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Abstract 
Acute kidney injury (AKI) is commonly seen amongst 
critically ill and hospitalized patients. Individuals with 
certain co-morbid diseases have an increased risk of 

developing AKI. Thus, recognizing the co-morbidities 
that predispose patients to AKI is important in AKI 
prevention and treatment. Some of the most common 
co-morbid disease processes that increase the risk of 
AKI are diabetes, cancer, cardiac surgery and human 
immunodeficiency virus (HIV) acquired immune deficiency 
syndrome (AIDS). This review article identifies the 
increased risk of acquiring AKI with given co-morbid 
diseases. Furthermore, the pathophysiological mechanisms 
underlying AKI in relation to co-morbid diseases are 
discussed to understand how the risk of acquiring AKI is 
increased. This paper reviews the effects of various co-
morbid diseases including: Diabetes, cancer, cardiovascular 
disease and HIV AIDS, which all exhibit a significant 
increased risk of developing AKI. Amongst these co-
morbid diseases, inflammation, the use of nephrotoxic 
agents, and hypoperfusion to the kidneys have been 
shown to be major pathological processes that predisposes 
individuals to AKI. The pathogenesis of kidney injury is 
complex, however, effective treatment of the co-morbid 
disease processes may reduce its risk. Therefore, improved 
management of co-morbid diseases may prevent some of 
the underlying pathology that contributes to the increased 
risk of developing AKI. 
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Core tip: In order to prevent, diagnose, and prophyl-
actically treat patients, healthcare providers must identify 
co-morbidities that significantly increase the likelihood of 
acute kidney injury (AKI). Any treatments that compromise 
cardiac output, renal perfusion pressure, and glomerular 
hemodynamics risk ischemic injury to the kidney. The 
innate and adaptive immune responses, which are 
activated by renal epithelial cell necrosis contribute to the 
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progression of AKI. These factors have been shown to be 
enhanced in diabetes, cancer, cardiac surgery and human 
immunodeficiency virus acquired immune deficiency 
syndrome patients. 

Farooqi S, Dickhout JG. Major comorbid disease processes 
associated with increased incidence of acute kidney injury. World 
J Nephrol 2016; 5(2): 139-146  Available from: URL: http://
www.wjgnet.com/2220-6124/full/v5/i2/139.htm  DOI: http://
dx.doi.org/10.5527/wjn.v5.i2.139

INTRODUCTION
According to the Acute Kidney Injury Network (AKIN), 
AKI is an abrupt loss in kidney function within 48 h, 
as defined by an increase in serum creatinine of 26.4 
μmol/L (0.3 mg/dL) or more; a percentage increase 
in serum creatinine of more than 50% from baseline; 
or a reduction in urine output, oliguria (< 0.5 mL/kg 
hourly for > 6 h)[1,2]. AKI can be characterized by 
severe changes in kidney function. The severity of these 
changes are time sensitive, thus, early treatment may 
minimize the complications associated with AKI[3]. AKI 
is most often secondary to extrarenal events in critically 
ill patients, specifically those that are hospitalized an 
are suffering from progressive degenerative diseases[4]. 
AKI has been shown to occur in 1% of patients admitted 
to the hospital and it has been shown that up to 7% 
of patients develop AKI during hospital stays[1,5,6]. The 
incidence of AKI in intensive care units (ICU) has been 
shown to range from 20% to 50%[7]. On average 5% 
of patients in the ICU with severe AKI require renal 
replacement therapy (RRT)[8].

Patients are at an increased risk of death from 
postoperative AKI. According to Hobson et al[9] the 
risk-adjusted 90-d postoperative mortality was 6.5% 
for patients with AKI (ranging from mild to severe) in 
comparison to 4.4% in patients without AKI. Some of 
these surgical procedures include thoracoabdominal 
aortic surgery[10], bone marrow transplantation[11] and 
cardiac surgery[12]. AKI, as a result of ischemia, is also a 
frequent clinical event. In the hospital setting, ischemic-
AKI occurs in 50% of patients with AKI[13]. Ischemic-
AKI occurs for a variety of reasons such as the use of 
vasoconstrictive drugs or radiocontrast agents and/or 
hypotension associated with sepsis or blood loss after 
surgery or trauma[2]. Individuals who survive AKI have 
an increased risk of short and long-term complications. 
Some of these complications include a 10-fold greater 
risk of chronic kidney disease, a 3-fold greater risk 
of end stage renal disease and double the risk of 
death[14,15]. 

Biomarkers have become a novel concept for the early 
diagnosis of AKI. A combination of two urinary cell-cycle 
arrest biomarkers, insulin-like growth factor-binding protein 
7 (IGFBP-7) and tissue inhibitor of metalloproteinases-2 
(TIMP-2) have been used to predict the risk of moderate 

and severe AKI (defined by stages 2 and 3 respectively 
according to the KDIGO classification of AKI)[16]. These 
biomarkers have been said to perform better than existing 
markers such as NGAL, KIM-1, interleukin (IL)-18, L-FABP 
and Cystatin C[17,18]. In AKI, these biomarkers localize in 
the site of injury where they are involved in the process 
of the G1 cell-cycle arrest, which acts to prevent cells 
from continuous division when DNA is damaged[19]. 
Two independent multicenter cohort studies conducted 
by Kashani et al[17] and Bihorac et al[18] allowed for the 
development of the FDA approved NEPHROCHECK® 
Test system. The test system is comprised of assays for 
TIMP-2 and IGFBP-7, which is to be used in conjunction 
with clinical evaluations. This system is used as a clinical 
aid in the risk assessment for moderate to severe AKI 
within 12 h of patient assessment[17,18]. As such, these 
new advancements allow for the early detection of AKI. 

Several epidemiological studies have proposed a 
wide array of risk factors for AKI. These include acute 
clinical conditions, diagnostic, or therapeutic procedures, 
and chronic disease states. However, they do not high-
light the relationship of co-morbid diseases with the 
pathophysiology of AKI in a systematic manner. As such, 
this paper seeks to identify important co-morbidities and 
illustrate mechanisms by which these co-morbidities 
increase the incidence of AKI. Identifying co-morbidities 
that significantly increase the likelihood of AKI will 
allow healthcare providers to prevent, diagnose, and 
prophylactically treat patients, thereby reducing the long-
term complications associated with AKI.

Pathogenesis and co-morbid disease processes in AKI
Renal blood flow is highly regulated to ensure oxygen 
delivery for normal renal function[20]. Cardiac output, 
renal perfusion pressure, and glomerular hemodynamic 
factors are major determinants of renal blood flow 
autoregulation. If these factors are compromised, ischemic 
and toxic injury to the kidney can occur[20,21]. The afferent 
arteriole plays an important role in autoregulation to 
maintain glomerular filtration rate (GFR). There are two 
mechanisms by which the afferent arteriole regulates 
GFR: (1) the myogenic reflex occurs when renal perfusion 
pressure rises causing the smooth muscle of the afferent 
arteriole to constrict; and (2) tubuloglomerular feedback 
(TGF) is sensitive to sodium delivery to the macula densa 
causing vasoconstriction of the afferent arteriole[22]. 
Further, cyclooxygenase inhibitors such as aspirin and 
other nonsteroidal anti-inflammatory drugs (NSAIDs) that 
may be taken by patients with co-morbid diseases can 
cause severe intrarenal vasoconstriction, serious decline in 
GFR, and worsen AKI[23-25].

The core pathology of AKI can be broken down into 
degenerative processes that target the tubular epithelium, 
vasculature and activate the immune response leading 
to a decline in kidney function. AKI associated with 
ischemia reperfusion injury, sepsis or toxins causes a 
rapid loss of proximal tubular cell cytoskeletal integrity 
and cell polarity[26]. As a result, there is a shedding of the 
proximal tubule brush border and loss of polarity with the 
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mislocalization of adhesion molecules and other membrane 
proteins such as Na+/K+-ATPase and β-integrins[26]. ATP 
depletion can cause ER stress, which causes protein 
misfolding, including epithelial junction proteins, leading 
to loss of cell polarity and failure of sodium readsorption. 
This results in an aberrant TGF response (Figure 1)[2,26] 
caused by loss of the ability of the proximal tubular cells to 
reabsorb filtered sodium, thus, increasing sodium delivery 
to the distal nephron. With an increase in the delivery 
of sodium to the macula densa, the TGF mechanism of 
autoregulation senses hyperfiltration, causing afferent 
arteriole constriction[20]. However, the perfusion of the 
kidney may already be compromised by prerenal causes 
leading to an exaggerated TGF response, resulting in a 
sudden and substantial drop in GFR[20]. 

AKI and inflammation
Both the innate and adaptive immune responses, activated 
by tubular epithelial cell necrosis, are key contributors to 
the progression of AKI[1,21]. Activation of the inflammatory 
process triggers the expression of cytokines and 

chemokines like tumor necrosis factor (TNF) and IL-6 
through toll-like receptors that detect materials released 
in response to injury and interact with their ligand 
receptors to activate a proinflammatory response to the 
site of injury. Upregulation of chemokines and adhesion 
molecules in the endothelium results in the infiltration of 
inflammatory cells such as neutrophils, lymphocytes, and 
macrophages from blood vessels to the interstitium of the 
kidney[1,21,27].

AKI and endoplasmic reticulum stress
AKI caused by ischemia, nephrotoxic drugs, or contrast 
agents has been associated with endoplasmic reticulum 
(ER) stress[27]. The ER has a pivotal role in the main-
tenance of protein homeostasis where it controls the 
concentration, conformation, folding and transport of 
synthesized proteins[27]. Disruptions such as hypoxia, 
glucose depletion, and oxidative stress can prevent the 
correct functioning of the ER where an accumulation 
of misfolded proteins in the ER lumen initiates the 
unfolded protein response (UPR)[27,28]. The UPR serves 
as an adaptive response attempting to re-establish 
normal ER functioning through the activation of calcium-
dependent molecular chaperones such as glucose-regulated 
protein-78[1,27]. The UPR pathway can also induce the 
transcription of pro-apoptotic genes that cause cell death. 
Oxidative stress and inflammation are compounded by 
ER stress via the UPR, which contribute to glomerular and 
tubular damage in patients with AKI[27]. 

AKI and endothelium and vasculature damage
When the endothelium is damaged, the arteriole responds 
to a local high concentration of vasoconstrictive agents 
with a greater magnitude, as the injured endothelial 
cells produce a decreased amount of vasodilatory sub-
stance. There is an increase in the permeability of the 
endothelium post-injury, consequently resulting in a loss 
of fluid into the interstitium, thereby compromising blood 
flow[27]. Chronic hypoxia alongside the downregulation 
of angiogenic factors can cause a decline in the number 
of blood vessels and consequently lead to increased 
fibrosis that works in a positive feedback mechanism to 
reinforce its progression and ultimately cause epithelial 
cell injury and apoptosis[27,28]. Smaller constrictive vessels 
respond more intensely to vasoconstrictive agents 
(e.g., angiotensin Ⅱ, thromboxane A2, prostaglandins 
etc.), but have a decreased response to vasodilators 
(acetylcholine, bradykinin, NO)[27]. These effects can be 
a consequence of alterations in the endothelium due 
to injury or enhanced leukocyte-endothelial adhesion. 
The latter effects can cause the obstruction of the small 
vessels and activate the inflammatory response, which 
becomes a vicious cycle of coagulation that prevents the 
delivery of vital nutrients and oxygen to the epithelial 
cells[27]. 

Co-morbidities and AKI 
Damage to the kidneys, as a result of AKI, may be 
enhanced with the presence of co-morbidities and thereby 
complicate the treatment procedure. One study defined 
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Figure 1  Epithelial cell damage. Ischemia reperfusion injury, sepsis or 
nephrotoxins are some the main causes of damage to epithelial cells resulting 
in AKI. The damage induces changes to the cytoskeleton, adhesion molecules 
and membrane proteins. ATP depletion results in the disruption of tight 
junctions causing back-leak of the filtrate as the actin cytoskeleton structure 
is altered. Endoplasmic reticulum stress caused by ATP depletion causes the 
aggregation of junctional proteins inducing an increase in the permeability 
of the endothelium. The loss of cell polarity due to AKI results in the failure 
of Na+ reabsorption allowing high concentrations of Na+ to reach the distal 
tubule stimulating an aberrant TGF response. AKI: Acute kidney injury; TGF: 
Tubuloglomerular feedback; ATP: Adenosine triphosphate; ER: Endoplasmic 
reticulum.
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a neutralizing TNF-α antibody or nonimmune globulin 
control[39]. The mice were pre-treated with TNF-α antibody 
or nonimmune globulin injections 20 min before bilateral 
renal ischemia[39]. This study showed that the treatment 
with the TNF-α antibody was renal-protective against 
ischemic injury. Thus, the study concluded that diabetes 
increases the susceptibility to ischemic AKI due to an 
elevated TNF-α-mediated inflammatory response[39].

Although a majority of the scientific community ag-
rees that diabetes increases the severity of AKI, some 
controversy surrounding DM and susceptibility to AKI 
exists. A study conducted by Venot et al[40] has shown 
no role of DM in increasing the risk of AKI or RRT. 
Instead, DM has been shown to only worsen the renal 
prognosis at discharge, determined by patients need 
for RRT, levels of serum creatinine and the recovery of 
renal function[40]. Additionally, the data from another 
study has shown that the history of DM is based on 
unclear self-reports of patients or records, and thereby 
does not reflect the current glucose control. Thus, using 
diabetes as a marker for a heightened risk of AKI at 
baseline clinical assessment in patients undergoing cardiac 
surgery may not be a useful tool in predicting renal 
injury outcomes[41]. Moreover, patients without a formal 
diagnosis of DM can suffer from chronic hyperglycaemia 
(CHG) due to pathological glycemic control or early stages 
of DM[41,42]. This study highlights that hyperglycaemia is 
also associated with cardiac dysfunction, susceptibility 
to infections and endothelial dysfunction, which pose 
as risk factors of perioperative morbidity and mortality 
after coronary artery bypass grafting (CABG) surgery[41]. 
The results of this study suggest that the measurement 
of Hemoglobin A1c (HbA1c) of ≥ 6.0%, which is an 
established tool used in the evaluation of diabetic control 
and CHG in patients with DM, is associated with a higher 
incidence of AKI after CABG[41]. Thus, a patient’s blood 
glucose levels should be evaluated for CHG, independent 
of DM, as it could be a strong determinant of AKI.

Cancer-associated AKI
AKI is an important complication of cancer and cancer-
therapy where cancer patients are susceptible to a 
number of kidney lesions that can cause complications in 
the efficacy of treatment[43]. Factors such as the type and 
severity of malignancy (a solid tumour or hematologic 
process), associated complications such as co-morbidities 
and illnesses, and types of cancer management and 
therapy cause variability in when AKI is acquired[43]. One 
study conducted on Danish cancer patients reported the 
highest rates of AKI were in patients with kidney cancer 
at 44%, myeloma at 33% and liver cancer at 31.8%[44]. 
The rate of AKI in critically ill cancer patients was shown 
to be between 12% and 49%, with 9% to 32% of 
these patients requiring RRT[5,45,46], which is higher when 
compared to patient populations of an illness of similar 
severity[45,47,48]. Thus, AKI management in cancer patients 
is essential for patient survival and recovery. 

AKI in cancer patients can be divided into prerenal, 
intrarenal or postrenal causes. Prerenal AKI is most 

the incidence, risk factors and outcomes of AKI in a 
patient population from the Scottish Hip Fracture Audit 
database[29]. These patients who sought treatment 
for femur fracture and developed AKI showed an 
increase in inpatient morbidity, mortality (within 30 
and 120 d) and length of hospital stay with multiple co-
morbidities[29]. This study highlights the co-morbidities 
associated with the development of AKI including, 
diabetes mellitus, vascular disease, hypertension and 
pre-morbid chronic renal disease. The data presented 
in this study suggests that most cases of AKI occur 
post-surgery and the causes of AKI are multi-factorial 
comprising of pre, intra- and post-operative factors[29]. 

Diabetes-associated AKI 
Globally, in 2014, it is estimated by the World Health 
Organization (WHO) that 387 million people suffer from 
Diabetes mellitus (DM), where 90% of the cases are of 
Type Ⅱ diabetes[30]. The risk of AKI has been shown to 
be increased in patients with DM, with an adjusted odds 
ratio of 1.99, compared to non-DM controls with the 
same GFR[31]. It was determined that individuals who 
require dialysis, which is indicative of the severity of 
AKI, were an older patient group with DM and included 
individuals who had other complications such as hyper-
tension and proteinuria[31]. A reason proposed for the 
higher risk of AKI in patients with DM is the frequent 
occurrence of complications associated with DM. Some 
of these complications include, cardiovascular disease; 
heart failure; exposure to medications such as diuretics 
and others that serve as nephrotoxic agents[32]. 

A greater susceptibility to ischemic insults of the 
diabetic kidney has been shown in experimental rodent 
models and in diabetic patients[33]. One study examined 
the influence of 30-min renal ischemia in rats with 
streptozotocin-induced DM. This study showed a complete 
recovery of the renal function in non-DM rats while DM 
animals showed a permanent loss of renal function[34]. 
DM rats, 8 wk after ischemia was induced, became 
completely anuric with tubular atrophy, and had extensive 
inflammation and tubulointerstitial fibrosis, which became 
evident within 4-wk post-surgery[34]. Another study led by 
the same investigators showed treatment of these rats 
with insulin prior to the ischemic event reduced ischemic 
injury[35]. 

The mechanism by which diabetes increases the 
severity of AKI has not yet been well established, but 
a great deal of research supports the connection bet-
ween obesity, inflammation, and insulin resistance[36]. 
Inflammatory cytokines such as TNF-α and IL-6 are 
produced by adipocytes and have been shown to cause 
insulin resistance[36,37]. In rodent models of diabetes 
and diabetic humans, the increased upregulation of 
inflammatory cytokines in the kidney and urine have been 
shown[38]. These changes have been shown to result in 
long-term renal complications such as proteinuria and 
renal hypertrophy[38]. To experimentally determine the 
mechanistic role of TNF-α in facilitating the heightened risk 
of ischemic injury in Type Ⅱ diabetic mice, one study used 
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commonly seen in cancer patients due to hypotension 
as a result of intravascular volume depletion caused 
by sepsis, vomiting, or diarrhea[43]. Hypercalcemia due 
to parathyroid hormone release, which increases bone 
resorption and renal tubular resorption of calcium, is 
seen in 10% to 30% of malignancies[49,50]. This can lead 
to a prerenal state of AKI due to vasoconstriction as well 
as volume depletion from natriuresis and diuresis[49,50]. 
Additionally, prerenal causes can result from the use of 
medications such as diuretics, angiotensin-converting 
enzyme inhibitors, angiotensin receptor blockers or 
nonsteroidal anti-inflammatory agents for tumours, 
and/or other medical conditions such as hypertension 
or congestive heart failure[43]. Intrarenal causes of 
AKI in cancer patients consist of primary glomerular 
disease, acute tubular necrosis attributable to toxins or 
ischemia, infiltrative processes due to immune system 
activation, and microangiopathic processes[43]. Postrenal 
AKI is a result of kidney obstruction that is common 
in malignancies in the bladder, prostate, uterus, and 
cervix[43]. 

Nephrotoxicity by means of cancer therapy is one 
of the leading causes of AKI in cancer patients[51]. In 
a multivariate model, the OR for developing AKI from 
chemotherapy was 1.61, 4.55 for intravenous contrast 
and 1.52 for antibiotics[51]. Renal injury can be induced 
in a variety of ways by nephrotoxic drugs. In general, 
intrarenal vasoconstriction, direct tubular toxicity 
and intratubular obstruction are damaging results of 
nephrotoxic agents[51]. High levels of toxins are delivered 
and reabsorbed by the kidneys, which lead to increased 
intracellular concentrations of nephrotoxins in the tubular 
cell and medullary interstitium[51]. Further, the kidney 
is a site for drug metabolism and clearance[52]. Thus, 
the kidney can breakdown compounds that may be 
relatively harmless into toxic metabolites, or impairment 
of renal function can cause chemotherapeutic agents to 
concentrate in the kidneys without being cleared[52,53]. 
Delayed drug metabolism and excretion, due to increased 
concentrations of nephrotoxins, can result in increased 
systemic toxicity requiring an adjustment of treatment 
dosage[53]. As such, the nephrotoxic potential of anti-
cancer agents can be significantly increased if there 
is pre-existing kidney damage and or a presence of 
concomitant co-morbidities such as heart failure and 
sepsis[53]. 

Cardiac surgery-associated AKI 
Cardiac surgery-associated (CSA) - AKI is an important 
clinical problem that stems from a complex multifactorial 
pathogenic process. The incidence of CSA-AKI is 25%[54]. 
Mortality associated with the development of AKI can 
be as high as 60%, with an average of 15%-30% 
depending on the measurement and defining criteria of 
AKI[55]. Factors that increase the risk of CSA-AKI can be 
divided into preoperative and intraoperative (associated 
with and followed by postoperative CSA-AKI) categories.

The preoperative period is a critical point wherein renal 

injury can occur due to fluctuations in hemodynamics, 
exposure to nephrotoxic agents and the activation of 
the inflammatory response[55]. Injury, as a result of the 
aforementioned, can be substantiated when a patient 
undergoes surgery that decreases renal perfusion and 
reduces renal functional reserve. Patients undergoing 
conventional coronary bypass (CCB) often present with 
renal injuries that can range from minor to severe[55]. 
The pre-existing renal injury condition can be further 
amplified with the use of drugs such as diuretics, NSAIDs 
or angiotensin receptor blockers that can impair the 
autoregulation of renal blood flow[56]. Additionally, incidents 
of preoperative hypotension may lead to endothelial injury 
that can impair the production of vasodilatory substances 
such as NO causing vasoconstriction as a result of 
catecholamines and angiotensin Ⅱ to further exacerbate 
injury[57,58]. 

The intraoperative period is when patients are exposed 
to anaesthesia and undergo CCB, these significantly impair 
hemodynamics and activate the innate and adaptive 
immune response[55]. Hemodynamic changes can be 
controlled and regulated given that a patient’s medical 
history is thoroughly assessed and the kidney is perfused 
accordingly during surgery. However, if not controlled, 
hemodynamic changes can lead to regional renal ischemia 
and can induce or extend renal injury[55]. Additionally, the 
activation of inflammatory mediators can initiate in the 
preoperative period and extend into the intraoperative 
period. An elevation of TNF-α levels have been observed in 
patients with pre-existing congestive heart failure, which 
further amplifies the inflammatory response during CCB 
in intraoperative period[59,60]. Neutrophils and the vascular 
endothelium are activated, inducing the upregulation of 
adhesion molecules such as platelets[60]. These events 
activate the upregulation of cytotoxic free-radicals[61], 
proteases[62], cytokines[63] and chemokines (IL-6, IL-8 and 
TNF-α)[63,64]. 

Postoperative events that impair renal function are 
similar to causative factors of AKI that are frequently 
found in intensive care setting such as the use of vaso-
active agents, hemodynamic instability, exposure to 
nephrotoxic medications, volume depletion, and sepsis. 
Postoperative cardiac performance may be compromised 
with ventricular dysfunction causing reduced blood flow to 
the kidney and subsequently resulting in AKI[55]. 

Human immunodeficiency virus-associated AKI
Human immunodeficiency virus (HIV) infection that 
may progress to acquired immune deficiency syndrome 
(AIDS) creates an immunosuppressed state allowing for 
life-threatening opportunistic infections and cancers to 
thrive[65]. In contrast to AKI as a result of pre-renal and 
post-renal causes, HIV-associated AKI is most often due 
to HIV-mediated viral or immunological disease and or 
nephrotoxicity from treatments[66]. Risk factors for AKI in 
HIV infection include low CD4+ levels, AIDS, hepatitis C 
and liver disease[67]. Additionally, medications used to treat 
HIV such as anti-retroviral therapy (ART) or highly active 
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antiretroviral therapy (HAART) may also increase the risk 
of developing AKI due to their nephrotoxic properties[66]. 
The OR of HIV patients acquiring AKI in pre-HAART has 
shown to be 2.9 and substantially increased to 6.0 in post-
HAART[66]. ART causes severe immunosuppression where 
the CD4+ count becomes dangerously low at < 200 cells/
mm3; normal values ranging from 500 cells/mm3 to 1200 
cells/mm3[68]. The decreased CD4+ count is an independent 
predictor of experiencing AKI and is a vital predictor of HIV 
related morbidity and mortality[69]. Furthermore, co-viral-
infections have been shown to increase the incidence of 
AKI. Hepatitis C virus co-infection occurs in 15%-30% of 
HIV-infected patients in the United States, where 30% of 
AKI events are a result of underlying liver damage[69]. 

Although no reliable data exists on the incidence 
and causes of AKI especially amongst HIV+ patients, 
South Africa, where 5.6 million of the 34 million people 
infected with HIV reside[67], faces problems of herbal 
intoxication, sepsis due to opportunistic infections, or 
severe gastroenteritis with dehydration[68,70]. AKI has 
been shown to be a critical cause of mortality particularly 
amongst indigenous black communities where herbal 
remedies are prescribed by traditional healers as curative 
measures for problems such as AIDS-related abdominal 
pain, diarrhea or to eliminate HIV from the system[70-72]. 
One of the most common nephrotoxic plants is the 
Impila (Callilepis laureola), found in regions of South 
Africa, Democratic Republic of Congo, Zimbabwe, and 
Zambia[73,74]. Nephrotoxicity from herbal remedies can 
arise from direct causes such as renal injury due to 
acute tubular necrosis and acute interstitial nephritis 
or indirectly as a result of intravascular hemolysis and 
dehydration due to diarrhea[68]. Therefore, HIV plays a 
major role in AKI from direct infection processes and 
treatment regimens. 

CONCLUSION
AKI is an important clinical event that manifests in 
critically ill patients. AKI is associated with a multitude 
of risk factors that disrupt the homeostatic processes of 
the kidneys. Its complexity stems from pre-existing co-
morbidities of patients that vary in severity, thereby making 
an overarching systematic treatment and management 
protocol difficult to deliver to patients suffering from AKI. 
A great deal of light has been shed upon the mechanistic 
basis by which AKI develops and progresses with the 
assessment of risk factors, however research efforts and 
emphasis should be placed on developing treatment 
interventions that can reverse or attenuate renal injury. 
To do this, therapeutic strategies need to be devised on a 
case-by-case basis where the identification of important 
co-morbid diseases such as DM, cancer, cardiac surgery 
and HIV takes place. 
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