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Abstract Atrial fibrillation (AF) is an extremely common clinical problem associated with increased morbidity and mortality. Cur-
rent antiarrhythmic options include pharmacological, ablation, and surgical therapies, and have significantly improved clin-
ical outcomes. However, their efficacy remains suboptimal, and their use is limited by a variety of potentially serious
adverse effects. There is a clear need for improved therapeutic options. Several decades of research have substantially
expanded our understanding of the basic mechanisms of AF. Ectopic firing and re-entrant activity have been identified
as the predominant mechanisms for arrhythmia initiation and maintenance. However, it has become clear that the clinical
factors predisposing to AF and the cellular and molecular mechanisms involved are extremely complex. Moreover, all
AF-promoting and maintaining mechanisms are dynamically regulated and subject to remodelling caused by both AF
and cardiovascular disease. Accordingly, the initial presentation and clinical progression of AF patients are enormously het-
erogeneous. An understanding of arrhythmia mechanisms is widely assumed to be the basis of therapeutic innovation, but
while this assumption seems self-evident, we are not aware of any papers that have critically examined the practical con-
tributions of basic research into AF mechanisms to arrhythmia management. Here, we review recent insights into the basic
mechanisms of AF, critically analyse the role of basic research insights in the development of presently used anti-AF thera-
peutic options and assess the potential value of contemporary experimental discoveries for future therapeutic innovation.
Finally, we highlight some of the important challenges to the translation of basic science findings to clinical application.
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This article is part of the Spotlight Issue on Atrial Fibrillation.

1. Introduction
Atrial fibrillation (AF) has received widespread attention from both clin-
icians and scientists for over a century.1,2 AF is the commonest arrhyth-
mia in clinical practice, with an incidence that is rising, and significantly
affects morbidity and mortality.3 Current therapeutic options have lim-
ited efficacy and substantial adverse effects,4,5 and there is a clear need
for further therapeutic innovation. Basic research into AF pathophysi-
ology has been extensive over the past 100 years;1,2 one of the major
underlying assumptions has been that improved insights into fundamental

arrhythmic and antiarrhythmic mechanisms will help to improve AF man-
agement.1,4,5 While this assumption seems self-evident, we are not aware
of any papers that have specifically and critically examined the practical
contributions of basic research in AF to its management. Here, we pro-
vide a brief conceptual overview of predominant AF mechanisms and de-
scribe recent insights, evaluate the role of basic research knowledge in
the development of current AF therapy, assess the potential value of re-
cently obtained information in developing new treatment approaches,
and consider the challenges in translating basic mechanisms to therapeut-
ic innovation.
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2. Conceptual framework and basic
mechanisms underlying AF

2.1 Conceptual framework
All forms of AF arise from interactions between genetic predisposition,
advancing age, environmental factors, and cardiovascular/non-
cardiovascular diseases,3,6 which disturb normal atrial electrophysi-
ology, promoting focal ectopic activity and re-entry, the fundamental
arrhythmogenic mechanisms underlying AF initiation and maintenance
(Figure 1). Of note, these components are also strongly modulated by
AF itself. AF is classified into paroxysmal (pAF, converting spontan-
eously within 7 days to sinus rhythm), persistent (persAF, .7 days),
long-standing persistent (.6 months, abbreviated as ‘chronic’ AF;
cAF), and permanent forms, for which no further attempts are made
to restore sinus rhythm.7 The interactions between AF-related remod-
elling, progression of co-morbidities, and dynamic environmental fac-
tors contribute to AF progression to more advanced forms.

2.2 Basic mechanisms of atrial electrical
activity and arrhythmogenesis
2.2.1 Atrial action potential and calcium handling
The main properties of atrial cellular electrophysiology and Ca2+ hand-
ling under physiological conditions, including differences between atrial
and ventricular cardiomyocytes, have been discussed in detail else-
where.6,8 In brief, the Na+ current (INa) is responsible for the action po-
tential (AP) upstroke. Repolarization is controlled by the balance

between numerous ion-currents, each with their specific kinetic charac-
teristics and regulation, enabling precise control over AP morphology
and duration (APD; Figure 2A). These include L-type Ca2+ current
(ICa,L), responsible for initiating Ca2+ release from the sarcoplasmic
reticulum (SR) through type-2 ryanodine receptor (RyR2) channels,
producing the systolic Ca2+ transient and activating excitation–
contraction coupling, as well as a wide range of K+ channels. The K+

channels mediate inward-rectifier K+ currents that are activated
under basal conditions (IK1) or in response to vagal stimulation
(acetylcholine-activated IK,ACh), and multiple delayed rectifier K+

currents distinguished by their kinetics (e.g. slow IKs, rapid IKr, and ultra-
rapid IKur). Each type of K+ channel is encoded by a distinct pore-
forming alpha-subunit and contains various accessory and regulatory
subunits, allowing control through numerous signalling pathways.9 Re-
cent work has identified additional ion channels that can influence atrial
electrophysiology and arrhythmogenesis, including two-pore-domain
K+ (K2P) channels,10 Kv1.1-channels,11 SK channels,12 and transient-
receptor potential (TRP) channels,13 which present novel potential
therapeutic targets (Figure 2A). Haemodynamic factors that induce at-
rial stretch affect a variety of stretch-sensitive channels that can modu-
late APD and various forms of spontaneous activity.14

SR Ca2+ release via RyR2 channels is strongly modulated by their
subcellular environment. Atrial cardiomyocytes have a less well-
developed T-tubular structure than ventricular cardiomyocytes, pro-
ducing a centripetal Ca2+ wave from the sarcolemma to the cell centre
during SR Ca2+ release. Ca2+ homeostasis is maintained through re-
uptake into the SR by the SR Ca2+-ATPase (SERCA2a) and extrusion

Figure 1 Conceptual overview of the major components of AF pathophysiology. AF is a progressive disease (black box) with important clinical con-
sequences (red box). AF is initiated and maintained by two major arrhythmogenic mechanisms (green box) that are modulated by numerous mediators
(teal box). Several risk factors and co-morbidities (orange box) as well as AF itself promote AF development and progression by acting upon these med-
iators. A number of therapeutic strategies (purple boxes) have been developed to treat AF and/or its clinical consequences. HF, heart failure; LAA,
left-atrial appendage; NSTEMI, non-ST segment elevation myocardial infarction; PV, pulmonary vein.
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via the type-1 Na+/Ca2+-exchanger (NCX1). SERCA2a is inhibited by
dephosphorylated phospholamban and sarcolipin, the latter being atrial-
specific, and their phosphorylation disinhibits SERCA2a, allowing for the
regulation of SR Ca2+ uptake under the control of various kinases and
phosphatases. Na+ homeostasis is maintained through Na+-K+-ATPase
and is closely coupled to atrial Ca2+ handling through NCX1.15 Different
AF forms have been associated with distinct remodelling patterns, pro-
ducing altered APs and Ca2+ handling (Figure 2A) that predispose to AF
initiation and maintenance through triggered activity and/or re-entry.

2.2.2 Triggered activity
Triggered activity can result from early- or delayed after-depolarizations
(EADs and DADs, respectively). EADs occur with prolonged repolar-
ization, allowing L-type Ca2+ channels to recover from voltage/Ca2+-
dependent inactivation and produce secondary depolarizations before
full AP-repolarization. DADs result from spontaneous diastolic SR
Ca2+ release events (SCaEs) that activate NCX, producing a de-
polarizing transient-inward current. If membrane depolarization is
sufficiently large to reach threshold, a triggered AP ensues, which can
produce focal ectopic firing. These ectopic foci can trigger AF-
maintaining re-entry in a vulnerable substrate or, if they fire repetitively,
act as AF-maintaining drivers.

2.2.3 Re-entry
Re-entry can occur around a fixed anatomical obstacle when the bal-
ance between conduction velocity (CV) and effective refractory period

(ERP) allows atrial tissue to become re-excitable before the re-entrant
impulse arrives.16 Re-entry can also occur with a purely functional sub-
strate, conceptually described by leading-circle and spiral-wave theor-
ies (Figure 3).16,17 In leading-circle re-entry, activity occurs around a
refractory core in a circuit with a size at least equal to the wavelength
(CV × ERP, Figure 3A). Spiral-wave re-entry depends on wave curva-
ture and sink-to-source relationships between the wavefront’s excita-
tory current and the current drawn off to excite neighbouring tissue
(Figure 3B).16,17

2.3 Factors promoting atrial
arrhythmogenesis
2.3.1 Ca21-handling abnormalities
Increased SR Ca2+ leak with enhanced SCaE incidence has been ob-
served in both pAF and cAF, albeit with distinct underlying molecular
mechanisms (Figure 2B, left).6,18,19 In cAF, SCaEs are primarily due to
RyR2 hyperphosphorylation caused by increased Ca2+/calmodulin-
dependent protein kinase-II (CaMKII) activity.18 In contrast, in pAF,
CaMKII activity is unchanged and SCaEs are due to phosphorylation-
independent RyR2 dysregulation and increased SR Ca2+ load resulting
from increased SERCA2a activity (Figure 2B, left).19 RyR2 dysregulation
in pAF involves both increased channel open probability and increased
protein expression levels, likely due to a reduction in the inhibitory
microRNA-106b-25 cluster.20 Although Ca2+-handling abnormalities/
DADs occur in atrial cardiomyocytes from cAF patients,18,19 atrial after

Figure 2 Atrial electrophysiology and basic arrhythmogenic mechanisms. (A) Representative atrial action potentials (APs) and Ca2+ transients from
sinus rhythm (Ctl), paroxysmal AF (pAF) and long-standing persistent (chronic) AF (cAF) patients (left), and schematic overview of the major atrial ion
channels and Ca2+-handling proteins (right). (B) Electrophysiological mechanisms of AF-promoting triggered activity (left part) and re-entry (right part).
Blue and red symbols in boxes indicate changes in AF-promoting factors observed in pAF (blue, left side) and cAF (red, right side) patients. APD, action-
potential duration; DAD, delayed after-depolarization; ERP, effective refractory period; SR, sarcoplasmic reticulum. See text for further abbreviations.
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contractions are reduced in atrial trabeculae from AF patients,21 and
there is recent evidence that rapid atrial rates may cause Ca2+ silen-
cing.22 More work is clearly needed to clarify the role of abnormal
Ca2+ handling in the generation of atrial ectopic activity and the initi-
ation/maintenance of AF in specific patient populations.

Atrial Ca2+-handling abnormalities associated with catecholaminer-
gic polymorphic ventricular tachycardia (CPVT) reduce atrial CV by
inhibiting INa.

23 Computational modelling has also shown that subthres-
hold DADs can cause local conduction slowing and/or block by redu-
cing INa.

24 Finally, Ca2+-dependent signalling can contribute to atrial
electrical and structural remodelling (discussed below). Thus, in add-
ition to focal ectopy, Ca2+-handling abnormalities can contribute to
the re-entry-promoting substrate facilitating AF maintenance.

2.3.2 Electrical remodelling
Re-entry-promoting shortening of APD seen with cAF (Figure 2B, right)
is due to reduced ICa,L and increased repolarizing currents, particularly
IK1 and agonist-independent ‘constitutive’ IK,ACh, all of which are in part
Ca2+ regulated.4,6 Increased inward-rectifier K+ currents also produce
resting membrane potential hyperpolarization that enhances excitability
and stabilizes spiral-wave re-entry.25 Up-regulation of other K+ currents
like two-pore K+ currents10 may contribute to APD shortening. Quali-
tatively similar atrial electrical remodelling occurs in animal models.26

In contrast, APD of pAF patients is unchanged (Figure 2B, right),10,19 sug-
gesting that APD shortening is a consequence of AF. Finally, electrical
remodelling can change the expression, function, or localization of
connexins, altering cell-to-cell electrical coupling and resulting in
re-entry-promoting slow and/or heterogeneous conduction.27

2.3.3 Atrial structural remodelling
Atrial structural remodelling is a major re-entry-promoting factor.1,3

Atrial fibrosis produces heterogeneous pathways of slow conduction
and atrial dilatation provides larger pathways that more readily sustain
(multiple) re-entrant circuits.28 Many co-morbidities and risk factors
for AF cause atrial structural remodelling.3 Furthermore, AF can pro-
mote atrial fibrosis, contributing to AF progression.28,29 Fibrosis is
caused by activation of cardiac (myo)fibroblasts in response to a
wide range of growth factors, cytokines, hormones, and stress sig-
nals.28,29 The atria are more susceptible than ventricles to develop
fibrosis.30 Recent work suggests that structural remodelling might
be Ca2+ dependent. Genetic ablation of RyR2 hyperphosphorylation
reduces SR Ca2+ leak, suppresses atrial dilatation, forestalls atrial
conduction abnormalities, and prevents AF progression in mice with
cardiac-restricted overexpression of a repressor form of cAMP-
response element modulator,31 whereas increased fibroblast Ca2+

entry through TRP canonical-3 channels promotes fibroblast prolifer-
ation and AF-promoting remodelling.32 Atrial dilation is closely related
to AF risk, and atrial stretch is known to promote AF.33

2.3.4 Autonomic imbalance
Increased activity of both sympathetic and parasympathetic compo-
nents of the autonomic nervous system (ANS) can promote AF.34

Vagal stimulation activates G-protein-coupled muscarinic receptors,
causing Gbg-subunit-mediated activation of IK,ACh, reduced atrial
ERP, and enhanced re-entrant activity/AF maintenance. The effects of
acetylcholine are strongly localized via efficient degradation by acetyl-
cholinesterases, causing heterogeneous effects on repolarization that

Figure 3 Leading-circle (A) and spiral-wave (B) models of re-entry. (A) Maintenance of the leading circle depends on there being a zone of tissue large
enough to accommodate a re-entry circuit of the dimension (wavelength) travelled by the cardiac impulse in one effective refractory period (ERP), given
by the product of conduction velocity (CV) and ERP. Importantly, drugs (like Class I antiarrhythmics) that reduce CV should favour leading-circle re-entry
by reducing the wavelength. (B) Maintenance of spiral-wave re-entry depends on current source/tissue excitability (favouring propagation) and current
sink (impairing propagation). In this paradigm, Class I agents destabilize spiral-wave sources by reducing current source/excitability.
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contribute to arrhythmogenesis.34 Sympathetic stimulation engages
numerous signalling pathways through G-protein-coupled receptors,
activating PKA and downstream CaMKII, producing phosphorylation
of many ion channels and Ca2+-handling proteins, including phospho-
lamban, RyR2, and L-type Ca2+ channels.34 The resulting increase in
cardiomyocyte Ca2+ cycling mediates the positive inotropic effects
of sympathetic stimulation but may also promote SCaEs, DADs, and
triggered activity. Simultaneous sympathovagal activity commonly pre-
cedes atrial arrhythmias.34 Combined sympathetic/parasympathetic
stimulation causes IK,ACh-mediated APD shortening along with large
Ca2+ transients, creating a substrate for late Phase 3 EADs.32 Finally,
chronic sympathetic hyperactivity can promote AF maintenance via
CaMKII and calcineurin-mediated structural remodelling.34

3. What has basic research
contributed to present
state-of-the-art AF therapy?

3.1 Pharmacological therapy
Because of the large size of the AF population, pharmacological ap-
proaches will likely remain important for AF therapy. Class I and Class
III antiarrhythmic drugs like flecainide, sotalol, and amiodarone are cur-
rently the most commonly used options for pharmacological rhythm
control. Basic and clinical sciences have grown together over the past
three decades and have interacted frequently. Initially, the role of basic
science was primarily to understand the mechanisms underlying thera-
peutic efficacy and toxicity of empirically developed antiarrhythmic
drugs. As our understanding of fundamental pharmacological and
physiological processes developed, basic science contributed increas-
ingly to the discovery of new therapeutic targets, approaches, and
agents.

3.1.1 Class I antiarrhythmic drugs
Class I antiarrhythmic agents have been used to treat AF since the early
1920s.35 Class Ic agents were developed in the course of a concerted
search for potent suppressors of ectopic activity, with the assumption
that sudden cardiac death results from critically timed premature
ventricular extrasystoles falling on the vulnerable phase of the cardiac
cycle.36–38 AF-suppressing activity of Class Ic agents was subsequently
noted in clinical39 and experimental40 models, and Class Ic agents are
now widely used to treat AF.

Basic research led to the development of Class Ic agents; however,
the clinical observation that they are effective in AF challenged the
then-prevailing theory of re-entry (the leading-circle hypothesis,
Figure 3A), according to which drugs that slow conduction should de-
crease the wavelength and thereby promote AF rather than suppress
it.41 This apparent paradox led to extensive theoretical analysis and
basic research, which ultimately provided a satisfactory explanation
for Class I drug efficacy in AF based on the spiral-wave concept
(Figure 3B).16,42 The extensive development of Class I antiarrhythmic
drugs in the 1980s also led to improved understanding of the funda-
mental biophysical determinants of state-dependent Na+-channel-
blocking action.43,44 These advances led to the subsequent systematic
development of novel Na+-channel blockers to treat AF; like vernaka-
lant, a highly effective drug for rapid termination of recent-onset AF.45–47

The main limitation to the wider development and the use of Class I
agents for AF is the risk of pro-arrhythmic and other side effects of

ventricular Na+-channel blockade. A potentially promising approach
to minimizing this risk is the development of AF-selective agents,48 dis-
cussed further below.

3.1.2 Class III antiarrhythmic drugs
APD prolongation as a distinct mechanism of antiarrhythmic efficacy
was identified in basic studies with sotalol and labelled Class III action
by Singh and Vaughan Williams in 1970.49 Sotalol was first shown to
suppress AF recurrences by Prakash et al.50 The benefit of Class III ac-
tion in AF fits with the suppressant effect of APD prolongation in both
leading-circle and spiral-wave paradigms.16 The Class III principle was
rapidly identified as central to the antiarrhythmic effects of amiodar-
one51 and applied to develop new antiarrhythmic agents like ibutilide
by molecular design based on the structures of sotalol and clofilium.52

The main limitation to the use of Class III drugs in AF is the risk of Tor-
sades de Pointes due to excess ventricular APD prolongation.53 One
way to preserve effective Class III action in AF, while minimizing ven-
tricular pro-arrhythmic liability is to develop agents with atrial/AF-
selective actions,54 as discussed further below.

3.1.3 Multiple ion-channel blockers
Amiodarone was initially considered a Class III antiarrhythmic drug
and was noted to be remarkably effective against a wide range of ar-
rhythmias, including AF.55 It was subsequently found to have clinically
relevant state-dependent blocking properties on both Na+ and Ca2+

channels56,57 and recognized to have actions of all antiarrhythmic
classes.58 Amiodarone has about twice the anti-AF efficacy of Class
Ic and Class III agents.59 Its unique effectiveness and low pro-arrhythmic
potential have been attributed to its broad spectrum of ion-channel-
blocking action. However, amiodarone is plagued by a host of extra-
cardiac adverse effects with long-term therapy, which limit its clinical
applicability.

The pharmaceutical industry therefore searched for compounds that
would retain amiodarone’s advantages without its liabilities. One ap-
proach was to apply molecular engineering to the amiodarone mol-
ecule. A prominent result of this effort was dronedarone,60 with
structural similarities to amiodarone but lacking its iodine moieties
(eliminating troublesome thyroid toxicity) and possessing an added
methanesulphonyl group (reducing lipophilicity, creating more tract-
able pharmacokinetics). Dronedarone showed surprising benefits
against cardiovascular events in the ATHENA trial.61 However, the
drug also proved to enhance mortality in some patient populations,
particularly those with structural heart disease and significant left ven-
tricular dysfunction.62– 64

An alternative, and perhaps superior approach, lies in the identifica-
tion of specific combinations of ion-channel blockade needed to opti-
mize antiarrhythmic drug efficacy and safety and then producing them
with modern biopharmaceutical technology.65 The main challenge to
this approach has been the accurate pinpointing of the requisite
channel-blocking profile.

3.1.4 Substrate-targeting/upstream therapy
The concept of ‘atrial remodelling’ arose from basic research in animal
models.28 The prevention of AF-promoting remodelling is a potentially
interesting therapeutic approach that was initially proposed based on
experimental observations66 and has the advantage of targeting
the arrhythmic substrate rather than the final electrical end product.
The notion of directing antiarrhythmic therapy to underlying cardio-
vascular disease processes was first suggested 25 years ago67 and
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termed ‘upstream therapy’ by the Sicilian Gambit group 8 years later.68

While there is extensive experimental evidence for the prevention of
AF by upstream therapy with such agents as statins, renin-angiotensin-
aldosterone system (RAAS) inhibitors and anti-inflammatory agents,
solid clinical confirmation has been much harder to obtain.69,70 Part
of the reason may be the slow development of atrial remodelling and
its limited reversibility once established. The only upstream therapy
presently conditionally recommended by European Society of Cardi-
ology guidelines is addition of a RAAS-antagonist after cardioversion.
However, basic studies have provided insights into the mechanisms
by which conditions like obesity71 and obstructive sleep apnoea72 pro-
mote AF. Encouraging data have been presented for the clinical target-
ing of these AF risk factors,73,74 indicating that basic research may help
to identify targets for effective AF prevention interventions.75

3.2 Non-pharmacological therapies
The development of surgical/ablation approaches to AF management
has been an iterative process between basic and clinical research,
with key discoveries in either sphere leading to extensive progress in
the other (Figure 4).76 The first, and arguably most successful, non-
pharmacological procedure for AF was the maze operation,77 based
on the classical multiple-circuit/multiple-wavelet basic mechanism ini-
tially described by Walter Garrey and later refined by Gordon Moe.1

With the widespread, largely successful application of ablation to other

arrhythmias, the first attempts at rhythm control for AF patients by ab-
lation mimicked the surgical maze.76 These efforts were largely unsuc-
cessful because of inability to create transmural linear atrial lesion sets
and complications of left-atrial thrombogenesis.

A paradigm shift in AF ablation came from the purely clinical obser-
vation of the important role of pulmonary vein (PV) cardiomyocyte
sleeves by Haissaguerre and colleagues.78 Subsequent basic research
provided insight into the complex mechanisms underlying the partici-
pation of the PVs, which are particularly important in pAF.79 Clinical
observations indicated that recurrences of pAF are generally due to re-
sumption of conduction from PV to left atrium, and that purinergic ago-
nists can identify ‘dormant’ PVs at risk of reconnection.80 Experimental
work identified the mechanisms underlying dormant conduction,81 and
a subsequent multicentre clinical trial confirmed the ability of
adenosine-guided PV ablation to reduce pAF recurrence rates.82

The next major challenge has been the successful ablation of persAF,
which has proved more challenging than pAF.76 Empirical clinical meth-
ods like the targeting of complex fractionated atrial electrograms and
the stepped application of additional linear lesions have not proved ter-
ribly successful, and a recent controlled trial suggests that they may
even be of less value for persAF than PV isolation alone.83 Recent basic
research developments may help to improve the success of persAF ab-
lation. The potential role of spiral-wave rotors in arrhythmia was first
described in the Russian literature in the mid-1960s,84 and the concept

Figure 4 Development of non-pharmacological AF therapies based on basic clinical research interaction. (A) Development of surgical maze procedure
based on basic theory and observation. (B) Clinical recognition of role of pulmonary veins (PVs) led to experimental definition of mechanisms. (C) Ex-
perimental studies of role of cardiac ganglionated plexuses in AF led to clinical approaches. (D) Experimental and theoretical work on rotors and mapping
led to improved methods for persistent AF ablation.
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applied to AF by the Jalife lab.85 Subsequent developments in non-linear
dynamic theory and intracavitary basket electrode technology led to
proprietary software for the mapping and ablation of AF drivers, includ-
ing both stationary rotors and focal sources (‘Focal Impulse and Rotor
Modulation’ or FIRM). Initial work by Narayan et al.86 has suggested that
this approach may greatly improve the success of persAF ablation.
Another important advance has been the development of non-invasive
electrocardiographic imaging by body surface-potential recording and
computational inverse solution, which can identify AF sources.87 This
method has been used to localize driver regions and guide persAF-
ablation.88 Rotors were also evident in the latter work, but were
much more evanescent than seen with FIRM and not amenable to dir-
ect targeting. Other recent studies have emphasized the importance of
transmural transmission in multiplying the number of active waves89

and/or re-entry circuits in persAF,90 particularly the long-standing
variety; thus, the precise mechanisms maintaining persAF remain
controversial. Notwithstanding the controversies, the evolving con-
cepts and methodologies emerging from this basic work promise to
lead to more successful approaches to persAF ablation and are
presently being evaluated in various clinical trials (ClinicalTrials.gov
numbers NCT02101541, NCT02274857, NCT01924377, NCT02386345,
NCT02497248, NCT02113761).

A final potential application of basic research to improve AF ablation
has been increasing awareness of the role of the cardiac ANS.34 En-
hancement of vagal and/or sympathetic tone can promote AF,34 and re-
modelling of atrial autonomic innervation occurs with AF-promoting
pathology or AF itself.91 The location of autonomic ganglia near the
PV ostia makes their modulation a potential contributor to the effect-
iveness of PV ablation.92 Ablation targeting atrial ganglionated plexuses
has shown promise in improving the success of PV isolation proce-
dures.93 Creative new approaches to non-invasive modulation of auto-
nomic tone are being developed to manage AF.34

4. Mechanism-based therapeutic
innovation
The information presented above clearly indicates that basic research
has played a major role in developing present state-of-the-art therapy
for AF. It is reasonable to wonder whether the extensive basic science
advances over the past 10–20 years will lead to practical new develop-
ments in AF management.

4.1 Pharmacological therapies
4.1.1 Novel ion-channel targets
In addition to the ‘classical’ targets for both cardioversion and rhythm
control of AF (INa, IKr, and ICa,L), a range of novel potential targets have
been identified through fundamental research into basic AF mechan-
isms (Figure 5A). There is particular interest in K+ channels with atrial-
predominant expression such as IKur and constitutive IK,ACh to avoid
ventricular pro-arrhythmic side effects.94 SK channels represent an-
other novel K+ channel target with relative atrial predominance, albeit
with a still incompletely understood role in cardiac electrophysi-
ology.12,94 Since K2P channels show atrial-predominant expression,10

they might similarly provide specific anti-AF effects. In contrast to
IKur, K2P current is up-regulated in cAF,10 potentially enhancing anti-AF
efficacy of K2P-channel inhibition, although no in vivo data are available.
Stretch-related channels are also a potential target,95 although their

ubiquity and complex nature present a challenge to therapeutic
targeting.

Very limited data are available from human studies on these develop-
ing targets. The only IKur inhibitor tested in man was MK-0448, which
did not prolong atrial ERPs in healthy volunteers.96 However, it has
been known for over 15 years that IKur block is likely to prolong
APD only in remodelled tissue and at rapid rates,97 so these negative
data are not surprising and do not exclude benefit from IKur inhibition.
Studies need to be performed looking for AF prevention or termination,
and/or ERP effects at rapid atrial rates or in tachycardia-remodelled atria.
Similar considerations apply to IK,ACh blockade. Constitutive IK,ACh is neg-
ligible in normal human atrium, but becomes significant with AF-related
remodelling.98 Recent work showed that IK,ACh blockers did not affect
atrial-ERP in atrial-flutter patients who had been in sinus rhythm for
.3 months.91 Given the rapid reversal of electrical remodelling (within
48 h of tachycardia termination), the lack of effect is not surprising and
does not exclude possible value of IK,ACh blockade.

4.1.2 Ca21-handling targets
Ca2+-handling abnormalities have been proposed as promising antiar-
rhythmic targets.15,94 SCaEs and their arrhythmogenic consequences
could be targeted through RyR2-stabilizing drugs or NCX inhibitors.
For both targets, several experimental compounds have shown prom-
ise in vitro or in animal models, but successful clinical application still
awaits (Figure 5A). The differences in molecular mechanisms underlying
SCaEs between pAF and cAF suggest the need for AF-type-tailored
therapy. For example, cardiac CaMKII inhibition might be a useful strat-
egy for cAF patients, but appears less suitable for pAF.15,18,19 Carvedilol
and several derivatives suppress arrhythmogenic Ca2+ release.99 The
only clinical data available are from a small but well-designed trial in
post-operative AF, in which triggered activity is believed to play a prom-
inent role and did not show superiority of carvedilol over a comparator
b-blocker metoprolol.100 Modulation of SERCA2a activity might be
used to limit SR Ca2+ overload in pAF patients.15

The persistent RyR2 Ca2+ leak in AF patients might also initiate
Ca2+-dependent pathways contributing to the remodelling processes
that promote AF progression (Figure 5B).31 The Ca2+-dependent pro-
tease calpain is activated in AF patients and likely contributes to the ICa,L

reduction and PKCa-dysregulation/constitutive IK,ACh activation that
underlie AF-related APD shortening.101 Thus, calpain inhibitors might
help to reduce AF-related electrical remodelling. Activation of NFAT
signalling down-regulates the IK1-inhibitory microRNA-26, contributing
to AF stabilization due to increased IK1,

102 and inhibition of the Ca2+-
dependent calcineurin/NFAT-system is another option to target
pro-arrhythmic Ca2+-dependent remodelling. A number of micro-
RNAs (miRs) have been shown to play a role in experimental AF. A de-
tailed discussion is outside the scope of the present paper—the
interested reader is referred to a recent detailed review.103

4.1.3 Atrial metabolism
AF activates the atria very rapidly, enhancing their metabolic demands
and increasing atrial oxygen extraction and lactate production.104 Me-
tabolomic studies point to disruption of atrial metabolic chains in AF
and AF-predisposing pathologies.105,106 Metabolic dysfunction might
thus contribute to AF promotion and be a therapeutic target. AMP-
dependent protein kinase (AMPK) is a metabolic stress sensor/adaptor
activated by AF or AF-like pacing paradigms.107,108 AMPK activation
limits the electrophysiological/contractile dysfunction caused by meta-
bolic dysfunction and might prevent AF progression.107 On the other
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hand, AMPK activation can also increase cardiomyocyte lipid uptake
and decrease glucose uptake.108,109 AMPK suppression via upstream-
kinase knockout causes spontaneous AF in mice.110 Metformin is an
AMPK activator,111 so it should be possible to test the effects of
AMPK activation on AF in both animal and clinical models. Epidemio-
logical data suggest that metformin therapy might indeed reduce AF
risk.112

4.1.4 Autonomic-tone manipulation
A variety of approaches are being developed to modulate the ANS,
given its important role in determining AF occurrence.34 Paradoxically,
low-level vagal stimulation suppresses autonomic outflow and AF

occurrence in dogs.113 A non-invasive approach using transcutaneous
nerve stimulation on the tragus to modulate cardiac neural tone re-
duced AF-duration, increased AF cycle length, and suppressed inflam-
matory cytokines in anaesthetized patients.114 A controlled trial
(NCT02548754) is testing the value of transcutaneous electrical vagus
nerve stimulation in pAF patients.

4.1.5 Multiple ion-channel targets
Based on experience with amiodarone, drugs blocking multiple ion
channels might have superior efficacy and/or safety profiles. While
combination drug therapy for AF was first reported with hydroquini-
dine/reserpine in 1966115 and the first channel-blocking drug

Figure 5 Schematic overview of pharmacological anti-AF therapies and their targets. (A) Antiarrhythmic drugs targeting ion channels/transporters
involved in atrial repolarization and Ca2+ handling. (B) Compounds targeting Ca2+-dependent signalling pathways involved in electrical remodelling, in-
cluding Ca2+/calmodulin-dependent protein kinase-II (CaMKII) and calcineurin-A (CnA)-mediated signalling cascades, as well as calpain-dependent pro-
tein degradation. Clinically approved antiarrhythmic drugs are shown in green, compounds evaluated in clinical trials are shown in orange, with
abandoned compounds indicated with †. Experimental compounds with anti-AF properties in animal studies in vivo or human atrial samples in vitro
are shown in blue and purple, respectively, whereas compounds with anti-arrhythmic properties in animal samples are shown in grey.
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combination therapy for AF was reported in 1978,116 very little basic
research has been done to define a rational basis for multichannel
blocker-based AF therapy. Following up on experimental results,117

the HARMONY trial tested the value of combining reduced doses of
the rapidly unblocking INa inhibitor ranolazine and the amiodarone-
derivative dronedarone in AF. The results showed combination therapy
to be synergistically effective and well tolerated.118 Recent in silico work
indicates that Na+-channel-blocking properties for AF-selective action
can be optimized for AF selectivity,119 and that AF selectivity can be im-
proved by adding K+-channel blockade.120

5. Challenges for the translation
of basic mechanisms to therapeutic
innovation

5.1 Limitations of models
Each experimental AF model has advantages and drawbacks, as well as
relevance to specific aspects of clinical AF, which have to be considered
in translating basic research observations.26 Each type of basic research
study (e.g. in vitro, ex vivo, in vivo, in silico) has its own limitations (Figure 6).
Animal models allow control over co-morbidities and experimen-
tal conditions, both in vivo and during subsequent tissue and/or
cell isolation, enabling detailed multi-scale investigation of specific

AF-promoting mechanisms.26 Genetic manipulation allows the assess-
ment of the roles of specific molecular species/proteins. Because of
ethical considerations regarding patient studies, animal models re-
present a natural starting point for the evaluation of novel pharmaco-
logical and technological interventions. However, animal models have
several drawbacks. The time course of substrate development and
AF progression is much shorter than in patients and generally mono-
factorial. Spontaneous AF initiation is rare: AF initiation by programmed
electrical stimulation is usually needed to assess the AF substrate.6,26

Another gap is the paucity of animal models of pAF, with the limited
information about pAF mechanisms available to date mainly based on
experiments using tissue from pAF patients.19 Human tissue samples
capture the full complexity of the pathophysiological mechanisms
underlying AF in humans, but are limited by issues of tissue procure-
ment, limited intraoperative access to sites other than the right-atrial
appendage, and intrinsic clinical variability (age, co-morbidities, heart
disease, drug therapy, etc.). Common applications of human samples in-
clude the validation of mechanisms identified in animal models, and the
comparison of specific ion channels or proteins between patients with
vs. without AF (or AF-promoting disease) to identify potential thera-
peutic targets. An evolving technology that may prove useful for pre-
clinical investigations relevant to the study of human AF mechanisms
and intervention involves the use of induced pluripotential stem-cell
(iPSC) technology.121 In addition to generating APs with human ion-
current composition for cellular studies, iPSCs can be engineered to

Figure 6 Elements involved in the translation from novel potential antiarrhythmic targets to clinical application. Several types of basic research studies
(in vitro, ex vivo, in vivo) play critical roles in target identification and optimization, but each individually have several limitations/challenges (purple boxes),
resulting in a significant translational gap before clinical application. Both clinical trials and patient therapy present additional challenges and are compli-
cated by regulatory requirements. New/improved methodologies including in silico research, genetic/biomarker-based patient stratification and improved
imaging may help to overcome some of these challenges, but also require further development. RAA, right atrial appendage.
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produce tissue-like cellular arrays with coupling and conduction
properties that are a step closer to in situ human heart conditions.122

However, electrophysiological and Ca2+-handling properties of iPSC-
derived cardiomyocytes do not yet fully recapitulate those of the adult
atrial cardiomyocyte. Computational modelling can integrate experi-
mental findings from animal models and/or human studies into a con-
ceptual framework. Computer models allow perfect control over
parameters and complete observability, making them particularly suit-
able to investigate the relative contribution of specific molecular altera-
tions to the overall cellular phenotype.123 However, computer models
are limited by the experimental data on which they are based, do not
capture inter-subject or cell-to-cell differences, and cannot simulate
long-term remodelling processes or detailed macromolecular
changes.123 Furthermore, the incorporation of detailed (sub)cellular
models of the atrial cardiomyocyte in multi-cellular simulations of vir-
tual tissue remains technically challenging. Careful use of a combination
of AF models is thus needed to define basic mechanisms amenable to
clinical translation.

5.2 Clinical considerations
Selection of the appropriate clinical model is crucial. The complexity
of the AF population is a challenge, and the different forms/subtypes
of AF need to be respected. It is likely a waste of time and money
(and also potentially misleading) to test drugs expected to suppress
re-entry, but not automaticity (like K+-channel blockers), in patients
with frequent pAF episodes likely to be due to abnormal/triggered
automaticity.79 On the other hand, such patients might be ideal to
assess drugs suppressing SCaEs/triggered activity. Drugs designed
to prevent atrial remodelling need to be used in a population at
high risk of such remodelling, before remodelling is advanced and ir-
reversible. Issues of appropriate dosing and population variability
need to be considered. For example, women have more compli-
cations and less benefit from AF therapy, and a higher AF-related
morbidity and mortality,124 indicating gender-specific mechanisms
that need consideration.

The rapid development of medical genetics and imaging methods of-
fer new opportunities. With time, improved genetic tools may refine
identification of the correct target population and determination/ad-
justment of drug doses. Genetic variants at the 4q25 locus have been
associated with improved symptom control with antiarrhythmic drugs,
longer recurrence-free survival after AF ablation, and lower AF recur-
rence rates after electrical cardioversion.125,126 Moreover, individuals
carrying certain 4q25 variants may respond better to Class I than to
Class III antiarrhythmic drugs,125 highlighting opportunities for tailored
therapy,126 which is currently under evaluation in a randomized,
genotype-directed sequential cross-over study with flecainide and so-
talol.126 However, the pathophysiological mechanisms modulated by
these variants remain largely unknown and the results have not always
been reproducible. For instance, genetic variants did not predict AF ab-
lation success in an Asian population.127 Other parameters, based on
imaging, ECG complexity, etc., have also been suggested.128 Finally, ad-
vances in the monitoring of AF (e.g. using implantable loop recorders)
may help to perform trials with more detailed endpoints than just ‘AF
recurrence’.126 Refinements in imaging may allow for better candidate
screening and surrogate endpoints.

5.3 Practical issues
Regulatory requirements on drug development are extremely strict,
contributing to development costs of $5 billion (4.4 billion Euro) for

each new drug.129 The bar is particularly high for antiarrhythmic agents,
for which mortality trials are generally demanded, greatly enhancing
cost and complexity. All arrhythmia specialists are aware of the rising
predominance of non-pharmacological vs. pharmacological therapies.
Without in any way detracting from the advantages of non-
pharmacological therapies, it is also true that the regulatory demands
are generally less stringent for non-pharmacological therapies than
pharmacological, both on the efficacy and safety sides. New antiar-
rhythmic compounds are often quickly abandoned with the slightest in-
dication that they fail to meet expectations, in a ‘fail early fail cheaply’
approach.130 Thus, agents that are beneficial to specific types or subpo-
pulations of AF are easily discarded. Since it is unlikely that there will be
a single ‘magic bullet’ to treat all forms of AF, it will be critical to estab-
lish the subset of AF patients most likely to benefit from a given therapy
based on mechanistic insights during preclinical studies and design clin-
ical trials accordingly. AF is an enormous clinical problem and the avail-
able therapies are quite limited; regulatory requirements may have to
be reconsidered to permit the effective development of new
alternatives.

6. Conclusions
AF research and therapeutic development have been marked by com-
plex mutual interactions between clinical and basic research. The in-
sights developed from experimental work have contributed greatly
to presently available AF therapies. Recent advances in basic research
and technology development, as well as direct application to clinical
contexts and models, promise to catalyze exciting future advances in
AF management.
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