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Abstract 
Vascular inflammation is a common cause of renal im
pairment and a major cause of morbidity and mortality of 
patients with kidney disease. Current studies consistently 
show an increase of extracellular vesicles (EVs) in acute 
vasculitis and in patients with atherosclerosis. Recent 

research has elucidated mechanisms that mediate vascular 
wall leukocyte accumulation and differentiation. This 
review addresses the role of EVs in this process. Part one 
of this review addresses functional roles of EVs in renal 
vasculitis. Most published data address anti-neutrophil 
cytoplasmic antibody (ANCA) associated vasculitis and 
indicate that the number of EVs, mostly of platelet 
origin, is increased in active disease. EVs generated from 
neutrophils by activation by ANCA can contribute to vessel 
damage. While EVs are also elevated in other types of 
autoimmune vasculitis with renal involvement such as 
systemic lupus erythematodes, functional consequences 
beyond intravascular thrombosis remain to be established. 
In typical hemolytic uremic syndrome secondary to 
infection with shiga toxin producing Escherichia coli , EV 
numbers are elevated and contribute to toxin distribution 
into the vascular wall. Part two addresses mechanisms how 
EVs modulate vascular inflammation in atherosclerosis, a 
process that is aggravated in uremia. Elevated numbers 
of circulating endothelial EVs were associated with ather
osclerotic complications in a number of studies in patients 
with and without kidney disease. Uremic endothelial EVs 
are defective in induction of vascular relaxation. Neutrophil 
adhesion and transmigration and intravascular thrombus 
formation are critically modulated by EVs, a process that 
is amenable to therapeutic interventions. EVs can enhance 
monocyte adhesion to the endothelium and modulate 
macrophage differentiation and cytokine production with 
major influence on the local inflammatory milieu in the 
plaque. They significantly influence lipid phagocytosis 
and antigen presentation by mononuclear phagocytes. 
Finally, platelet, erythrocyte and monocyte EVs cooperate 
in shaping adaptive T cell immunity. Future research 
is needed to define changes in uremic EVs and their 
differential effects on inflammatory leukocytes in the vessel 
wall.
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Core tip: This review addresses the role of extracellular 
vesicles (EVs) in vascular inflammation that can cause 
renal damage and is also shaped by uremic mediators. 
Vasculitides are common causes of renal damage. 
Functionally, neutrophil EVs induced by anti-neutrophil 
cytoplasmic antibody contribute to endothelial damage. 
EVs are main distributors of shiga toxin in the circulation 
and into tissues in typical hemolytic uremic syndrome. In 
atherosclerosis in patients with and without kidney disease, 
endothelial EVs are elevated. Uremic EVs are deficient in 
mediating vascular relaxation. EVs modulate mononuclear 
phagocyte differentiation, cytokine production, lipid 
phagocytosis and antigen presentation, atherosclerotic 
inflammatory processes significantly altered in uremia. 
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INTRODUCTION
Subcellular membrane vesicles collectively termed extra­
cellular vesicles (EVs) are a third pathway of intercellular 
communication between direct cell-to-cell contact and 
secretion of soluble signaling molecules[1]. EVs can be 
secreted by virtually all cell types and contain a variety 
of components[2,3]. They are already present under 
physiologic conditions in a variety of bodily fluids[4]. EVs 
critically modulate local and systemic inflammatory and 
immune processes[4-7]. How EVs affect leukocytes and 
their function in the arterial wall in patients with kidney 
disease will be discussed for both acute vasculitis and 
chronic vascular inflammation in atherosclerosis.

LEUKOCYTES IN THE VASCULAR WALL
Leukocytes are an integral part of the healthy vessel[8,9] 
and differentially increase in vascular inflammation[10]. The 
arterial wall is invaded by blood leukocytes in inflammation 
both directly across the main vascular endothelium and 
through vasa vasorum of larger vessels. This process is a 
tightly regulated cascade of leukocyte activation, rolling, 
adhesion and transmigration, to date studied mostly in 
neutrophilic granulocytes[11-13]. Vascular inflammation is 
mostly found in the arterial tree and microvessels including 
glomerular capillaries. Inflammation of the much thinner 
venous wall is rarely a clinical problem beyond reaction 
to intravascular thrombosis[10]. This is remarkable as 
most endothelial leukocyte adhesion and transendothelial 
migration is observed in venules[14]. Vascular inflammation 
is central in allo-immune processes such as transplant 
rejection. These have recently been reviewed (among 
others[15,16]). This review focuses on native arteries and 

glomerular capillaries.
Impaired renal function during both acute kidney injury 

and chronic kidney disease significantly influences the 
structure of the arterial wall, affecting arterial endothelial 
cells and smooth muscle cells[17,18]. Structural changes are 
most obvious in enhanced atherosclerosis development[19-21]. 
A prominent feature in humans and mouse models with 
end stage kidney disease is extraosseous calcification of the 
arterial media[19,22]. Chronic inflammation in atherosclerosis 
occurs in normal and reduced kidney function, however, 
both innate and adaptive leukocytes are specifically altered 
by renal impairment[23-25]. 

CHARACTERIZATION OF EVS
Since the first description of “platelet-dust” in 1967[26], 
EVs were found in diverse biological fluids[27]. Important 
factors of EV characterization are size and surface 
markers indicating their cellular origin[5,28-30]. EVs are a 
very heterogeneous population as both characteristics 
additionally vary with mode of EV generation[31]. In addition, 
most of the currently used flow cytometry instruments 
are not optimal for detection of particles of submicrometer 
size[32,33]. Organizations such as the Society for Extracellular 
Vesicles, formed in 2011, and databases such as EVpedia 
(http://evpedia.org) are instrumental in establishing 
reliable standards, including specification of preanalytical 
procedures and basic clinical information[4,27,34]. 

Currently, two main groups of EVs are distinguished 
by both size and mode of generation: Exosomes and 
microparticles[1,3,28,29] (Figure 1). Exosomes are small EVs, 
ranging from 30-100 nm. They originate from endosome-
derived multivesicular bodies and are released to the 
extracellular space when the multivesicular bodies fuse with 
the plasma membrane[35,36]. Microparticles (also referred 
to as ectosomes, membrane vesicles, nanovesicles and 
shedding vesicles) measure 100-1000 nm[3,30,35,37]. They 
directly bud off from the plasma membrane[35,36]. Both types 
of vesicles are enclosed by a lipid bilayer, but due to the fact 
that microparticles directly bud from the plasma membrane, 
they have a more similar membrane composition to their 
parent cell than exosomes[28,35]. For example, leukocyte 
surface proteins such as CD14, CD36 and CD11c are found 
on leukocyte microparticles[38]. Phosphatidylserine was 
initially thought to be enriched on microparticles only, but 
was later also found on exosomes[3]. Exosomes display 
endosome-associated proteins like annexins, flotillins or 
CD63 on their surface[28]. However, the expression of these 
proteins on microparticles cannot be completely excluded[3]. 
In addition to a possible biological overlap, this also reflects 
the technical challenge of multicolor fluorescence analysis 
of small particles[32,33]. Principal intravesicular contents such 
as cytoplasmic proteins, metabolites, RNAs, microRNAs and 
lipids can be found in both, exosomes and microparticles, 
however, in different abundance[2,3,35]. In addition to 
exosomes and microparticles, apoptotic bodies have been 
described as a separate entity by some authors[35,36,39]. 
These have been defined as large (1-5 µm) vesicles 
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generated during apoptosis. However, other EVs also 
express the inner membrane marker Annexin V on their 
surface. 

Following current recommendations[29], the over­
arching term EV will be used for all secreted vesicles in 
this review and further characterization will be provided 
by naming specific surface markers. 

EVS IN CHRONIC KIDNEY DISEASE
In end stage renal disease, both the uremic milieu and 
hemodynamic changes during the dialysis procedure 
can contribute to EV generation[40]. Uremic toxins such 
as p-cresol and enoxylsulfate induced EV shedding from 
HUVECs[41]. Hemoconcentration by dialysis increased 
blood viscosity, thereby decreasing shear stress and EV 
generation[42]. In addition, morphologically similar EVs may 
serve different functions is generated in an uremic milieu 
- for example, EVs from healthy controls, but not patients 
with end stage renal disease conferred endothelium 
mediated arterial relaxation in vitro[43]. 

Counts and provenience of circulating EVs have been 
characterized in patients with chronic renal impairment 
with and without renal replacement therapy. Some studies 
found elevated serum concentrations of total and CD42+ 
platelet EV[44-46], total, endothelial (CD31+, CD114+)[43,46], 
platelet (CD41+), and erythrocyte (CD235+) EVs[43] in 
patients with end stage renal disease, while in others, total 
plasma EV concentrations were unaltered[47,48] or only 
endothelial EVs were increased[41]. Also, the effect of the 
hemodialysis procedure is controversial with an increase in 
some[47] but not other studies[44,45]. The currently available 
studies included relatively small patient numbers and 
discrepancies that are at least partly explained by pre-
analytical variables such as different modes of blood draw, 
storage and anticoagulation, flow cytometry equipment 
and surface markers used. However, addressing a possible 
pathophysiologic cause, a recent study further stratified 
patients with moderate kidney disease (mean GFR 39 mL/

min) according to the presence of cardiovascular disease 
defined by significant stenosis on coronary angiography[49]. 
EVs of both platelet (CD42+) and endothelial (CD31+) 
origin were significantly higher in patients with coronary 
artery disease, irrespective of renal impairment. Indeed, 
a large number of observational studies report increased 
concentrations of circulating EVs in atherosclerosis[50-53]. 
Especially endothelial EV concentrations appear to be 
predictive for cardiovascular prognosis[54]. This was 
confirmed in a recent observation in a large group of 
844 individuals from the Framingham offspring cohort. 
Endothelial EV counts (CD31+ or CD114+) correlated 
with hypertension, elevated triglycerides the metabolic 
syndrome and an overall higher Framingham in patients 
inversely correlated with brachial artery flow-induced 
dilatation and positively correlated with indices of arterial 
stiffening[43]. Endothelial (CD31+) EV concentration was 
associated with severe hypertension in a number of 
cohorts[55,56]. Concentrations significantly correlated with 
renal damage manifesting as micro- or macro-albuminuria 
in this condition[57]. 

The currently available data is also limited by a mostly 
cross-sectional study design that precludes detection of 
temporal changes in single patients[52]. Measurement of 
EV concentration is evaluated as a predictive factor in a 
number of ongoing prospective trials[58]. However, there 
are some longitudinal data for patients with end stage 
kidney disease. A follow up study of 81 hemodialysis 
patients for a mean of 50 mo revealed that endothelial 
(CD31+) EV concentration in serum obtained after the 
long interval was a significant predictor of all cause and 
cardiovascular mortality, an association that was not 
observed for CD41+ platelet, CD11b+ leukocyte or CD235+ 
erythrocyte EVs[59]. Another prospective study investigated 
endothelial EV counts (CD31+) in a cohort of 227 patients 
with end stage renal disease who were scheduled for 
kidney transplantation[48]. Endothelial EVs significantly 
decreased during 60 d of longitudinal follow up after 
kidney transplantation. However, they did not differ from 
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Figure 1  Classification of extracellular vesicles. 
Types of extracellular vesicles are distinguished 
by their mode of generation. Microparticles directly 
bud off the plasma membrane and measure appro­
ximately 100-1000 nm. Exosomes are released 
by fusion of multivesicular bodies with the plasma 
membrane and their sizes range between 40-100 
nm. Both types of extracellular vesicles can contain 
RNA, microRNA, proteins, lipids and metabolites. 
MVBs: Multivesicular bodies.
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glomeruli, but arteries of all sizes with predilection of small 
vessels[74]. The most prominent infiltrating cell types are 
neutrophilic granulocytes and even more abundantly, 
monocytes[75]. However, most research on leukocyte 
function within the vascular wall has concentrated on 
neutrophils. ANCA can induce generation of EVs from 
pre-activated, e.g., tumor necrosis factor (TNF)a primed 
neutrophils[72,76,77]. These particles increased CD54 surface 
expression and IL-6 and IL-8 production from human vein 
endothelial cells (HUVECs) in vitro, suggesting that they 
can promote inflammation of the vessel wall[72]. ANCA 
induced EVs also contained tissue factor and may thus 
promote hypercoagulability and the increased rates of 
thrombosis observed in patients with ANCA disease[76,77].

TYPICAL HUS
Typical HUS is a complication of enteral infection with shiga 
toxin producing strains of Escherichia coli (STEC). EVs are 
highly elevated in patients with active systemic disease 
and platelet EV attach to leukocytes, most abundantly 
monocytes in peripheral blood[78-80]. Recent research shows 
that EVs are also generated from erythrocytes in this 
condition[81], a type of EV that can activate monocytes to 
produce pro-inflammatory cytokines[82]. Platelet monocyte 
complexes and EV generation from both can be induced 
by shiga toxin. These EVs contain tissue factor and can 
thereby contribute to the microthromboses characteristic 
of the disease[80]. They also bore activated complement 
constituents, namely C3 and C9[78]. Neutrophils phago­
cytosed them, a process that may further contribute to 
their activation, adhesion and vascular inflammation[78]. 
Both leukocyte and platelet EVs contain shiga toxin 
and significantly contribute to its spreading into tissues 
including podocytes and tubular epithelium in the kidney[83] 
thus contributing to toxicity. Whether or not shiga toxin 
increases or diminishes leukocyte lifespan appears to 
depend on experimental conditions in vitro[84]. In vivo, 
increased rates of both monocyte and neutrophil cell death 
were observed during STEC-HUS[79]. It is conceivable that 
shiga toxin transferred into the vascular wall by EVs will 
also influence vascular resident leukocytes[83]. 

THE ROLE OF EVS IN VASCULAR 
INFLAMMATION IN ATHEROSCLEROSIS
EVs are abundant within the atherosclerotic wall which 
may enhance their biologic functions[6]. EVs from human 
endarterectomy specimens have been isolated by 
serial centrifugation and analyzed by flow cytometry in 
comparison to material from macroscopically unaffected 
arteries[85,86]. A detailed analysis determined that most 
plaque EVs are of leukocyte origin, including 29% macro­
phage (CD14+), 15% lymphocyte (CD4+), 8% granulocyte 
(CD66b+) provenience[86]. No platelet, but erythrocyte 
and smooth muscle cell markers were detected in EVs 
from the plaque lysate, recent in vitro data providing first 
evidence of EV generation from smooth muscle cells in 

healthy controls at start of the trial[48] which may reflect 
that these patients represent a subgroup with relatively 
few co-morbidities.

In summary, chronic elevation of endothelial EVs 
currently appears to be significantly associated with 
vascular dysfunction and atherosclerosis in renal disease.

THE ROLE OF EV IN RENAL VASCULITIS
Systemic inflammation is frequently associated with ele­
vated EV concentrations. Pathophysiologically, monocytic 
and endothelial EVs can directly induce MCP1, interleukin 
(IL)-6 and VEGF production in human podocytes[60] thus 
enhancing glomerular injury. Investigations of EVs in 
systemic lupus erythematodes (SLE), ANCA vasculitis and 
typical hemolytic uremic syndrome (HUS) will be reviewed. 
It is also of note that our literature review revealed no 
information on EVs in either the pathogenesis or regarding 
the circulating EV counts in other common forms of renal 
vasculitis, including postinfectious glomerulonephritis, a 
historically common cause of renal vascular inflammation, 
and IgA nephropathy as the currently most common entity 
in the Western world.

RHEUMATIC DISEASE WITH RENAL 
INVOLVEMENT
EVs function has been studied in systemic rheumatic 
disease[61,62]. In SLE, a common rheumatic cause of 
glomerulonephritis, elevated levels of EVs, particularly 
of platelet origin, have consistently been detected in 
patients with active antiphospholipid syndrome[63-66], 
and also in Sjögrens syndrome[64] and closely been 
associated to intravascular thrombosis. Mechanisms of 
modification of inflammation of the vascular wall by EVs 
in SLE have not been reported to date. However, EVs 
in SLE display increased amounts of immunoglobulin 
and complement[67] and it is conceivable that they may 
contribute to deposition of these in the renal glomerulum. 
Furthermore, the proteome of these EVs in SLE appears 
to differ from healthy controls[68] and EVs constituents in 
SLE such as Galectin 3 binding protein have also been 
detected in glomerular deposits in individual patients with 
lupus-associated glomerulonephritis[69].

ANCA ASSOCIATED VASCULITIS
In anti-neutrophil-cytoplasmic antibody (ANCA) associated 
vasculitis, a number of studies have shown elevated 
serum EV concentrations during active disease[47,70-72]. 
Counts reverted normal during remission. In addition, 
counts were significantly higher than in patients with 
other glomerulonephritides such as IgA nephropathy, 
minimal change disease, diabetic nephropathy but also 
lupus nephropathy[47,71]. Most EVs in ANCA disease were 
of platelet origin, but leukocyte and endothelial derived 
EVs were also found[47,70-73]. Histologically, ANCA vasculitis 
presents as acute necrotizing vasculitis not only of the 
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contact with pro-atherogenic lipids[87]. The analysis of 
plaque EV provenience was confirmed by subsequent 
studies including proteome analysis[38,88]. 

Mechanistic roles of EV action in atherosclerotic 
inflammation have mostly been ascribed to their protein 
content[50,51] including large cytoplasmic protein structures 
such as proteasomes and inflammasomes[89,90]. In add­
ition, other constituents such as nucleic acids, notably 
microRNA[91,92], glycosylation pattern[93] and lipids[94] 
critically contribute to EV function in atherosclerosis[6,90,91]. 
Elevated systemic lipid levels and local deposition in the 
plaque makes EV lipids likely candidates for modulation 
of plaque development[95]. High levels of free cholesterol 
induce generation of phosphatidylserine and tissue factor 
rich EVs from human monocyte-derived macrophages, 
partly induced by caspase-3 mediated apoptosis. Syste­
mically, circulating EV concentrations, mostly of platelet 
origin (CD41+) were significantly decreased after lipid 
apheresis in humans[96]. In renal impairment, lipoprotein 
function is markedly changed and protective functions are 
lost[97,98] making it a possible mediator of the observed 
functional shift in uremic EVs.

Patients with chronic kidney disease from any cause 
are at a markedly elevated risk of cardiovascular morbidity 
and mortality[97,99-101]. Medial calcification is characteristic 
of end-stage kidney disease[99,100]. Atherosclerotic plaques 
in moderate renal impairment are mostly found in the 
arterial intima and are histologically similar to lesions in 
normal renal function[102], a phenotype that has been 
replicated in animal models of atherosclerosis[103,104]. 
Given the high prevalence of cardiovascular disease 
already in the general population, the role of inflammatory 
leukocytes in atherosclerotic plaque development has been 
explored in human samples and atherosclerotic animal 
models with a variety of methods including histology, 
flow cytometry and live cell imaging[105-107]. Numbers of 
both adaptive and innate leukocytes in the vessel wall 
markedly increase during atherogenesis. With specific 
regards to renal impairment, current data on EV effects on 
innate and adaptive leukocyte populations prominent in 
atherosclerotic lesion formation will be reviewed.

THE ROLE OF EVS IN LEUKOCYTE 
INTERACTION WITH THE ENDOTHELIUM
When entering the vascular wall and again with growing 
intimal plaques, leukocytes come into close contact with 
endothelial cells. As a possible mechanism of proath­
erogenic EV effects on endothelial cells, CD40 ligand on 
human carotid plaque EVs is required for endothelial 
cell activation and neoangiogenesis by promotion of 
endothelial cell proliferation[88]. EVs isolated from human 
atherosclerotic plaques can transfer ICAM-1 to endothelial 
cells, thus facilitating leukocyte, mainly monocyte adhesion 
and transmigration[108]. They also expressed TNFa 
converting enzyme and plaque EVs that increase shedding 
of both TNFa and activated protein C from activated 
HUVECs[109]. The fact that monocyte and T cell EVs 

induced matrix metalloproteinase in synovial fibrocytes 
in rheumatoid arthritis suggests that this is a general EV 
property[110]. Neutrophil EVs increased endothelial cell 
IL-6 release in vitro[111]. T cell EVs generated both in in 
vitro and in vivo and EVs from patients with myocardial 
infarction decreased flow induced endothelial relaxation 
and downregulate eNOS expression[112,113]. As a potential 
positive feedback loop, NOS inhibition induces L-selectin 
and PSGL-1 expressing EVs from neutrophilic granulocytes 
seeded to HUVECs in vitro, that in turn increasing neutrophil 
transmigration[114]. Given NO inhibition by a range of uremic 
toxins[115], it is conceivable that these processes cooperate 
in renal impairment to impair vascular function.

Circulating EV counts are highly elevated during 
acute arterial thrombosis in a large number of studies. 
These have recently been reviewed and will therefore 
only been referred to in relation to vascular leukocytes 
in this manuscript[116-119]. However, it is of note that EV 
phosphatidylserine surface expression as a pro-thrombotic 
mediator was significantly increased in patients with the 
nephrotic syndrome of different etiologies[120] and the in 
vitro pro-coagulant effect of EVs from both hemodialysis 
and peritoneal dialysis patients was enhanced[46].

GRANULOCYTES
Neutrophilic granulocyte concentrations in peripheral 
blood and even more so, the neutrophil/lymphocyte 
ratio, are well-documented predictors of cardiovascular 
mortality[121,122]. This relationship is also highly significant 
in patients with end stage renal disease[123]. Recent 
animal data suggest that neutrophils mechanistically 
promote hypertension associated vascular damage and 
endothelial dysfunction[124]. Neutrophils are essential in 
early atherosclerotic plaque development, probably by 
NET formation[125]. They also generate a variety of EVs 
with pro- and anti-inflammatory functions[111,126-128]. Acting 
directly on the parental cell type, Annexin A1 present 
in neutrophil EVs inhibits neutrophil rolling, adhesion 
and migration in mice[126]. Neutrophil extravasation is 
promoted by close neutrophil contact with platelets and 
platelet EVs[12,13] (Figure 2). Both platelets and neutrophils 
generate long tethers during adhesion, some of which 
remain as free vesicles in the environment[129,130]. The 
essential role of platelet particles for directed neutrophil 
migration through the vessel wall is under active in vivo 
investigation by advancing imaging techniques[11-13,131,132]. 
Thrombus formation after plaque rupture directly ac­
tivates neutrophils[133], a process that continues to be me­
chanistically explored in experimental arterial lesions[134]. 
Antagonizing either glycoprotein Ⅰb or Ⅱb ⅢA on 
platelet EV inhibited neutrophil activation[135,136]. This 
may be relevant beyond acute thrombosis, as enhanced 
platelet activation by junctional adhesion molecule A 
deficiency[137] increased while deletion of glycoprotein Ib 
decreased myeloid cell activation and atherosclerotic lesion 
size[138]. These data suggest that platelet and platelet 
EV interactions with granulocytes promote also chronic 

129 March 6, 2016|Volume 5|Issue 2|WJN|www.wjgnet.com

Helmke A et al . Vascular inflammation in CKD



atherosclerosis, in the absence of plaque rupture or 
thrombosis. 

MONOCYTES AND MONONUCLEAR 
PHAGOCYTES
Myeloid phagocytes are central in atherosclerotic plaque 
development. They have a dual role with lipid uptake on 
the one hand, resulting in foam cell formation that can 
lead to cell death and thereby necrotic plaque cores and 
antigen presentation to cells of the adaptive system on the 
other hand[139-143]. In atherosclerosis enhanced by renal 
impairment, lesional macrophage content increased[104,144]. 
Angiotensin receptor Ⅰ on myeloid cells[144-146] and IL-17[104] 
are instrumental in mediating this phenotype. Myeloid 
derived phagocytes in the atherosclerotic plaques differ­
entiate from immigrating monocytes, but also proliferate 
locally, especially in mature plaques in which they are 
subject to the local milieu[147]. Both processes are influenced 
by EVs (Figure 2). 

Monocyte adhesion to the endothelium in vitro was 
enhanced platelet EVs, induced by storage, thrombin or 
shear stress[148-150]. Platelet EVs also increased monocyte 
surface expression of adhesion molecules such as CD11a, 
CD11b integrins, platelet adhesion molecule 1 (CD31), 

CD33 lectin, and receptors such as CD14 and CD32 
Fc receptor[148-150]. Endothelial EVs elicited by oxidized 
LDL or homocysteine from rat arterial endothelial cells 
contained high levels of heat shock protein 70 (HSP70) that 
increased monocyte adhesion in vitro[151]. In vivo in murine 
atherosclerosis, RANTES from platelet EVs coated the 
endothelium resulting in enhance monocyte adhesion[152]. 

Macrophage phenotype has a decisive role in plaque 
growth and stability of the lesion. In renal impairment, 
histologic analysis of the plaque showed that markers 
of M1 macrophage polarization were up-regulated with 
corresponding down-regulation of M2 markers[153]. 
Erythrocyte EVs that are found atherosclerotic plaques[86] 
induced TNFa production in monocytes in a CD40 ligand 
dependent fashion[82]. Platelet EVs induced secretion of 
cytokines that promote atherosclerotic plaque formation 
such as TNFa, IL-1β and IL-8 in a monocytic cell line in 
vitro[149]. IL-1β that is central atherogenesis[154] is itself 
contained in EVs released from platelets[155,156] and myeloid 
phagocytes[157-159]. However, cytokine induction by platelet 
EVs is not universal as small platelet EVs inhibited human 
monocyte-derived phagocyte TNFa and IL-10 secretion 
while TGFβ production was enhanced[160]. Human 
granulocyte EVs increased macrophage TGFβ1, but not 
IL-6 or IL-8 expression and blocked pro-inflammatory 
responses induced by zymosan or LPS. The authors 

130 March 6, 2016|Volume 5|Issue 2|WJN|www.wjgnet.com

Lumen

M-EVs Monocyte

Cytokine production ↑

Endothelium

NF-kB activation ↑

P-EVs

Adhesion ↑

Smooth mucle cells

Er-EVs

Vessel wall
Cytokine production ↑

Mononuclear phagocyte

Lipid uptake ↑

Cytokine production ↑

TH1 differentiation ↑

Proliferation ↑Cytokine production ↑

APC maturation ↑

T cell

T-EVs

N-EVs

Activation ↓

Adhesion ↓

Migration ↓

Adhesion ↑

TREG differentiation ↑

T cell

PMN
Cytokine production ↓

En-EVs

Platelets

Figure 2  Roles of extracellular vesicles in leukocyte function in the atherosclerotic plaque. Data on interaction of EVs with neutrophilic granulocytes, 
monocytes and mononuclear phagocytes and T lymphocytes is summarized. Regarding neutrophilic granuloctes (PMN), platelet EVs (P-EV) promote neutrophil 
(PMN) adhesion to the endothelium, neutrophil EVs (N-EV) mostly decrease adhesion and migration through the endothelium. Regarding monocytic cells, endothelial 
(En-EV) and P-EVs promote adhesion to the endothelium. Inside the plaque, En-EVs promote antigen presenting cell (APC) maturation and cytokine production and 
erythrocyte EVs (Er-EVs), monocyte EVs (M-EVs) and T cell EVs (T-EVs) increase cytokine production. T-EVs also increase lipid uptake. N-EVs suppress activation. 
Regarding T cells, P-EVs decrease cytokine production, En-EVs promote T cell proliferation and TH1 differentiation. EVs: Extracellular vesicles.
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also noted large donor variations in response to EVs 
suggesting that genetic factors may have a significant 
influence[127]. Annexin 1 is a potential mediator of the anti-
inflammatory effects of granulocyte EVs[126]. Autocrine 
effects of monocytic EVs on monocyte differentiation and 
cytokine production varied with cell culture conditions. 
phorbol-12-myristate 13-acetate (PMA) elicited EVs from 
THP1 cells induced cell cycle arrest and macrophage 
differentiation TGFβ1 dependently[161] while human 
monocyte EVs increased TNFa and IL-6, release reactive 
oxygen species production and induced nuclear factor 
(NF)-kb activation[162]. Interestingly, NO, a pathway that 
is significantly inhibited in uremia, markedly enhanced 
EV release from RAW264 macrophages in vitro[163]. 
T lymphocyte EVs induced in both peripheral blood T 
lymphocytes and a human T cell line by phytohemagglutinin 
(PHA) and PMA increased TNFa, IL-1β and soluble IL-1 
receptor a production in monocytes in a dose-dependent 
manner. This was not observed for EVs from unstimulated 
T cells[164,165]. Both TNFa and IL-1β generation were 
inhibited by HDL, connecting these studies directly to 
regulation of inflammation in the atherosclerotic plaque. 

Regarding lipid phagocytosis, lipid and cholesterol 
content in peritoneal macrophages from atherosclerotic 
mice with renal impairment was significantly higher than 
in control animals[166] and the ability to take up labeled 
exogenous oxidized LDL particles significantly impaired in 
aortic macrophages[104]. This was attributed to decreased 
cholesterol efflux, mediated by decreased expression 
of the transporter ABCA1[166]. Platelet EVs increased 
uptake of oxidized LDL if present during macrophage 
differentiation in vitro. This protocol also increased CD14, 
CD36 and CD68 surface receptor expression[150]. In 
contrast, small platelet EVs with less than 50 nm diameter 
decreased lipid uptake via reduction of CD36 surface 
expression by enhanced ubiquitination[167] T lymphocyte 
EVs from PHA-activated human T lymphocytes increased 
cholesterol uptake in THP-1 cell and human monocyte 
derived macrophages[168].

Regarding antigen presentation, expression of the 
antigen presenting cell marker CD11c significantly 
increased in atherosclerotic aortas of mice with renal 
impairment[104]. T cell proliferation was significantly higher 
in their then aortas of atherosclerotic control mice. In 
addition, life cell imaging demonstrated that aortic T cell 
interactions with CD11c+ cells were significantly more 
frequent and longer in vessels from mice with renal 
impairment[104]. There is a large body of evidence for a role 
of EVs in antigen presenting cell function[6]. While many 
studies focused on tumor antigens, some may be directly 
relevant to atherosclerosis. Endothelial EVs from a human 
microvascular cell line induced by TNFa enhanced antigen 
presenting cell maturation, indicated by morphologic 
maturation, up-regulation of HLA-DR, CD83 and CCR7 
and IL-6 secretion in a cell line and human plasmacytoid 
dendritic cell, but not in myeloid cells. While the stimulated 
cells were capable of inducing mixed lymphocyte reaction, 
interferon γ (IFNγ) was not induced by the co-incubation. 
Platelet and T cell EVs were used as controls and did not 

elicit this response[169]. Erythrocyte EVs enhanced T cell 
proliferation by modulation of monocyte maturation and 
induction of TNFa[82]. In a somewhat different setting, 
platelet EV recovered from thrombin-activated platelet 
supernatants induced HLA-DR expression in immature 
DCs during differentiation from human PBMC. This was 
mediated by CD40L[170], a protein that has been detected 
on human carotid plaque EVs[88]. Small EVs from resting 
platelets exerted a contrary effect and decreased HLA-
DP, DQ, DR and CD80 expression during human PBMC 
differentiation[160]. While CD14 expression decreased 
similar to control cells, platelet EV also decreased endocytic 
capacity. Neutrophil EVs decreased immature dendritic 
cell phagocytic capacity and increased TGFβ release. 
Furthermore, LPS mediated maturation was severely 
impaired including surface marker expression, cytokine 
production and induction of T cell proliferation[171] extending 
the protective neutrophil effect from endothelium to 
monocyte derived phagocytes.

In summary, EVs of different cellular origins modulate 
mononuclear phagocyte functions that promote athero­
sclerosis in renal impairment.

LYMPHOCYTES
T cells are major modifiers of plaque formation among 
adaptive immune cells while the role for B cells is 
controversial[105-107]. B cell interaction with EVs can 
enhance or diminish B cell function[172,173], however, a link 
to atherosclerosis remains to be defined.

Among T helper cells, IFNγ-producing TH1 cells strongly 
promote atherosclerotic lesion formation. In the current 
experimental models, there appears to be no major role 
for TH2 cells in atherogenesis, while regulatory T cells and 
their marker cytokines such as IL-10 can attenuate lesion 
formation[105-107]. The impact of TH17 cells and their marker 
cytokine IL-17, which has a significant role in attraction 
of innate leukocytes such as neutrophilic granulocytes 
and monocytes[174], appears to be highly context-
dependent[10,175]. Recent data show that proatherogenic 
lipoproteins can enhance TH17 polarization[176]. IL-17 pro­
duction in T cells is markedly enhanced by environmental 
chemicals via the aryl hydrocarbon receptor[177-180]. Its 
ligands are well known uremic toxins[181,182]. Indeed, 
the IL-17 production was significantly increased in a 
cohort of patients with end stage renal disease[183]. 
Mechanistically, IL-17 was instrumental in increased 
myeloid cell accumulation and lesion burden in moderate 
renal impairment[104].

The effect of EVs on T cell function in vitro significantly 
varies depending on the cell of origin (Figure 2). Endot­
helial EVs enhanced CD4+ T cell proliferation in mixed 
lymphocyte reaction via modulation of dendritic cell 
maturation, resulting in enhanced TNFa and IFNγ secretion[169]. 
Similarly, EVs from TNFa-stimulated HUVECs induced TH1 

differentiation in human PBMCs[184]. Erythrocyte EVs 
induced T cell proliferation indirectly via monocyte derived 
antigen presenting cell polarization. This stimulated the 
production of the pro-atherogenic cytokines IL-1β, IL-2, 
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IL-7, IL-17 and IFNγ during co-culture of human PBMCs[82]. 
In contrast, small platelet EVs directly interacted with CD4+ 
T cells. They decreased IFNg, TNFa and IL-6 production 
during polarization[185]. This was at least in part due to an 
increase in regulatory T cells induced by EV TGFβ. EVs 
from antigen presenting cells promote T cell priming[186,187]. 
In atherosclerosis, plasma and plaque EVs contain MHC
Ⅰ, MHCⅡ and CD40L as EV surface antigens and it is 
therefore conceivable that these processes are also active 
during atherosclerosis in vivo[38,88].

CONCLUSION
Data on mechanisms how EVs modulate leukocyte adhesion, 
differentiation and vascular function in inflammation ha­
ve greatly enhanced our understanding of these patho­
physiologic processes. Experimental results suggest a 
number of mechanisms that enhance EV generation and 
modulate their function in renal patients. While analytic 
tools continue to be optimized and therapeutic options are 
limited to inhibition of platelet EVs at this point, EV counts 
start to serve as activity and prognostic markers in different 
conditions. 
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