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Abstract Atrial fibrillation (AF) is the most common cardiac arrhythmia with well-established clinical and genetic risk compo-
nents. Genome-wide association studies (GWAS) have identified 17 independent susceptibility signals for AF at 14 gen-
omic regions, but the mechanisms through which these loci confer risk to AF remain largely undefined. This problem is
not unique to AF, as the field of functional genomics, which attempts to bridge this gap from genotype to phenotype, has
only uncovered the mechanisms for a handful of GWAS loci. Recent functional genomic studies have made great strides
towards translating genetic discoveries to an underlying mechanism, but the large-scale application of these techniques
to AF has remain limited. These advances, as well as the continued unresolved challenges for both common variation in
AF and the functional genomics field in general, will be the subject of the following review.
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1. Introduction
Among all cardiac arrhythmias, atrial fibrillation (AF) is by far the most
prevalent, with over 3 million current cases in the USA and 30 million
cases worldwide. This number is expected to greatly increase over
the next several decades as the population ages, an event that will further
exacerbate the societal and monetary burden caused by this arrhythmia.

Clinical risk factors for AF are numerous and include advanced age,
hypertension, obesity, and heart disease, but a significant hereditary
component for AF risk has also been well described.1 – 4 This genetic
contribution is observed as a markedly increased risk for individuals
with a first-degree relative with AF.1,3 – 5 At present, estimates of the
heritability of AF have been found to be as high as 62%, of which
only a small portion has been mechanistically defined.4,5 This is evi-
denced by an inability for adjustment of clinical risk factors or common
genetic variation to substantially alter the observed 40% increased AF
risk in those with familial AF.4

Together, the total genetic contribution to AF risk can be broadly
divided into three components:

(i) rare coding variation with a large effect size such as that seen in
familial forms of AF;

(ii) common variation identified by genome-wide association studies
(GWAS) that confers a smaller, but additive, risk of disease;

(iii) undiscovered variation (common or rare variation, inherited
or acquired epigenetic modifications, somatic variation, and
mosaicism).

With respect to the rare coding variation, there have been numerous
reports from individuals or families with AF with associated mutations
in a variety of cardiac ion channels, signalling molecules, structural pro-
teins, and transcription factors.6 These include mutations that are not
germline, but instead somatic in nature, as has been described for the
gap junction gene GJA5.7 It is likely that the decreasing cost of exome
and genome sequencing will aid in the discovery of additional mono-
genic or polygenic variants that confer a large risk of disease, although
primary tissue samples for identifying somatic causes will be difficult to
obtain and analyse. In total, the utility in these studies is likely to be
family-specific and may not be useful in the ultimate identification of
generalizable pathways that may be therapeutic targets in the popula-
tion as a whole.

With respect to the role of undiscovered genetic variation in AF,
there continues to be a disconnect between the heritability of AF
and the AF-associated common or rare variants described to date.
This so-called ‘missing heritability’ can potentially be attributed to
many potential aetiologies including common variants that have not
been captured in current GWAS arrays, epigenetics, rare variants
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with strong effects, large or small copy number variants, and mosaicism
that is poorly captured with current techniques.

Instead, more common risk-conferring AF variants, typically found at
.1% frequency in the population, may provide valuable insights into
targetable pathways. However, determining the mechanism through
which these variants perturb disease risk has been challenging and is
the subject of the following review.

2. Current synopsis of common
gene variants conferring AF risk
In the mid-2000s, platforms for genotyping hundreds of thousands of
common variants in an individual, combined with the collection of large
numbers of patient samples, led to the rapid expansion of GWAS.
In brief, these studies examine the relative frequency of individual com-
mon variants in cases vs. controls and identify genomic variants that are
more or less commonly observed in the cases. GWAS have been
broadly used to identify the genetic basis of a wide range of traits
and diseases. The first such GWAS for AF was published in 2007,
in which a region on 4q25, upstream of the transcription factor gene
PITX2, was found to be significantly associated with AF.8

As the effectiveness of GWAS relies greatly on the sample size and
resolution of the assay, efforts were made to improve both of these in
subsequent analyses. In 2009, a pair of groups identified an additional
AF-associated signal at 16q22,9,10 which was intronic to another tran-
scription factor, ZFHX3. In a separate analysis focused on individuals
with early onset AF, a third signal intronic to the KCNN3 gene on
chromosome 1 was identified.11

Large increases in sample size and increased density of genotyping
led to a trio of studies that identified many additional AF risk loci. In
2012, a meta-analysis in individuals of European and Japanese descent
uncovered an additional six loci for AF.12 Next, in 2014, the combin-
ation of fine-mapping and conditional analyses revealed that there
was not one but four independent loci at 4q25.13 Finally, also in
2014, a meta-analysis of over 13 000 cases and 70 000 controls identi-
fied a further 5 loci, one of which was exclusive to those of Asian des-
cent.14 At present, there are 14 genomic regions of susceptibility for AF
with 17 independent signals at these loci (Table 1).

Although there have been rapid advances in the discovery of new
genetic loci for AF, the clinical utility of GWAS variants remains unclear.
For example, a genetic risk score consisting of the top 12 AF GWAS
loci allows for a stratification of the population into a five-fold gradient
of AF risk.14 However, a similar risk score resulted in only a modest in-
crease in the prediction of incident AF beyond other known risk factors
for arrhythmia.16 Furthermore, the effect of genotype at the top AF risk
loci has also been examined in relation to the response to treatment,
where AF genotype has been reported to predict response to cardio-
version,17 pulmonary vein isolation,18– 20 and anti-arrhythmic medica-
tions.21 In contrast, a single study in a Korean cohort found no
association between AF risk alleles and response to AF ablations.22

Importantly, most of the studies relating genetic variants to AF treat-
ments or outcomes have been of modest size and only considered the
top few variants for AF. Thus, it will be interesting to re-examine each
of these questions as we develop a more comprehensive picture of
the AF genetics and gain access to larger patient populations. In future,
it will also be interesting to determine whether AF genetic risk
scores can be used to identify high-risk patients with heart failure or

cryptogenic stroke who would benefit from more intensive monitoring
or anticoagulation.

In the upcoming years, it is clear that increased resources will be ap-
plied to this endeavour, and we can expect GWAS for AF with mas-
sively increased sample sizes. Such an approach has been taken for
other common diseases including coronary artery disease23 and schizo-
phrenia,24 and what emerges is a comprehensive picture of the com-
mon genetic underpinnings of a disease. Larger GWASs also improve
and refine the clinical risk prediction models of AF and will enable suf-
ficiently powered analyses in cohorts stratified for AF outcomes such
as stroke or heart failure.

Despite these anticipated advances, there remains a great knowledge
gap in ‘how’ common variants at these loci confer AF risk. This void
must be filled if we are to maximally utilize these discovery efforts to
understand the molecular pathways underlying AF.

3. Challenges in defining common
variant mechanisms
Although GWAS can be a powerful tool, this method is blind to the
divergent pathways through which AF can arise, and it does not directly
help to understand the basis for AF pathogenesis. For example, does
the genotype at an AF SNP alter atrial fibrosis? Increase atrial
diameter? Decrease atrial conduction time? Affect ion channel remod-
elling? Alter the positioning or development of the myocardial sleeves?
Perturb autonomic tone? These and other possibilities25 –27 will ultim-
ately need to be considered when evaluating each locus. Such geno-
type–phenotype correlations are a daunting but important task that
will provide insight for translational biology to develop novel, and
hopefully personalized, treatments for AF.

For most AF loci, the steps from an association to the phenotype are
entirely unknown. AF-associated SNPs mark a general region of the
genome without the implication that an individual SNP is causative.
The definition of the functional SNP(s) will be key for identifying a tran-
scriptional network for AF, and an integrated approach spanning from
genetics to animal modelling will be necessary (Figure 1). First, it will be
essential to refine the genetics association at a locus. Second, for coding
variants, the challenge is relatively straightforward and will involve the
determination of an amino acid substitution on protein function. How-
ever, as with most GWAS, the vast majority of AF loci reside in non-
coding regions. Therefore, a third approach will be to link the
AF-associated SNP to a gene in the region. Fourth, we will need to re-
fine the epigenetic landscape at a given locus. Fifth, it will be necessary
to develop higher throughput methods to identify functional variants,
and finally, appropriate modelling of the disease-related gene can be
undertaken. In practice, it will be essential to combine these different
approaches to develop a comprehensive view of how a locus contri-
butes to disease.

4. Difficulties in identifying
functionally relevant variants
The challenge behind identification of functional non-coding variation is
rooted in the linkage structure of the human genome, in which relative-
ly large regions or haplotype blocks of many SNPs are inherited
together. The ‘sentinel’ SNPs identified by GWAS serve as a marker
for a larger region of SNPs, all with a similar degree of association
with disease. Thus, it is important to note that the sentinel SNP is
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not necessarily the functional variant at a locus. Further complicating
these efforts, it is also possible that a common SNP may only serve
as a tag for a coding variant, rare variant, or a variation in copy number
such as an insertion or deletion.

A convenient way to display the results of an association at a given
locus is with a regional plot (Figure 2). The data are plotted as the –log
of the P-value for the association with AF vs. chromosomal distance.
Each point represents a distinct SNP that is tested for an association
with AF, and the red colour provides the degree of linkage disequilib-
rium to the sentinel SNP at the locus. The two plots for PITX2 and
ZFHX3 illustrate some of the challenges in deciphering the mechanism
of the AF-associated variants. For example, in the plot of the PITX2 re-
gion (Figure 2, left), there are a large number of non-coding, common
variants that span a nearly 75 kb region (illustrated by the red bar) that
are all essentially equivalent to the top signal. The region is much nar-
rower at the ZFHX3 locus (Figure 2, right), so one could expect that the
identification of a functional variant would be more straightforward, yet
there are still many potential variants to consider even at a relatively
simple locus.

5. Refining the association signal
Given the challenges of the aforementioned studies, as a first step after
the identification of an AF locus, it is helpful to refine the association
signal. Potential approaches include performing conditional analyses,
imputation to newer haplotype maps, genotyping with alternate arrays
to capture exonic, copy number, or epigenetic markers, and targeted
or whole genome sequencing studies.

In a conditional analysis, one corrects for the top SNPs in a region to
determine whether there is just one or potentially multiple independ-
ent association signals at the locus. This technique allowed the discov-
ery of an additional three loci at the 4q25 locus, which, when combined
with that at the main 4q25 signal, could be used to predict a five-fold
graded risk score in individuals of European or Japanese descent.14

It is possible that other AF emerging loci may also contain multiple in-
dependent signals.

In addition to fine-mapping, one may improve the resolution at a lo-
cus by re-imputing previous data to newer reference map of the gen-
ome. Imputation is a strategy whereby known genotype at several SNPs
in a region can be used to predict those not directly genotyped. Initially,
this prediction was based upon reference maps from the HapMap con-
sortium consisting of approximately 2 million markers.28 In recent
years, these maps have been supplanted by those built from the
1000 Genomes Project,29 wherein hundreds of genomes have been se-
quenced and assembled. With 8–10 million variants, imputation to the
1000 genomes data set will greatly increase the resolution of any
GWAS locus, as has been the case with coronary artery disease.23

The greatest resolution of an association signal at a locus can be pro-
vided by whole-genome sequencing. Although genome sequencing was
once far too costly, with the continued improvements in sequencing
cost, quality, and turnaround times, such studies are increasingly feas-
ible. Genome sequencing will permit the identification of all common
genetic variants and uncover any previously unidentified causative rare
or copy number variation that was previously tagged by common
variants.

Although each of these approaches will improve the resolution at a
given locus, they will not solve the challenge of defining a functional
regulatory variant. Further prioritization and functional analysis would
be necessitated to define which variant(s) underlies association.

6. Epigenomics to guide functional
variant discovery
Even if genome sequencing data were readily available, there will still be
dozens, if not hundreds, of possible candidate SNPs which may be a
functional variant(s) at a given locus. Although it is possible that
some may be coding variants, the vast majority of GWAS loci reside
in non-coding regions (Figure 2, left, PITX2). For these loci, it is expected
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Table 1 Genetic loci associated with AF

Genomic locus Sentinel SNP Relative risk P-value Proximal gene eQTL by GTeX15 Relative location to proximal gene

4q25 rs6817105 1.64 1.8 × 10274 PITX2 None 150 kb upstream

4q25 rs4400058 1.31 4.1 × 10220 PITX2 None 150 kb upstream

4q25 rs6838973 1.13 7.1 × 10212 PITX2 None 200 kb upstream

4q25 rs1448818 1.12 2.0 × 1028 PITX2 None Intronic

16q22 rs2106261 1.24 3.2 × 10216 ZFHX3 None Intronic

1q21 rs6666258 1.18 2.0 × 10214 KCNN3 None Intronic

1q24 rs3903239 1.14 8.4 × 10214 PRRX1 RP1-79C4.4, skin 46 kb upstream

7q31 rs3807989 0.90 3.6 × 10212 CAV1 None Intronic

14q23 rs1152591 1.13 5.8 × 10213 SYNE2 ESR2, skin Intronic

9q22 rs10821415 1.11 4.2 × 10211 C9orf3 None Intronic

15q24 rs7164883 1.19 2.8 × 10217 HCN4 None Intronic

10q22 rs10824026 0.87 4.0 × 1029 MYOZ1 None 20 kb upstream

10q24 rs12415501 1.18 6.5 × 10216 NEURL None Intronic

12q24 rs10507248 1.12 8.5 × 10211 TBX5 None Intronic

3p25 rs4642101 1.10 9.8 × 1029 CAND2 CAND2, skeletal muscle Intronic

6q22 rs13216675 1.10 2.2 × 1028 GJA1 None 600 kb downstream

12q24 rs6490029 1.22 3.9 × 1029 CUX2 None Intronic
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that functional variants act by differentially regulating the expression of
nearby genes through enhancer or promoter activities. As comprehen-
sively testing each of these with reporter assays, such as luciferase or
EGFP expression, is an expensive and time-consuming endeavour, pre-
vious studies have attempted to limit the number of SNPs tested
through prioritization schemes. The most widely used approach is to
examine epigenetic data from the ENCODE project,30 including studies
of DNase hypersensitivity and histone post-translational modification
marks obtained from a series of immortalized cell lines and human pri-
mary samples.30 Together, these signals observed from these data sets
allow researchers to hone in on regions of active chromatin that may be
acting as enhancers or promoters in a given tissue. In theory, this can
allow one to test far fewer SNPs as potential candidates.

While impressive for its time, the ENCODE data were limited in its
scope and depth and have been integrated with the more comprehen-
sive Roadmap Epigenomics Project data sets.31 These data, obtained
from 111 epigenomes of human tissues, include additional CHIP-seq
data for histone modifications, DNA methylation status, DNase hyper-
sensitivity, and RNA sequencing data for relative expression. Using

these data in combination, the Roadmap Epigenomics Project31 has re-
leased a series of models which predict the state of chromatin in a given
tissue, a valuable resource for those looking to follow up on the func-
tional basis for GWAS loci. As a template, in initial studies, these data
were used to generate predictive models of where functional variants
for 58 studies resided, including those for lipids, PR interval, blood pres-
sure, and aortic root size.

Although the next release of the Roadmap data will be the result of
more than 180 biological samples, its usefulness for the study of AF is
limited by the lack of left atrial samples, nodal tissue, myocardial
sleeves, or pulmonary vasculature. Inclusion of these samples in fu-
ture epigenomic analyses will be important for the data set as a
tool for functional follow-up for AF loci. Additionally, it should be
noted that for human primary samples, the epigenomic map is a prod-
uct of a mixed cell population from the tissue of interest. Therefore, if
the molecular basis for an AF locus was the modification of enhancer
activity in a minor cell population of the heart, it would be unlikely to
be marked as ‘active chromatin’ in the aggregate analyses. A refine-
ment of maps which take into account tissue heterogeneity will be

Figure 1 Model for the functional definition of a GWAS association locus. GWAS and associated analyses identify a general genomic region of AF
association, which is refined by additional genotyping, sequencing, or bioinformatics analyses. For coding variation, evaluation of altered protein function
in vitro and in vivo for risk/protective alleles is conducted. For non-coding variation, variants are linked with altered expression of genes through eQTL or
chromatin conformation capture. Concurrently, data sets with epigenomic information are mined for markers of regulatory DNA, which may contain
associated SNPs. When candidates are found, functional variant(s) should be defined and validated with reporter assays. Translation of information on
directionality of altered expression, amplitude of altered expression, and tissue type of interest inform modelling of AF mechanisms in animal models.
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an important improvement to watch for in future iterations of epigen-
etic modelling.

7. Linking AF SNPs to nearby genes
As regions of chromatin can form long-range regulatory interactions
that can extend as far as a megabase, it is important to consider all
genes in a wide region around an AF GWAS signal as potential candi-
date genes. Sometimes, there are relatively few candidate genes in a re-
gion, and the potential association with AF is clear, for example, the
association between AF and the GJA1 or connexin 43 locus.14 How-
ever, in most other loci, there are many potential candidate genes
with a number of plausible biological mechanisms. In these cases, deter-
mining which of these genes are regulated differentially based on geno-
type is of paramount importance prior to any further functional
evaluation. Current approaches include expression quantitative trait
analyses (eQTL) or the measurement of the physical interactions be-
tween regulatory regions and proximal promoters.

In an eQTL analysis, samples isolated from primary tissue are geno-
typed for a sentinel SNP at an AF locus, and then transcription of genes
in the region is quantitated. If there is a correlation between the AF SNP
and expression of a nearby gene, then that gene is highly likely be the
causative one for AF. On a small scale, surgical samples from left atrial
appendage tissue have been used to determine that the AF locus on
chromosome 10q22 alters expression of a nearby gene (MYOZ1) and
not the gene closest to the AF SNP (SYNPO2L).32 Similar analyses can
also be performed more globally by performing genome-wide genotyp-
ing and RNA sequencing in relevant tissues.14,33 Large-scale projects
for examining gene expression using RNA sequencing are currently
underway in the Genotype Tissue Expression (GTEx) project.15 How-
ever, at present, there are 190 samples from the left atrial appendage,

a number that is still underpowered for subtle effects of most GWAS
functional variants. Future evaluations by the GTEx Consortium or
other investigators will hopefully provide well-powered analysis of
gene expression in the upcoming year.

A complimentary approach to find which genes are affected by
GWAS SNPs is to examine the physical interaction between a potential
enhancer(s) in a non-coding GWAS locus and the promoter of the
genes in the region using chromatin conformation capture.34 Current
models of distal enhancer action suggest that physical interactions oc-
cur between factors binding enhancers and the transcription initiation
complexes at proximal promoters. Thus, by physically linking these en-
hancer: promoter interactions and examining the frequency with which
chromosomally distant DNA regions are physically near to one an-
other by sequencing or targeted polymerase chain reaction, one can
develop a interaction map of the locus. One iteration of this approach
is 4C, works from a limited number of reference points, and can pro-
vide a high-resolution interaction map of a reference point with all
other regions at a given locus. Alternatively, Hi-C examines the inter-
action between all points in the genome with all other points in the gen-
ome. However, the latter currently provides low-resolution maps due
to limited sequencing depth and is only available in a small number of
cell and tissue types. Investment to improve both these characteristics
in Hi-C data will greatly aid in the usefulness of these data to AF and
other cardiovascular diseases.

Although eQTL signals or chromatin conformation capture provides
strong evidence to implicate a given gene, the absence of either is un-
informative. Both these strategies rely on homogeneous tissue samples
for best resolution, and myocardial samples used for the creation of
current maps are a mixture of several distinct cell types. Therefore,
if an important interaction were to occur in a minor subpopulation,
it would be unlikely to be observed above the noise of the assay.

Figure 2 Regional plot for AF association signals on chromosomes 4 and 16. Each point represents a single SNP with association level displayed on the
left Y-axis. Red bars indicate the top linkage dissociation block that is approximately equivalently associated with altered risks of AF. Blue lines indicate
peaks of recombination, with strength being displayed on the right Y-axis. Note that the region associated with AF in (A) (indicated by the red SNPs and
bar) is quite large and at a great distance upstream of the closest gene, PITX2. In contrast, in (B), the AF-associated SNPs/region is considerably smaller
and is located within the gene ZFHX3.
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To address this, evaluation in cell subpopulations will be made feasible
as quantitative in situ RNAseq techniques such as FISSEQ continue to
mature.35,36 In the meantime, despite general technical limitations, gen-
eration of publically available eQTL and Hi-C maps for the left atrium,
pulmonary vasculature, or nodal tissues would be a great advance for
the functional genomic analysis of AF and should be a focus of subse-
quent efforts.

8. Limitations of modelling AF
disease genes
Knowledge of functional variation is necessary to provide insight into
genes that are linked with the development of AF and the ‘when and
where’ of the altered regulation, but modelling these functional conse-
quences is critical for comprehensive understanding of mechanism, sec-
ondary pharmaceutical screens, and therapeutic translation.

A definite functional analysis in the context of a complex and multi-
factorial disease such as AF needs a suitable animal model. So far, how-
ever, there is no ideal animal model for AF available.37,38 Large animals
such as pigs have a cardiac anatomy similar to that of humans and would
allow a comprehensive in vivo evaluation of the cardiovascular system
including three-dimensional mapping, voltage mapping, or left atrial
electrophysiology (EP) studies.38 Unfortunately, genetic manipulation
to generate large transgenic animals is still not widely available, and
housing and experimental costs would be prohibitive.39 Genetic engin-
eering is routinely available in small animal models such as zebrafish and
mouse models.40,41 Although zebrafish models can be used to evaluate
basic EP parameters such as the action potential duration, they are lim-
ited by their small size and by the lack of a four-chamber heart.42,43

Mouse models seem to be a good compromise as transgenic mice
are available, and performing an in vivo EP study including induction
and evaluation of arrhythmias is possible.44,45 However, the dramatic-
ally different heart rates and the action potential duration in a mouse
significantly limit the use of the model for studies of AF. A final ap-
proach would be to perform gene knockout or overexpression of can-
didates in induced pluripotent stem-cell-derived cardiomyocytes.46,47

These cells have the advantage of being human in origin, but have lim-
itations related to unknown chamber specificity and various levels of
maturity. Therefore, it is difficult for this model in its current state to
recapitulate all of the features of the mature human myocardium.

9. Need for higher throughput
methods to identify functional
variation
Despite the many challenges outlined earlier, there have been some
important successes in identifying functional variants at the SORT1 lo-
cus for myocardial infarction (MI)/low-density lipoprotein (LDL),48

NOS1AP in the QT interval,49 SCN10A/5A for the PR interval,50

BCL11A for foetal haemoglobin,51 and MEIS1 for restless legs
syndrome,52 among others. However, the effort required for these
analyses is immense and time-consuming, problems best displayed by
the vast disconnect between the thousands of known GWAS loci
and handful which are defined mechanistically.

It is also important to note that these studies have relied on import-
ant advantages, which are largely not available for most other GWAS
loci. For example, the SORT1 locus for MI/LDL encompassed a 6 kb

region which contained only six SNPs to be functionally analysed.
This is notable when compared to the PITX2 locus for AF on 4q25 (Fig-
ure 2), which is �75 kb in length and incorporates nearly 100 asso-
ciated SNPs. Similar smaller regions of associations have been
observed in all mechanistically defined loci, but this advantageous
size is the exception rather than the rule for GWAS loci. Therefore, in-
tegration of additional refinement methods is an important pursuit
which will increase the rate at which functional variants are described
and defined.

In addition to the prioritization schemes using fine-mapping and epi-
genomic marks, the use of massively parallel reporter assays53–56 will
also aid in this rate of functional variant discovery. These assays, which
are capable of profiling hundreds or thousands of variants simultan-
eously, have been applied to the study of transcription factor base pref-
erence and to the study of enhancer organization, but their potential
for the study of variants identified by GWAS has remained untapped.

Finally, following discovery of a functional SNP, the definition of
mechanism for altered activity, presumably through differential tran-
scription factor binding, has become standard. Although this has not
been demonstrated at any locus for AF, CHIP-seq studies have aided
discovery efforts for other GWAS loci. In those studies, CHIP-seq sig-
nals obtained from large-scale pulldown and mapping efforts were used
to discover the altered transcription factor binding site. In other cases
in which CHIP-seq data might not exist, databases such as JASPAR,57

Haploreg,58 PROMO,59 Transfac,60 or Uniprobe61 may be useful for
predicting differential binding of transcription factors. Efforts can also
be made to determine transcription factor de novo, although nuclear ly-
sates from appropriate tissues and comprehensive follow-up in vitro and
in vivo would be necessary for the establishment of a convincing
mechanism.

10. Conclusions
To move forward in the dissection of AF loci will require an integrated
approach with collaborative teams of investigators with a diverse set of
skills to enable each of the studies outlined earlier. Progress in dissect-
ing AF and other common disease loci has remained challenging due to
the complex nature of AF disease pathogenesis, but the advent of newly
designed analysis tools, release of public data sets for linking locus to
gene modulation, increased ease of genetic modulation of gene expres-
sion, and improvements in sequencing technology should aid in the rate
of discovery in the near future. Ultimately, only through a shared un-
derstanding of the genetics, epigenomics, three-dimensional chromatin
organization, and gene modelling studies, we will reach our goal of
more completely understanding the link between genetic variation
and the causative mechanisms for AF.
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Benjamin EJ, Gudnason V, Kääb S. Meta-analysis identifies six new susceptibility loci
for atrial fibrillation. Nat Genet 2012;44:670–675.

13. Lubitz SA, Lunetta KL, Lin H, Arking DE, Trompet S, Li G, Krijthe BP, Chasman DI,
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