of fewer exons, are under weaker 

selective constraints during evolution, and are present in relatively lower abundance. 

Notably, the expression of lncRNAs is strikingly cell type- and tissue-specific (Cabili et al., 

2011; Mercer et al., 2008; Ravasi et al., 2006), and in many cases, even primate-specific 

(Derrien et al., 2012). LncRNAs can serve as scaffolds or guides to regulate protein-protein 

or protein-DNA interactions; as decoys to bind proteins or miRNAs; and as enhancers to 

influence gene transcription, when transcribed from enhancer regions or their neighboring 

loci (Batista and Chang, 2013; Guttman and Rinn, 2012; Karreth and Pandolfi, 2013; Lee, 

2012; Mattick and Rinn, 2015; Mercer et al., 2009; Morris and Mattick, 2014; Orom and 

Shiekhattar, 2013; Prensner and Chinnaiyan, 2011; Ulitsky and Bartel, 2013). Importantly, 

rapidly accumulating evidence indicates that lncRNAs are associated with chromatin-

modifying complexes and guide epigenetic regulations in both physiological and 

pathological conditions (Mercer and Mattick, 2013).
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Recent studies suggested that lncRNA is involved in the initiation and progression of cancer. 

In addition to the fact that they are highly deregulated in tumors (Akrami et al., 2013; Calin 

et al., 2007; Du et al., 2013; Iyer et al., 2015; Kim et al., 2014; Li et al., 2015; Ling et al., 

2013; Prensner et al., 2011; Trimarchi et al., 2014; Xing et al., 2014), lncRNAs have been 

found to act as tumor suppressors or oncogenes. Therefore, a comprehensive genomic 

characterization of lncRNA alterations across major cancers is not only urgently needed but 

may lead to new diagnostic and therapeutic strategies for cancer. The TCGA project is a 

coordinated effort to accelerate our understanding of the molecular basis of cancer through 

the application of genomic analysis technologies. Here, we performed a multiplatform 

integrative analysis of lncRNA alterations in 5,037 of cancers from 13 tumor types in TCGA 

project.

RESULTS

The expression of lncRNAs is dysregulated in cancer

We analyzed RNA sequencing profiles (RNA-seq) from 5,037 tumors across 13 cancer 

types as well as 424 normal specimens from nine matching tissue types in TCGA (Table 

S1). An evidence-based lncRNA transcript annotation that contains 13,562 manually 

annotated lncRNA genes from the GENCODE consortium (V18) was used to define 

lncRNAs. To evaluate the analysis reliability of the workflow for RNA-seq data in the 

present study, we compared 520 breast specimens whose RNA expression had been 

analyzed by both RNA-seq and microarray in TCGA. The transcriptomic correlations of 

RNA expression determined by RNA-seq (RPKM) and by microarray were calculated in a 

total of 13,318 PCGs and lncRNAs. In more than 96.7% of genes analyzed, significant and 

positive correlations were observed between the RPKM- and microarray-derived RNA 

expression levels (Figure S1A and B). To ensure detection reliability and reduce background 

noise, we applied two filters in each cancer type: the first eliminates any gene whose 50th 

percentile RPKM value is equal to 0; the second filter selects only genes whose 90th 

percentile RPKM value is greater than 0.1. On average, 4,409 lncRNAs (32.51% of 

lncRNAs annotated by GENCODE) were detected in each cancer type. Of these, 2,316 

(17.08%) lncRNAs were commonly detected in all 13 cancer types and 8,179 (60.31%) 

lncRNAs were detected in at least one cancer type (Table S2 and Figure S1C). The lncRNAs 

detected in each cancer type are listed in Table S2.

To characterize tumor-associated dysregulation of lncRNA expression, we analyzed 

lncRNA expression in seven cancer types for which the number of corresponding normal 

tissue samples analyzed by RNA-seq was greater than 20 (Figure 1A). Compared to their 

normal counterparts, the seven cancer types had on average 15.00% and 11.18% of 

lncRNAs significantly up- and down-regulated, respectively (Figure 1B). The lncRNAs 

whose RNA expression was significantly altered in each cancer type are listed in Table S2. 

Using the same pipeline, we also calculated the percentages of dysregulated PCGs and 

found that lncRNAs and PCGs have similar percentages of tumor-associated dysregulation 

of expression (Figure 1B). By comparing the dysregulated lncRNAs in different cancer 

types, we found that ~60% of these altered lncRNAs were cancer-type specific, and the rest 

were shared by at least two cancer types (Figure 1C and D; Figure S1D). We identified only 
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five lncRNAs whose RNA expression was significantly altered in all seven cancer types 

(Figure 1E). The expression of many previously identified tumor-associated lncRNAs was 

found to be significantly dysregulated in multiple cancer types. For example, the oncogenic 

lncRNAs PCAT7, PVT1, and HOTAIR were significantly upregulated in six, five, and four 

cancer types, respectively. The lncRNAs whose dysregulated expression was shared or 

unique among different cancer types are listed in Table S2. Importantly, the percentage of 

cancer type-unique dysregulated lncRNAs was remarkably higher than that of PCGs (Figure 

1C to F), although lncRNAs and PCGs have similar percentages of global dysregulation. 

Together, this demonstrates that the dysregulation of expression of lncRNA is common in 

cancer. While most lncRNAs showing dysregulated expression are cancer type-unique, a 

small number of alterations are shared among different cancer types.

Somatic copy numbers of lncRNA genes are altered in cancer with different frequencies

We analyzed the somatic copy number alterations (SCNAs) of lncRNAs in cancer via SNP 

microarray analysis of 5,860 tumors in 13 cancer types from TCGA. For each cancer type, 

the SCNA frequencies of the lncRNA-containing loci were calculated (Figure 2A and B). 

When “high-frequency alteration” is defined as an alteration that occurs in more than 25% 

of the specimens in a given cancer type, few lncRNA gene loci had concurrent high-

frequency gain and loss in the same type of cancer (Figure S2A). Across all 13 cancer types, 

there were on average 13.16% and 13.53% of lncRNA genes with high-frequency gain or 

loss, respectively (Figure 2A to C, Table S3). While OV and LUSC had the most lncRNAs 

with high-frequency SCNAs, very few lncRNAs in PRAD and LAML had high-frequency 

alterations (Figure 2A and C).

To characterize the focal SCNAs that harbor lncRNA genes, we retrieved the location 

information of focal genomic alteration peaks from the Firehose project and mapped the 

lncRNA-containing loci to these focal alteration regions in each cancer type (Figure S2B 

and Table S3). In squamous cell lung carcinoma, for example, a total of 435 and 1,811 

lncRNA genes were mapped to regions with focal gains and losses, respectively (Figure 

2D). The lncRNA genes located in the focal alteration regions in other cancer types are 

shown in Figure S2B. Many previously identified tumor-associated lncRNAs were found to 

be associated with focal SCNAs in multiple cancer types. For example, the oncogenic 

lncRNAs FAL1(FALEC) and PVT1 were focally amplified in seven and six cancer types, 

respectively.

To estimate the contribution of SCNAs to lncRNA dysregulation in cancer, we analyzed the 

correlation between lncRNA copy number and RNA expression level for all detectable 

lncRNAs in each cancer type. In summary, for 36.27% of the lncRNAs there was a positive 

correlation (R≥0.2) between their RNA expression level and their gene copy number (Figure 

2E). Importantly, cancer types that had higher levels of SCNAs (such as OV and LUSC), 

demonstrated stronger RNA-SCNA correlations than the cancer types with fewer SCNAs 

(such as LAML and PRAD) (Figure 2F). This suggests that SCNAs are an important 

mechanism that leads to the dysregulation of lncRNAs in cancer, especially for those cancer 

types whose genomes contain abundant SCNAs.
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DNA methylation patterns in the promoter regions of lncRNA genes are altered in cancer

We analyzed DNA methylation alterations in the promoter regions of lncRNAs in cancers. 

DNA methylation microarray profiles on 2,791 tumor and 467 normal specimens across 

seven cancer types were obtained from TCGA. A total of 35,696 probes corresponding to 

the promoter regions of the 2,435 lncRNA genes whose expression was analyzed by RNA-

seq were identified (Table S4). On average, the promoter region of each lncRNA gene was 

covered by 15 probes. We first used consensus non-negative matrix factorization (NMF) 

clustering analysis to cluster samples according to their methylation profiles in each cancer 

type. This revealed that, for all seven cancer types studied, the DNA methylation profiles of 

lncRNA genes from normal samples were very similar within the cancer type, while the 

DNA methylation patterns of lncRNA genes from tumor samples were quite diverse (Figure 

3A and Figure S3). It suggests that the promoter regions of lncRNAs are subjected to DNA 

methylation-mediated epigenetic alterations during tumorigenesis. Next, we applied four 

separate filtering criteria to screen for cancer-associated epigenetically silenced lncRNA 

genes (CAESLG) (Figure 3B and C). On average, 3.92% of lncRNA genes had both 

hypermethylated promoters and reduced RNA expression in tumors compared to their 

normal counterparts (Figure 3D). The CAESLG candidates of each cancer type are listed in 

Table S4. These findings suggest that epigenetic silencing of lncRNA genes may be a 

mechanism that contributes to the dysregulation of expression of lncRNAs in cancer. Due to 

the probes for many lncRNA genes were not available in the DNA methylation microarray 

platform, some lncRNAs that are epigentically regulated may not be identified in our 

analysis.

Many cancer-associated SNPs are located in lncRNA loci

Using 5Kb as the cut-off distance between an annotated transcript and a cancer-associated 

SNP, we re-mapped all cancer-associated SNPs reported by the NHGRI Catalog of 

Published GWAS studies (Table S5) to genes annotated by ENCODE. We found that 

11.75% of the index-SNPs were near loci harboring lncRNA genes (Table S5). The 

percentages of index-SNPs close to PCGs, pseudogenes, and other genes were 54.75%, 

3.75%, and 3.38%, respectively (Figure 4A). We further reasoned that only genes expressed 

in tumor tissues have the potential to be functionally involved in cancer development. By 

analyzing RNA-seq profiles from TCGA in the nine cancer types for which both GWAS 

SNP and TCGA RNA-seq information were available and combining the expression 

analysis with the above findings regarding SNP-associated lncRNA, we identified lncRNAs 

that are both close to index SNPs and that express detectable transcripts in tumors (Table 

S5). In PRAD, for example, 24 lncRNAs were found to reside near 28 index-SNPs. Among 

these 24 lncRNAs, six were detected in prostate tumors (Figure 4B).

The expression of lncRNAs is a specific biomarker in cancer

To evaluate the potential value of lncRNAs as biomarkers in cancer, we first asked whether 

the expression signature of lncRNAs can differentiate between tumors and their 

corresponding normal tissues. In all nine tumor types where both tumor and normal tissues 

were available, we were able to use unsupervised cluster analysis to differentiate normal 

tissues from tumors. While the expression of lncRNAs in tumor demonstrated diverse 
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patterns, the expression in normal tissue was relatively homogenous and could be clearly 

separated from the expression patterns in tumor tissues (Figures 5A and B and Figure S4A). 

To further examine the value of lncRNAs as biomarkers, we chose to study breast cancer, 

since it is a heterogeneous cancer type with well-characterized pathological and molecular 

subtypes. We selected 817 breast tumors for which the molecular subtype had been defined 

by the UCSC Cancer Genome Browser. A cluster analysis showed that the unsupervised 

lncRNA expression subtypes demonstrated a high correlation with the defined PAM50 

subtypes, and also had a high correlation with clinical subtypes (Figure 5C). In particular, 

almost all of the basal-like/triple negative breast tumors were clustered together and clearly 

separated from other tumor and normal tissue samples. Importantly, it has been reported that 

lncRNA expression is strikingly tissue- and cell-type specific compared with PCGs in 

normal tissues (Cabili et al., 2011; Mercer et al., 2008; Ravasi et al., 2006). We decided to 

compare the tissue specificity among lncRNAs, PCGs, and pseudogenes in cancer. We used 

an entropy-based metric that relies on Jensen-Shannon (JS) divergence to calculate 

specificity scores (Cabili et al., 2011) for each gene in breast specimens, and found that the 

expression of lncRNA demonstrated the highest subtype specificity, followed by 

pseudogenes, while PCGs demonstrated the least subtype specificity (Figure 5D). About 

18.27% of lncRNAs showed subtype specificity, while only 10.55% of PCGs were subtype-

specific (Figure 5E). To rule out the possibility that the higher specificity of lncRNAs is a 

result of their lower abundance, we calculated the specificity scores of highly expressed 

transcripts from these three different types of genes. Again, lncRNA showed a higher tissue 

specificity than PCG and pseudogenes (Figure 5D).

We also sought to determine if the expression signatures of lncRNAs are also cancer-type 

specific using RNA-seq profiles from the Cancer Cell Line Encyclopedia (CCLE) in 935 

human tumor cell lines (Table S6). As shown in Figure 5F, tumors of epithelia, melanoma, 

hematological, and neurological origins formed distinctive clusters based on lncRNA 

expression. Sarcoma tumors displayed a diffuse lncRNA expression pattern, which may be 

explained by the fact that this type of tumor arises from various tissues. Using the JS 

divergence calculation, we compared the tissue-specificity of lncRNAs, PCGs, and 

pseudogenes. Similar to our findings regarding subtype specificity in TCGA, the JS 

divergence measurements across cell lines of different origins revealed that lncRNA are 

more tissue-specific than PCGs and pseudogenes (Figure 5G). Finally, we compared cancer-

type specificity across cell lines from 22 cancer types, and consistent results were observed 

(Figure S4B). These studies suggest that lncRNAs have the potential to serve as specific 

biomarkers with potential applications in cancer prediction, early-detection, and diagnosis. 

Notable, unknown primary origin tumors account for 3–5% of all new cancer cases and are 

aggressive diseases with poor prognosis. Our data indicate that lncRNAs may serve as 

informative biomarkers to determine the origin of these tumors.

lncRNome profiles provide a resource to functionally identify cancer driver lncRNAs

We hypothesized that, using the TCGA lncRNome information as a clinical filter, we were 

able to generate a concentrated and clinically relevant lncRNA list that could be used for a 

candidate-oriented functional screening. To test the concept, we chose breast cancer as an 

example, and evaluated a four-step procedure to identify for potential driver lncRNAs 
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(Figure 6A). In summary, we identified 19 lncRNAs that have cancer-associated genomic 

alterations and are also correlated with patient survival (Table S7). In a proof-concept 

screening, we found that all four siRNAs specifically targeted ENSG00000253738 (Breast 

Cancer Associated lncRNA8, BCAL8) significantly reduced the proliferation of MDA-

MB-231 cells (Figure 6B). BCAL8 is the neighbor transcript of OTUD6B (Xu et al., 2011), 

and they share overlapping promoter regions. Further analysis of SNP arrays revealed that 

the BCAL8 gene was amplified in 49.7% of breast cancer (Figure 6C). Importantly, both 

higher expression of BCAL8 RNA and genomic gain of the BCAL8 gene were significantly 

associated with decreased survival in breast cancer (Figure 6D). There was also a strong 

positive correlation between BCAL8 RNA expression and its genomic copy number in the 

breast tumors (Figure 6E). With the vast amount of data available in TCGA lncRNome, we 

had the resources to expand our characterization of BCAL8 from breast cancer to other 

cancer types. Interestingly, we found that higher expression of BCAL8 RNA was also 

significantly correlated with poor clinical outcome in OV, UCEC and LAML (Figure S5A). 

While the BCAL8 was significantly amplified in OV and UCEC, this was not the case for 

LAML (Figure S5B). To further validate the function of BCAL8, we suppressed BCAL8 

expression by shRNA in breast and ovarian cancer cell lines. We consistently found that the 

expression of BCAL8-shRNAs significantly reduced growth rates in all cell lines tested 

(Figure 6F). Moreover, down-regulating BCAL8 expression also significantly reduced 

anchorage-independent growth in cells (Figure 6G and H). Finally, we injected cells 

expressing control and BCAL8-specific hairpins into nude mice and found that the 

expression of the BCAL8-shRNAs significantly suppressed tumor growth in vivo (Figure 6I). 

Together, this describes a strategy to integrate multidimensional molecular profiles with 

clinical annotations to generate clinical parameter-specific candidates for genetic screening.

lncRNome profiles provide a resource to infer lncRNA functions

Predicting the biological functions of lncRNAs is challenging. Guilt-by-Association (GBA) 

analysis has been proposed that the function of a poorly characterized lncRNA gene can be 

inferred on the basis of known functions of PCGs with which it is co-expressed (Huarte et 

al., 2010). Since the TCGA provides multi-omic profiles in large-scale, it may serve as an 

excellent resource for GBA-based lncRNA function prediction. To test this concept, we 

conducted GBA analysis for BCAL8. The RNA-seq profiles were analyzed to identify PCGs 

whose expression was significantly correlated with BCAL8 expression in three cancer types 

(Figure 7A). We found that 38.2% (958/2,500) of BCAL8-associated PCGs were shared by 

all three cancer types (Figure 7B). Next, we performed gene ontology (GO) analysis on the 

BCAL8-associated PCGs that were common across the three cancer types, and found that the 

most over-represented pathway in BCAL8-associated genes was the cell cycle pathway 

(Figure 7C and D). We also performed a GBA analysis for BCAL8 using a protein 

expression profile (RPPA array) of breast cancer from TCGA, and identified 37 proteins 

(antibodies) whose expression levels were significantly and positively correlated with 

BCAL8 expression (Figure 7E and Table S8). Consistent with the above RNA-based GBA 

analyses, many BCAL8-associated proteins were key regulators in cell cycle pathways. For 

example, we found that BCAL8 expression was significantly and positively correlated with 

Cyclin E2 at both the mRNA and protein levels. We knocked down BCAL8 expression in 

cancer cell lines and analyzed cell cycle profiles. Consistent with our GBA prediction, 
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knocking down BCAL8 dramatically inhibited the G1-S transition of the cell cycle (Figure 

7F). Finally, supporting our GBA analysis, suppressing BCAL8 expression significantly 

reduced both CCNE2 mRNA and Cyclin E2 protein levels (Figure 7G and H). In summary, 

using BCAL8 as an example, we described an integrated bioinformatic approach to elucidate 

the function of given lncRNAs using information from the lncRNome dataset of TCGA 

(Figure S6).

DISCUSSION

Before the discovery of non-coding RNAs, the search for cancer drivers was focused on 

PCGs that resided in recurrent alterations in cancer genomes. However, many of these 

recurrent alterations were found to either be located in “gene desert” regions or they 

contained no cancer-linked PCGs. The lack of PCGs in cancer-associated genetic alterations 

is further supported by the fact that only 2% of the human genome encodes proteins. These 

findings, in combination with the recent revelation that about 70% of the human genome is 

transcribed into RNA, strongly suggest that non-coding RNAs play significant roles in 

tumor development. Our study represents the one of largest analyses so far of lncRNA 

dysregulation at transcriptional, genomic, and epigenetic levels across cancers, substantially 

expanding our knowledge of non-coding RNAs in the cancer genome (the data generated 

from this study are available at http://tcla.fcgportal.org). Given that the majority of the 

human genome is transcribed to RNA while only a small portion of these transcripts encode 

proteins, the number of lncRNA genes may be very large. An important challenge is that the 

genome-wide annotation and functional characterization of lncRNAs is still in its infancy. 

Further efforts will be needed to de novo annotate and characterize cancer unique lncRNA 

transcripts (Iyer et al., 2015; Trimarchi et al., 2014).

The expression of lncRNAs is strikingly cell type-specific in normal tissues (Cabili et al., 

2011; Mercer et al., 2008; Ravasi et al., 2006). Our results indicate that the expression of 

lncRNA has the highest cancer type-specificity, followed by pseudogenes, and then PCGs, 

which were least subtype specific. The expression of lncRNAs is frequently dysregulated in 

cancer. There are sensitive, rapid, low-cost methods readily available for lncRNA 

quantification. Additionally, lncRNAs often form secondary structures that are relatively 

stable, thereby facilitating their detection as free RNAs in body fluids such as urine and 

blood. Therefore, lncRNAs may be an ideal class of biomarkers with potential applications 

in cancer prediction, early-detection, diagnosis and classification.

The TCGA project has profiled large numbers of tumors to identify molecular aberrations at 

multi-omic levels. Extracting valid information from TCGA can deepen our understanding 

of tumorigenesis and lead to the development of therapeutics. However, because cancer 

genomes are highly unstable, many cancer-associated alterations are not the causes but 

instead the consequence of tumorigenesis. The main challenge in developing effective 

therapies is to identify cancer-driver genes, which once targeted by therapeutic agents can 

suppress or eliminate tumor growth. Analyses of genome-wide molecular profiles using 

various bioinformatics approaches can reveal genomic alterations during cancer initiation 

and progression but cannot distinguish “causal” from “bystander” genetic alterations. 

Genome-wide functional screening approaches have been used with some success in 
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identifying cancer driver genes; however, this approach can be time and labor intensive, and 

more importantly, susceptible to finding false positives and fraught with high numbers of 

false negatives. Here, we have developed a clinically guided genetic screening approach to 

identify functional lncRNAs in cancer. Using the cancer lncRNome resource generated in 

our study as biological/clinical filters, we were able to generate a relatively short list of 

lncRNA candidates for more extensive testing using candidate-oriented genetic screening. 

Predicting the biological functions of a given lncRNA is challenging. A “co-expression” 

approach has been used as one approach to begin to achieve an understanding of lncRNA 

function (Huarte et al., 2010). Since the level of lncRNA expression may directly represent 

its biological function in cancer, we proposed predicting lncRNA functions by co-expression 

analysis, i.e., by identifying the PCGs whose expression are significantly correlated with the 

expression of a given lncRNA. The TCGA project contains multi-omic profiles of large-

scale samples, serving as an excellent resource for co-expression analysis. Taken together, 

the lncRNome database generated in the present study provides a resource to effectively 

identify cancer driver lncRNAs and predict their functions in cancer, which will lead to a 

greater understanding of molecular mechanisms of cancer, and should lead to clinical 

applications in oncology.

EXPERIMENTAL PROCEDURES

Annotation of lncRNAs, PCGs, and pseudogenes

The GENCODE lncRNA annotation (V18), a manually curated and evidence-based lncRNA 

annotation containing 13,562 genes and 23,105 transcripts, was used to define lncRNA 

genes. The GENCODE whole annotation (V18) was used to define PCGs and pseudogenes, 

resulting in a PCG set containing 20,318 genes and 81,673 transcripts; a pseudogene set 

containing 14,181 genes and 17,517 transcripts; and an “other genes” set containing 9,384 

genes and 73,289 transcripts.

RNA-seq data processing

RNA-seq files were downloaded from the Cancer Genomics Hub (http://cghub.ucsc.edu). 

We imported the aligned reads of each BAM file to the Partek Genomic Suite (http://

www.partek.com/) to obtain the expression levels for genes by summarizing the reads per kb 

per million mapped reads (RPKM) values. For each cancer type, we applied two filters to 

eliminate unreliability in the measurements of genes: 1) the 50th percentile of the RPKM 

values are larger than 0; and 2) the 90th percentile of the RPKM values are larger than 0.1. 

The genes that passed the above two filters were defined as detectable in a given cancer 

type. Please see Supplemental Experimental Procedures for a discussion of detailed 

procedures.

Xenograft model in vivo

Six to eight week old female nude mice were used for the xenograft assays. A2780 cells and 

MDA-MB-231 cells were trypsinized and harvested in PBS, then a total volume of 0.1 ml 

PBS containing A2780 cells (1×106) or MDA-MB-231 cells (1.5×106) were injected 

subcutaneously into the flanks of the animals. The animal study protocol was reviewed and 

approved by the Institutional Animal Care and Use Committee of the University of 
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Pennsylvania. Please see Supplemental Experimental Procedures for a discussion of detailed 

procedures.

Statistical analysis

Statistical analysis was performed using SPSS and SAS software. All results were expressed 

as mean ± SD, and p<0.05 indicated significance. The survival curves were constructed 

according to the Kaplan-Meier method and compared with the log-rank test.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

lncRNA dysregulation was characterized in 5,037 tumor samples across 13 cancer 

types.

lncRNAs are altered in cancers at transcriptional, genomic, and epigenetic levels.

The expression and dysregulation of lncRNAs are strikingly cancer-type specific.

This study provides a resource to systematically identify cancer driver lncRNAs.
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SIGNIFICANCE

The discovery of long non-coding RNA (lncRNA) has dramatically changed our 

understanding of the biology of diseases. Recent studies have identified lncRNAs with 

tumor suppressive and oncogenic activities. We conducted comprehensive analyses on 

lncRNA profiles at transcriptional, genomic, and epigenetic levels in 5,037 tumor 

specimens across 13 cancer types from the Cancer Genome Atlas and in 935 cancer cell 

lines from the Cancer Cell Line Encyclopedia. Our large-scale analyses revealed that 

lncRNA alterations are highly tumor- and lineage-specific and are often associated with 

somatic copy number alterations, promoter hypermethylation, and/or cancer-associated 

SNPs. Here we provide a rich resource to the research community for further 

investigating lncRNAs functions and identifying lncRNAs with diagnostic and 

therapeutic potentials.
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Figure 1. The expression of lncRNAs is dysregulated in cancer
A. Heatmap of lncRNAs whose expression is significantly dysregulated. The top 100 most 

significantly dysregulated lncRNAs from each individual tumor-type are presented. B. The 

percentages of the dysregulated lncRNAs and PCGs. C. and D. The percentages of the up- 

(C) and down- (D) regulated lncRNAs (left) and PCGs (right) that were shared among the 

seven cancer types. E. and F. Venn diagrams of the up- (left) and down- (right) regulated 

lncRNAs (E) and PCGs (F) shared among the seven cancer types. See also Figure S1 and 

Tables S1 and S2.
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Figure 2. Somatic copy numbers of lncRNA genes are altered in cancer with different 
frequencies
A. A genome-wide view of SCNAs in cancers. The outer track shows the frequencies of 

SCNAs from the lncRNA-containing loci and the inner track shows the focal alteration 

regions. B. An enlarged view of SCNAs in LUSC. C. Heatmap of somatic copy number gain 

and loss for lncRNA genes. The rows, each of which represents an lncRNA gene locus, are 

arranged according to the genomic locations of the lncRNA genes. Left: frequency of gain 

(red); right: frequency of loss (blue). D. The lncRNA and PCGs in the top 20 focal gain 

(left) or loss (right) peaks in LUSC. The numbers of PCGs (left), annotated lncRNAs 

(middle), and detectable lncRNAs (right) in each peak are indicated in parentheses. E. and 

F. Histogram of percentage of lncRNAs whose RNA-SCNA correlation coefficients are in 

specific ranges across 13 cancer types (E) and in each cancer type (F). The number and red 

color intensity in the inserts indicate the percentage of the detectable lncRNAs whose 

Pearson’s R value was ≥0.2 in a given cancer type. See also Figure S2 and Tables S3.
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Figure 3. DNA methylation patterns in the promoter regions of lncRNA genes are altered in 
cancer
A. NMF clustering of DNA methylation probes that are located in lncRNA promoters and 

whose methylation β-values had the largest variations across all breast specimens. B. 
Heatmaps of the methylation status (β-value, upper) in the promoter regions and the RNA 

expression level (lower) of the corresponding lncRNAs in breast specimens. C. Heatmaps of 

the methylation status of the lncRNA promoter regions and the RNA expression levels. D. A 

summary of the percentage of the CAESLG. See also Figure S3 and Tables S4 and S5.
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Figure 4. Many cancer-associated SNPs are located in lncRNA loci
A. A genome-wide view of the most significant cancer-associated index SNPs. The peaks in 

each track are proportional to the p-values between the chromosomal locations of the index-

SNPs. B. Genome-wide view of the breast (upper) and prostate (lower) index-SNPs in 

lncRNA (red) and PCG loci (green).
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Figure 5. The expression of lncRNAs is a specific biomarker in cancer
A. Unsupervised hierarchical cluster analyses on the expression of the top 10% lncRNAs 

whose expression levels varied the most across all samples within each cancer type. B. 
Heatmap generated by unsupervised cluster analysis of lncRNAs with the largest expression 

variation in kidney cancer. C. Heatmap of unsupervised hierarchical cluster analysis using 

lncRNA signatures from breast cancer. D. Distribution of maximal subtype specificity 

scores calculated for each gene across the breast cancer specimens for all expressing 

transcripts (upper) or high expressers (lower) for lncRNA (blue), pseudogenes (red), and 

PCGs (black). E. Heatmap of lncRNA (left) and PCG (right) expression (JC scores) sorted 

on the basis of tissue-specific expression. Top: tissue-specific; bottom: ubiquitously 

expressed. F. Heatmap of unsupervised hierarchical cluster analysis using lncRNA 

signatures from the CCLE RNA-seq dataset. G. Distributions of maximal cancer-type 

specificity scores calculated for each gene across the CCLE major cancer types and across 

all expressing genes (upper) or high expressers (lower) for lncRNAs (blue), pseudogenes 

(red) and PCGs (black). See also Figure S4 and Tables S6.
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Figure 6. An effective strategy to integrate multidisciplinary information from TCGA to identify 
cancer driver lncRNAs
A. Flowchart describing the process of candidate gene selection in breast cancer. B. The 

summary of the proof-of-concept siRNA screening in MDA-MB-231 cells. C. Copy number 

profiles of BCAL8 locus from breast tumor specimens. D. Survival curves of breast cancer 

patients with high and low BCAL8 RNA expression (left) and differing genomic SCNA 

status (right). The numbers of patients who were alive (at risk), deceased (event), or 

censored during the course of surveillance are indicated in the table under the corresponding 

time points. E. The correlation between BCAL8 gene copy number and RNA expression in 

breast cancer. F. The growth curves of cells expressing control or BCAL8 shRNAs. G. Soft-

agar assays (in 6-well plates) on cells expressing control or BCAL8 shRNAs. H. 

Quantification of the number of colonies from the softer agar assays. I. Xenograft tumor 

growth of cells expressing control or BCAL8 shRNAs. Error bars: SD. *: p<0.05. See also 

Figure S5 and Tables S7.
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Figure 7. Inferring the functions of BCAL8 by integrative bioinformatics analyses
A. Heatmap of PCGs that were significantly and positively co-expressed with BCAL8. The 

genes were arranged from top to bottom in ascending order of their correlation with BCAL8. 

B. Venn diagrams of BCAL8-associated genes among breast, ovarian, and endometrial 

cancers. C. Pathways over-represented by BCAL8-associated PCGs in all three cancer types 

according to DAVID analysis based on gene ontology term. D. Enrichment of cell cycle 

pathway genes in cancer specimens with high levels of BCAL8. E. Heatmap of PCGs whose 

protein expression (RPPA) is significantly correlated with BCAL8 expression in breast 

cancer. The proteins are arranged from top to bottom in ascending order of their correlation 

with BCAL8 expression. F. Cell-cycle profiles of cells expressing control and BCAL8 

shRNAs. G. qRT-PCR of CCNE2 mRNA expression in cells expressing control or BCAL8 

shRNAs. H. Western blot of Cylin E2 in cells expressing control or BCAL8 shRNAs. Error 

bars: SD. *: p<0.05. See also Figure S6 and Tables S8.
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