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Abstract

Background: Early use of fresh frozen plasma (FFP) in haemorrhagic shock is
associated with improved outcome. This effect may partly be due to protection of
the endothelial glycocalyx and/or secondary to a superior efficacy of FFP as a plasma
volume expander compared to crystalloids. The objective of the present study was
to investigate if protection of the glycocalyx by FFP can be demonstrated when
potential differences in plasma volume (PV) following resuscitation are accounted for.

Methods: Rats were subjected to a volume-controlled haemorrhage (30 ml/kg). At
2.5 h after haemorrhage, animals were randomized to resuscitation with FFP
(37.5 ml/kg), albumin (30 ml/kg) or Ringer’s acetate (RA) (135 ml/kg, 4.5 times the
bleed volume). PV was measured 2 h after completion of resuscitation using 125I-
albumin and effects on endothelial glycocalyx were evaluated by measuring
circulating heparan sulphate and syndecan-1. Hemodynamic effects of resuscitation
were evaluated by measuring lactate and mean arterial pressure (MAP).

Results: Resuscitation with FFP or albumin resulted in plasma volume expansion
equalling the blood loss (to 55 ± 5 ml/kg and 54 ± 4 ml/kg (mean ± S.D.),
respectively), whereas plasma volume expansion in RA group was lower (to 42 ±
7 ml/kg). Plasma concentration of heparan sulphate was lower in the FFP and
albumin groups than in the RA group at 2 h after resuscitation. After correcting for
differences in plasma volume, no significant difference in circulating amount of
heparan sulphate was detected between the FFP and albumin groups (2879 ±
1075 μg/kg and 3318 ± 1814 μg/kg, respectively, P = 0.4) and the RA group (3731 ±
777 μg/kg). No differences between the groups in plasma concentration or amount
of circulating syndecan-1 were detected after resuscitation. After resuscitation, MAP
was higher in the FFP and albumin groups than in the RA group. Lactate did not
differ between the FFP and RA groups after resuscitation.

Conclusions: Improved outcome in trauma by FFP could in part be explained by
better plasma volume expansion compared to crystalloids. The decrease in plasma
concentration of markers of glycocalyx degradation after resuscitation with FFP are
largely secondary to differences in plasma volume and may not accurately reflect
effects of FFP on the glycocalyx.
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Background
Early use of fresh frozen plasma (FFP) in the resuscitation of trauma-induced haemor-

rhagic shock has been associated with improved outcome, but the underlying mecha-

nisms are not fully understood [1]. Partly, the better outcome may be explained by

improved coagulation [2], but other mechanisms are likely to contribute.

Endothelial cells are covered by a layer of membrane bound molecules including pro-

teoglycans containing high concentrations of heparan sulphate such as syndecans and

glypicans and loosely bound plasma proteins, collectively called the glycocalyx [3, 4]. It

has been suggested that an intact glycocalyx is of importance for maintenance of vascu-

lar homeostasis and that shedding of the glycocalyx may induce increases in permeabil-

ity, activation of coagulation system and leucocyte adherence [3–5]. Recent data shows

that increased plasma levels of the proteoglycan syndecan-1 at arrival to hospital cor-

relate with a poor outcome in trauma patients with similar injury severity scores [6]

and suggest that degradation of the glycocalyx is an early consequence of severe

trauma. Several experimental studies have shown that resuscitation with FFP may de-

crease both plasma concentration of syndecan-1 and attenuate decreases in thickness

of the endothelial glycocalyx indicating that the beneficial effects of FFP in haemor-

rhagic shock in part could be explained by effects on the glycocalyx [7, 8]. In an at-

tempt to separate direct effects of FFP on the glycocalyx from effects mediated via

improved cardiac output, these studies compared resuscitation with FFP with crystal-

loids at a volume ratio of about 1:3 to obtain comparable plasma volume expansion.

However, plasma volumes were not measured and may have been higher in animals re-

suscitated with FFP. If so, this is a potential mechanism by which FFP could mitigate

shedding of the glycocalyx. FFP also contains high concentrations of albumin, which is

a potential modulator of the endothelial glycocalyx and is possible that FFP acts by re-

placing albumin lost following haemorrhage [9–12].

Based on these considerations, the present study was designed to investigate if the

previously observed protection of glycocalyx by FFP compared to crystalloids in haem-

orrhagic shock can be demonstrated when potential differences in plasma volume fol-

lowing resuscitation are accounted for. We also wanted to investigate if albumin could

confer the same protective effects on the glycocalyx as FFP. For this purpose, rats were

subjected to a volume-controlled haemorrhage followed by resuscitation with FFP, 5 %

albumin or Ringer’s acetate. Dose of respective resuscitation fluid was chosen with the

objective to achieve similar plasma volumes in all groups after resuscitation. Effect of

resuscitation on plasma volume was measured using radiolabeled albumin, and effects

on endothelial glycocalyx were evaluated by measuring plasma concentrations of hepa-

ran sulphate and syndecan-1. Potential effects of the different resuscitation fluids on

permeability were evaluated by measuring transcapillary escape rate of albumin. The

adequacy of cardiac output following resuscitation was evaluated by measurement of

lactate and central venous saturation.

Methods
Anaesthesia and surgical preparation

The study was approved by the Ethics Committee for Animal research at Lund University,

Sweden (M103-09), and the animals were treated in accordance with the National
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Institutes of Health for the Care and Use for Laboratory animals. Seventy-five adult male

Sprague-Dawley rats (Scanbur BK, Sollentuna, Sweden) weighing 355 ± 17 g (mean ± SD)

were used. The objective was to have 9–10 animals to complete the experimental protocol

in the treatment groups. Substitutes were used for animals that died prior to completion

of the protocol. All measurements except blood gas analysis were performed by an investi-

gator blinded to the treatment status of the animals.

An overview of the experimental protocol is presented in Fig. 1. Anaesthesia was in-

duced with 4 % isoflurane (Schering-Plough Animal Health, Ballerup, Denmark) in a

closed container, and thereafter, the anaesthesia was maintained with 1.6–1.8 % isoflur-

ane in air delivered via a mask until a tracheostomy and endotracheal intubation was

performed and isoflurane was thereafter lowered to 1.1–1.3 %. Animals were mechanic-

ally ventilated (Ugo Basile Animal Ventilators, Comerio, Italy) to an end-tidal CO2 con-

centration of between 4.5 and 6.5 kPa using a volume-controlled mode and a positive

end-expiratory pressure of 3 cm H2O. Body temperature, measured rectally, was main-

tained at 37 °C with a heating pad throughout the experiment. The left femoral artery

was cannulated for measurement of arterial pressure, blood sampling and as a port for

bleeding procedure. The left femoral vein was cannulated for administration of resusci-

tation fluids. The right internal jugular vein was cannulated for measurement of central

venous blood gases and administration of 125I-albumin. After a 30-min equilibration

period, mean arterial pressure was recorded and arterial and central venous blood gas,

electrolytes, lactate and haematocrit were collected (I-stat, Hewlett Packard, Böblingen,

Germany). Plasma samples were collected in heparinized vials and stored at −80 °C

until analysis.

Haemorrhage and resuscitation

The animals underwent controlled haemorrhage of 25 ml/kg during 15 min followed

by equilibration for 10 min and then bled another 5 ml/kg during 10 min or a sham

procedure. The volume of bleeding corresponds to about 48 % of total blood volume in

the rat [13]. After 150 min, blood sample collection was performed. To ensure that the

animals were similarly and severely affected by the haemorrhage, we excluded animals

that had a lactate <3.5 mmol/l at this time point. The animals were then randomized to

resuscitation with Ringer’s acetate (RA, Fresenius Kabi, Uppsala, Sweden; osmolality:

278 mOsm/kg) in a volume of 4.5 times the bleed volume or 5 % albumin (ALB, CSL

Behring, Marburg, Germany; osmolality: 269 mOsm/kg) in a volume equal to the bleed

volume or fresh frozen plasma (FFP, produced in house as seen below, osmolality:

317 mOsm/kg) in a volume of 1.25 times the bleed volume. The FFP preparation has

Preperation Rest Haemorrhage

30 min30 min30 min 30 min150 min 120 min 60 min

Resuscitation PV       TER

ABG
VBG
MAP

Heparan sulphate
Syndecan-1

ABG
VBG
MAP

Heparan sulphate
Syndecan-1

ABG
VBG
MAP

Heparan sulphate
Syndecan-1

anaesthesia

Fig. 1 Overview of the experimental protocol. ABG arterial blood gas, MAP mean arterial pressure, PV plasma
volume measurement, TER transcapillary escape rate of albumin, VBG venous blood gas
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an estimated albumin and protein content of 26 and 57 g/l, respectively [14]. The re-

suscitation fluids were pre-warmed to 37 °C and were administrated during 30 min.

The volume of fluid in the RA group was chosen with the objective to achieve equal

plasma volume expansion as in the ALB and FFP groups based on previous results in a

similar model of haemorrhage [15]. The volume of FFP was expected to give equal

plasma volume expansion as in the RA and ALB groups based on previously published

data in humans and on pilot studies in rats [16]. Sham animals were neither bled nor

resuscitated but in every other way treated exactly as above. Osmolality was mea-

sured with the freeze-point method (Micro-Osmometer Model 210; Fiske Associates,

Norwood, Massachusetts).

Preparation of fresh frozen plasma

Following induction of anaesthesia as described above, FFP was made by collecting

about 10 ml of blood in 3–5 min from the cannulated femoral artery in donor rats.

Blood was thereafter mixed with a citrate-phosphate-dextrose (CPD) solution (Comp-

flow, Fresenius Kabi, Oberursel, Germany) for anticoagulation at a ratio to blood of

0.14:1. After centrifugation at 3000×g for 11.5 min, the plasma component was col-

lected and rapidly frozen as aliquots and stored at −80 °C until use (<6 months). Imme-

diately prior to use, the FFP was thawed and warmed to 37 °C.

Measurement of TNF-α

Plasma concentration of tumour necrosis factor (TNF)-α was determined by electro-

chemiluminescence according to the instructions provided by the manufacturer

(Mesoscale, Rockville, MD, USA).

Measurement of plasma volume, blood volume and transcapillary escape rate

Blood samples were collected 2 h after termination of resuscitation and measurement

of the plasma volume (PV) and transcapillary escape rate (TER) was performed as de-

scribed previously [17]. Briefly, the animals received a bolus injection of about 25 kBq

(0.05 mg/kg) of human 125I-albumin dissolved in 100 μl of 0.9 % NaCl in the internal

jugular vein. To determine the exact dose injected, the remaining radioactivity in the

emptied vial, the syringe and the needle was subtracted from the total radioactivity in

the prepared dose. Arterial blood samples of 250 μl were collected in heparinized vials

at 5, 10, 15, 30, 45 and 60 min after the 125I-albumin injection. After centrifugation, the

radioactivity in 100 μl of plasma was measured in a gamma counter (Wizard 1480,

LKB-Wallac, Turku, Finland) and corrections for spill over and background were made

automatically. Plasma volume was calculated by dividing the injected dose by the

resulting concentration of the tracer at 5 min, and blood volume was calculated as

plasma volume/(1-haematocrit). TER was calculated by fitting the decay of 125I-albumin

at the six sampling points to a linear equation and is expressed in percent per hour.

Following TER measurement, the animals were killed by an intravenous injection of 3

M KCl. Six animals showed poor linearity (r2 < 0.7), and one animal did not survive the

complete TER measurement; consequently, the TER measurements for these animals

were excluded.
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Measurement of heparan sulphate

A sandwich enzyme immunoassay (Cat. No. 280564–1, AMS Biotechnology, UK)

using two monoclonal antibodies specific to heparan sulphate was performed ac-

cording to the manufacturer’s instructions. Before being pipetted onto the plate,

proteins in the plasma samples (20 μl) were digested by adding 2 μl 20 mg/ml

Actinase E solution (Sigma-Aldrich, Sweden) in 0.5 M Tris-HCl, pH 7.4, followed

by incubation for 20 h at 55 °C. Digestion was stopped by boiling for 5 min. The

mixture was centrifuged at 3000×g, the supernatant was diluted 1:8 in provided

sample diluent and 20 μl was used for the assay. No cross reactivity for heparin

was detected, and the coefficient of variation was 6 % in six control replicates. The

lower limit of detection was 0.25 μg/ml. Total quantity of circulating heparan

sulphate at the end of the experiment was calculated as plasma concentration

times the plasma volume.

Syndecan-1 ELISA

A sandwich enzyme immunoassay (Cat. no. E91966Ra, USCNK, Nordic Diagnostica,

Sweden) using an antibody specific to rat syndecan-1 ectodomain was performed ac-

cording to the manufacturer’s instructions on samples analysed in duplicate and diluted

1:10 in 20 mM PBS, pH 7.1. The manufacturer reports no significant cross reactivity

between syndecan-1 and analogues. The lower limit of detection was 1.6 ng/ml, and

the coefficient of variation in eight control replicates was 14 %. Total quantity of circu-

lating syndecan-1 at the end of the experiment was calculated as plasma concentration

times the plasma volume.

Statistical analysis

No power analysis was performed prior to the experiments. Number of animals in

each group was based on a previous study demonstrating differences in plasma

concentration of syndecan-1 following resuscitation with different fluids in a haem-

orrhage model [8]. Physiological parameters, heparan sulphate and syndecan-1

values, plasma volume and TER had similar means and medians; quartiles were

symmetric to the means and passed Lilliefors test for normality and the data were

therefore considered to follow the Gaussian distribution. No significant difference

in variance was detected between groups as assessed with the Brown-Forsythe test.

To evaluate changes in physiological parameters, heparan sulphate and syndecan-1

from baseline to after haemorrhage (i.e. prior to randomization), data from all ani-

mals were pooled and analysed using a paired Student’s t test. To evaluate changes

within group changes after haemorrhage, paired Student’s t test was used. The ana-

lysis was corrected for multiple comparisons using the Bonferroni method. Differ-

ences between groups after resuscitation were evaluated with one-way ANOVA

followed by post hoc testing using the Newman-Keuls correction. Calculations were

performed using GraphPad Prism version 6 (GraphPad Software, San Diego, USA),

and all analyses were performed by an investigator blinded to the treatment alloca-

tion. P values <0.05 were considered statistically significant. Data are expressed as

mean ± S.D.

Nelson et al. Intensive Care Medicine Experimental  (2016) 4:6 Page 5 of 14



Results
Animal model mortality

The mortality following haemorrhage but prior to resuscitation was 24 %. No statisti-

cally significant difference in mortality between any of the groups from the start of

treatment to the end of experiment was detected (P = 0.27, chi-square, Fig. 2).

Physiological parameters

Physiological data for animals that completed the study are presented in Table 1.

Mean arterial pressures, blood gases, haematocrit and lactate were similar in the

groups at baseline. At 2.5 h after haemorrhage, mean arterial pressure, central ven-

ous oxygen saturation, haematocrit and base excess had decreased while lactate

had increased (P < 0.05, paired t test for all animals). After resuscitation, the mean

arterial pressure was higher in colloid resuscitated groups compared to the RA

group (Table 1). Lactate concentrations decreased in all groups following resuscita-

tion (P < 0.05, paired t test) and were lower in the albumin group than in the RA

group (Table 1). Central venous oxygen saturation increased following resuscitation

in all groups and tended to be higher in the colloid resuscitated groups (P = 0.07,

ANOVA). Base excess increased in all groups after resuscitation (P < 0.05, paired t

test) and was higher in the FFP group compared to the other groups (Table 1).

Haematocrit decreased further after resuscitation in all groups (P < 0.05, paired t

test) and was similar among resuscitated groups. The concentration of TNF-α after

haemorrhage (185 ± 152 ng/ml, n = 26) was higher than sham animals (9 ± 9 ng/ml,

n = 4, P < 0.05).

Plasma and blood volume

Following resuscitation, the plasma volumes in animals resuscitated with albumin and

FFP were 55 ± 5 ml/kg and 54 ± 4 ml/kg, respectively, and were higher than the corre-

sponding values in the RA group of 42 ± 7 ml/kg. Plasma volume in the sham animals

was 41 ± 6 ml/kg (Fig. 3a). Calculated blood volumes were normalized in animals resus-

citated with FFP or albumin (68 ± 6 ml/kg and 67 ± 5 ml/kg, respectively) in relation to

sham animals (68 ± 4 ml/kg) while the blood volume was significantly lower in the RA

group (52 ± 8 ml/kg, Fig. 3b).

90 animals used

43 animals included

17 animals died before resuscitation

15 animals eligable but not included
due to post-haemorrhage lactate < 3.5

SHAM FFP ALB RA No resuscitation

Completed study
Died after resuscitation 0

5

3
10

3
9

0
9

4
0

15 animals used for 
preparation of FFP

Fig. 2 CONSORT flow diagram. ALB albumin, FFP fresh frozen plasma, RA Ringer’s acetate
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Circulating levels of heparan sulphate and syndecan-1

Plasma concentrations of heparan sulphate increased from 16 ± 14 μg/ml at baseline to

83 ± 39 μg/ml after haemorrhage (P < 0.001, paired t test for all animals, Table 2). After

resuscitation, plasma concentration of heparan sulphate was higher in animals resusci-

tated with RA than in animals resuscitated with albumin or FFP (Table 2). After adjust-

ing for differences in plasma volume, however, the total circulating amount of heparan

sulphate did not differ between the different resuscitated groups (P = 0.4, ANOVA,

Table 2). Mean difference in circulating amount of heparan sulphate between the ani-

mals resuscitated with FFP and RA and between animals resuscitated with albumin and

RA were 853 (95 % CI, −153 to 1858) μg/kg and 449 (95 % CI, −1967 to 1070) μg/kg,

respectively.

Syndecan-1 levels were increased after haemorrhage compared to baseline and were

18.3 ± 5.2 ng/ml and 15.5 ± 3.6 ng/ml, respectively (P = 0.006, paired t test). No

Table 1 Physiological parameters

Baseline After haemorrhage Resuscitated

MAP (mmHg)

FFP 82 ± 18 53 ± 9 68 ± 11 *#

ALB 74 ± 20 54 ± 12 70 ± 10 *#

RA 4.5 100 ± 9 50 ± 6 57 ± 7

SHAM 84 ± 7 100 ± 20 90 ± 18

ScvO2 (%)

FFP 82 ± 5 40 ± 9 75 ± 7 *

ALB 78 ± 11 44 ± 14 74 ± 9 *

RA 4.5 85 ± 3 46 ± 9 65 ± 11 *

SHAM 82 ± 7 75 ± 5 76 ± 8

Lactate (mmol/L)

FFP 2.2 ± 0.5 6.0 ± 1.9 1.8 ± 0.7 *

ALB 2.2 ± 0.5 6.5 ± 3.3 1.2 ± 0.5 *#

RA 4.5 2.0 ± 0.7 5.4 ± 1.1 2.4 ± 1.4 *

SHAM 1.8 ± 0.3 2.1 ± 1.1 1.8 ± 0.2

Base excess (mmol/L)

FFP 5.1 ± 1.2 −3.9 ± 3.8 5.9 ± 1.0 *†

ALB 5.1 ± 1.4 −4.4 ± 6.4 0.9 ± 1.8

RA 4.5 5.4 ± 1.4 −2.8 ± 2.6 0.3 ± 2.2

SHAM 6.0 ± 1. 3.2 ± 1.6 2.2 ± 2.2

Haematocrit (%)

FFP 42 ± 1 33 ± 3 19 ± 2 *

ALB 42 ± 3 33 ± 5 18 ± 3 *

RA 4.5 42 ± 1 31 ± 5 20 ± 3 *

SHAM 42 ± 1 39 ± 4 40 ± 6

Data presented as mean ± SD. The change in values after resuscitation compared to after haemorrhage within groups
was evaluated with paired t test corrected for multiple analyses with the Bonferroni correction (*P < 0.05). Differences in
between groups after resuscitation was analysed with one-way repeated measurement ANOVA followed by post hoc
testing using the Newman-Keuls correction
MAP mean arterial pressure, ScvO2 central venous oxygen saturation, FFP fresh frozen plasma, ALB albumin, RA
Ringer’s acetate
#Significant difference compared to the RA group
†Significant difference compared to ALB and RA groups, P < 0.05
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differences in syndecan-1 concentrations could be detected between the different

groups after resuscitation (P = 0.1, ANOVA, Fig. 4b). Total amount of circulating

syndecan-1 did not differ between the different resuscitated groups (P = 0.4, ANOVA,

Table 2). Mean difference in amount of circulating syndecan-1 between the animals re-

suscitated with FFP and RA and between animals resuscitated with albumin and RA

were 154 (95 % CI, −74 to 383) ng/kg and 64 (95 % CI, −192 to 320) ng/kg,

respectively.

Transcapillary escape rate

In the resuscitated animals, the TER was 10.6 ± 3.6 %/h for FFP animals, 10.0 ± 2.2 %

for albumin animals and 10.5 ± 2.5 % for RA animals. There were no differences be-

tween resuscitated groups or compared to sham animals (11.9 ± 3.9 %/h) (Fig. 4).

Discussion
The present study showed that the plasma concentrations of markers of endothelial

damage were increased in a model of severe haemorrhagic shock. Plasma concentra-

tions of heparan sulphate were higher in animals resuscitated with Ringer’s acetate

compared to FFP or albumin. The total amount of circulating heparan sulphate did

a

b

Fig. 3 Plasma (a) and blood (b) volumes in resuscitated and sham animals at the end of the experiment.
Data were analysed with one-way ANOVA followed by post hoc testing using the Newman-Keuls correction.
Values are means ± SD. FFP fresh frozen plasma, ALB albumin, RA Ringer’s acetate, *significant difference
compared to RA and SHAM, #significant difference compared to FFP, ALB and SHAM, P < 0.05
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not, however, differ between the resuscitated groups. Resuscitation with FFP or albumin

in a ratio of 1.25:1 and 1:1, respectively, to the blood loss resulted in equal plasma vol-

ume expansion whereas resuscitation with Ringer’s acetate in a ratio of 4.5:1 to the

blood loss resulted in less plasma volume expansion than in the colloid groups. No dif-

ferences in TER for albumin between the resuscitated animals could be detected.

The volume of haemorrhage was chosen to mimic the clinical scenario with a life-

threatening haemorrhage in which early transfusion of blood products have been sug-

gested to be beneficial [2]. Based on the high mortality both prior to resuscitation and

after resuscitation, the high lactate values and low central venous oxygen saturation

prior to resuscitation, we conclude that the model fulfilled our objective. The observa-

tion that blood pressure was not normalized following resuscitation to a normal blood

volume suggests that the haemorrhage caused a systemic inflammatory reaction with

Table 2 Heparan sulphate and syndecan-1 concentrations and total circulating quantity at the end
of the experiment

Concentration Quantity

Baseline After haemorrhage Resuscitated Resuscitated

HS (μg/ml) HS (μg/kg)

FFP 22 ± 20 85 ± 37 53 ± 21 *# 2879 ± 1075 †

ALB 11 ± 6 88 ± 46 59 ± 33 *# 3318 ± 1814 †

RA 15 ± 10 79 ± 37 92 ± 28 † 3731 ± 777 †

SHAM 20 ± 13 37 ± 19 37 ± 25 1683 ± 1396

Syndecan-1 (ng/ml) Syndecan-1 (ng/kg)

FFP 15.3 ± 3.1 20.6 ± 6.1 19.5 ± 4.2 1061 ± 219 †

ALB 15.1 ± 4.8 16.5 ± 4.0 18.0 ± 5.0 970 ± 240 †

RA 16.1 ± 3.3 17.5 ± 4.5 22.6 ± 6.3 *† 906 ± 253 †

SHAM 16.3 ± 2.0 16.3 ± 3.1 14.5 ± 1.9 605 ± 145

Values are means ± SD. The change in concentration after resuscitation compared to after haemorrhage within groups
was evaluated with paired t test corrected for multiple analyses with the Bonferroni correction (*P < 0.05). Differences in
between groups after resuscitation was analysed with one-way repeated measurement ANOVA followed by post hoc test-
ing using the Newman-Keuls correction
FFP fresh frozen plasma, ALB albumin, RA Ringer’s acetate
#Significant difference compared to the Ringer’s acetate group
†Significant difference compared to SHAM, P < 0.05

T
E
R

(%
/h
)

FFP ALB RA SHAM
0

5

10

15

n = 8 n = 7 n = 8 n = 5

Fig. 4 Transcapillary escape rate (TER) for 125I-labelled human serum albumin at the end of the experiment.
No difference between groups was detected with one-way repeated measurement ANOVA. Values are
means ± SD. FFP fresh frozen plasma, ALB albumin, RA Ringer’s acetate
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decreased vascular resistance and/or decreased cardiac contractility [18]. This is also

supported by our result of an increase in plasma concentration of the pro-

inflammatory cytokine, TNF-α after haemorrhage.

The dosing of RA based on a previous study by us and others was intended to result

in a similar plasma volume expansion as in the two colloid groups so that potential ef-

fects of the colloid infusions on the glycocalyx would not be confounded by differences

in plasma volume [15, 19]. The result that plasma volume in the RA group was lower

than in the colloid groups was therefore unexpected. Because the endothelium of all

tissues, except the CNS, is freely permeable to electrolytes, crystalloids are commonly

thought to distribute rapidly in the whole extravascular volume. Hence, the volume of

crystalloid remaining intravascular immediately after resuscitation should reflect the ra-

tio of the extravascular to intravascular distribution volumes. This means that an in-

creased extravascular distribution volume of crystalloids secondary to a shock-induced

SIRS response could explain the low efficacy of crystalloids as plasma volume ex-

panders and such a change in the interstitium has been hypothesized to be an import-

ant contributor to inflammation-induced oedema formation [20]. Support for this

mechanism in inflammatory conditions may be found in a recent publication from our

group in which we found that at 15 min after resuscitation in severe sepsis, only about

8 % of the infused volume of crystalloids remained intravascular [21].

Since we did not measure plasma volume immediately after resuscitation but waited

2 h in the present study, other more slowly acting mechanisms may have contributed

to the poor plasma volume expanding effect of crystalloids compared to colloids. Infu-

sion of crystalloids will decrease the colloid osmotic force that counteracts filtration of

fluid and is likely to further decrease plasma volume expansion by crystalloids. Also, we

cannot exclude that different effects on permeability by FFP and colloids on the one

hand and crystalloids on the other hand could influence plasma volume expansion. If

present, such an effect cannot be specific for FFP since albumin is equally effective as

volume expander. Also, no support for such an effect can be found in TER data. In

summary, we believe that an inflammation-induced increase in the extravascular distri-

bution volume crystalloids in combination with a low plasma colloid osmotic pressure

is the most likely reason for the poor plasma volume expanding properties of RA.

The importance of the difference in plasma volume expansion by the colloids and

crystalloids may be supported the higher blood pressure and the observed trend to-

wards improvement in parameters reflecting adequacy of cardiac output, i.e. central

venous oxygen saturation and clearance of lactate. The potential clinical importance of

this observation may be illustrated by several studies showing that high plasma lactate

and low central venous oxygen saturation are associated with poor outcome in trauma

patients [22–25]. Given that plasma volume was similar in the albumin and FFP

groups, we hypothesize that the significant increase in BE after resuscitation with FFP

is related to the citrate and/or to the buffering capacity of other components of FFP

[26, 27]. As we did not transfuse erythrocytes, restoration of normovolemia can only be

accomplished by an increase in plasma volume above baseline. The observation that

FFP and ALB animals had similar blood volumes as the sham group suggests that we

did not over resuscitate the animals.

Heparan sulphate is a major component of endothelial proteoglycans, and plasma

concentration of heparan sulphate may therefore be regarded as a marker of
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generalized shedding of proteoglycans from the endothelium. To our knowledge, this is

the first report of heparan sulphate levels in rat plasma. The observation that baseline

levels in rats are about twofold higher compared to reports using human controls pa-

tients using the same detection method indicates that species-dependent differences in

heparan sulphate metabolism may exist [28–30].

By measuring plasma volume, we could calculate total circulating amount of heparan

sulphate, and our result supports the concept that constituents of the glycocalyx are

shedded in haemorrhagic shock [8, 31]. Similarly, the increased plasma concentrations

of heparan sulphate in crystalloid-treated animals compared to FFP and albumin are in

line with previous results [8, 31]. It is, however, possible that the interpretation of

plasma concentration is confounded by differences in distribution volume, and we did,

therefore, calculate the total circulating quantity of heparan sulphate. Our result of

similar amount of circulating heparan sulphate in animals resuscitated with colloids

and crystalloids suggests that differences in heparan sulphate concentrations, to a large

extent, reflect differences in distribution volume in the different groups.

In an attempt to identify the molecular source of heparan sulphate, we also measured

syndecan-1 levels in plasma. The rationale for choosing syndecan-1 was that high levels

of syndecan-1 have been associated with poor outcome in trauma patients and that

syndecan-1 is expressed on endothelial cells as well as being a major proteoglycan

within the cardiovascular system [6, 32, 33]. The observation that plasma syndecan-1

levels did not differ between animals resuscitated with FFP and animals resuscitated

crystalloids is in contrast to the results from two recently published studies using a

similar experimental design in which it was demonstrated that resuscitation with FFP is

accompanied with lower plasma levels of syndecan-1 compared to resuscitation with

Ringer’s lactate [8, 31]. Subtle differences in experimental design could explain the dif-

ferences in results such as differences in timing of plasma sampling.

Our result of no effect on TER by haemorrhage could be taken to indicate that per-

meability is unchanged in our model despite the severity of the haemorrhage. However,

given that the model induces an inflammatory response with increased levels of the

cytokine TNF-α as well as increased plasma levels of markers of endothelial dysfunc-

tion, we think that this is unlikely. It should be noted that extravasation of albumin oc-

curs both by diffusion and convection of which the latter is influenced by arterial

pressure [34], and it is more likely that the lower blood pressure in the haemorrhaged

groups may have offset the effect of a permeability increase on TER for albumin. Our

previous finding of a trauma-induced increase TER by about 30 % in a model in which

mean arterial pressure was maintained may support the plausibility of this hypothesis.

This is a change with the same range as the decrease in blood pressure in the haemor-

rhaged groups compared to the sham group. Importantly, our results of a similar TER

in all resuscitated groups indicate that the superior plasma volume expansion by col-

loids is not due to reduced vascular leakage of albumin.

Limitations

It should be recognized that our study suffers from several limitations. We only mea-

sured markers of glycocalyx degradation at one time point after resuscitation, and it is

possible that beneficial effects of FFP on markers of glycocalyx degradation could have
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been detected if observation time had been longer or shorter. Also, although several

studies have documented degradation of endothelial glycocalyx following haemorrhage

by electron microscopy, we cannot be sure that the endothelium is the major source of

heparan sulphate or syndecan-1 [35].

Assuming that shedding of the glycocalyx is positively correlated with severity of

shock, we acknowledge the possibility that mortality after resuscitation may have intro-

duced a bias and decreased levels of syndecan-1 and heparan sulphate. However, be-

cause mortality after resuscitation was similar in the different groups, such an effect is

unlikely to influence the difference in glycocalyx degradation products and is unlikely

to influence the validity of our conclusions. Assuming that crystalloid solutions possess

glycocalyx releasing properties per se, and given the fact that crystalloids were less effi-

cacious than the colloids to restore blood pressure, we cannot exclude that the amount

of heparan sulphate and syndecan-1 would have been higher in the RA group if resusci-

tation had been targeted to obtain similar blood pressures in all groups.

The relatively wide 95 % confidence intervals of difference in amount of circulating

heparan sulphate and syndecan-1 between animals resuscitated with RA and FFP, re-

spectively, suggest we cannot exclude that smaller differences may exist and could have

been detected if more animals had been included. Patients with haemorrhagic shock

present with significantly larger increases in syndecan-1 concentration compared to

controls than observed in the present study [6, 7]. This suggests that species differences

in glycocalyx biology may limit the translatability of our results. Also, inhalational an-

aesthesia has been suggested to mitigate heparan sulphate and syndecan-1 shedding in

ischemia reperfusion, and it is therefore possible that our anaesthesia method may de-

crease the release of heparan sulphate and syndecan-1 [36].

FFP contains endogenous heparan sulphate as well as syndecan-1, and it could be ar-

gued that the addition of exogenous heparan sulphate and syndecan-1 could have influ-

enced our results. Assuming that the donor animals had similar plasma concentrations

of heparan sulphate and syndecan-1 as the sham animals and that no degradation oc-

curred during the preparation of FFP, it can be calculated that resuscitation added

about 420 μg/kg of heparan sulphate and 408 ng/kg of syndecan-1. The transfusion of

heparan sulphate would not influence our conclusions even if no exogenous heparan

sulphate was cleared from plasma. The exogenous syndecan-1 could potentially influ-

ence our result if nothing or very little was cleared from circulation. While there are no

data on clearance of syndecan-1 from rat plasma, other proteoglycans appear to be

cleared very rapidly from plasma with a half-life of about 1 min after intravenous injec-

tion [37]. In humans, it has been shown that syndecan-1 and HS are rapidly cleared

from plasma with plasma half-life in the order of less than 15 min [30]. Based on this,

we conclude that the transfused syndecan-1 is very unlikely to have influenced our

results.

Conclusions
The results indicate that improved outcome in haemorrhagic shock by FFP in part

could be explained by better plasma volume expansion compared to crystalloids. The

decrease in plasma concentration of markers of glycocalyx degradation after resuscita-

tion with FFP is largely secondary to differences in plasma volume and may not accur-

ately reflect effects of FFP on the glycocalyx.
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