
way is an important pathway in the process of hepa­
tocarcinogenesis, and the IGF network is clearly 
dysregulated in many cancers and developmental 
abnormalities. In hepatocellular carcinoma (HCC), 
only a minority of patients are eligible for curative 
treatments, such as tumor resection or liver transplant. 
Unfortunately, there is a high recurrence of HCC after 
surgical tumor removal. Recent research efforts have 
focused on targeting IGF axis members in an attempt 
to find therapeutic options for many health problems. 
In this review, we shed lights on the regulation of 
members of the IGF axis, mainly by microRNAs in 
HCC. MicroRNAs in HCC attempt to halt the aberrant 
expression of the IGF network, and a single microRNA 
can have multiple downstream targets in one or more 
signaling pathways. Targeting microRNAs is a relatively 
new approach for identifying an efficient radical cure 
for HCC. 
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Core tip: Recent research efforts have focused on 
targeting the insulin-like growth factor (IGF) axis in an 
attempt to identify therapeutic options for many health 
problems. Here, we review the regulation of IGF axis 
members in hepatocellular carcinoma (HCC), mainly by 
microRNAs. MicroRNAs work by halting the aberrant 
expression of the IGF network, as demonstrated by 
the fact that a single microRNA can have multiple 
downstream targets in one or more signaling pathways. 
Use of this approach in an attempt to find an efficient 
radical cure for HCC. 
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Abstract
The insulin-like growth factor (IGF) signaling path­
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INTRODUCTION
The insulin-like growth factor (IGF) axis is a highly 
conserved signaling pathway, with a crucial role in 
cellular and tissue regeneration through its proliferative 
and anti-apoptotic activities. This pathway has been 
shown to be dysregulated in many diseases [1]. 
Key players of the IGF network include IGF-Ⅰ and 
IGF-Ⅱ ligands that bind to their membrane bound 
receptor, IGF-type Ⅰ receptor (IGF-1R), and IGF-type 
2 receptor/mannose-6-phosphate receptor (IGF-2R, 
IGF-Ⅱ/M6PR). The bioavailability of IGF ligands is 
controlled through complex formation with IGF binding 
proteins 1-6 (IGFBP 1-6). In the circulation under 
physiological conditions, 70% of IGF-Ⅱ is bound to the 
most abundant IGFBP-3[2]. 

Upon binding of IGF ligands to IGF-1R,which is 
expressed on most cells, its intrinsic tyrosine kinase 
activity is activated with successive phosphorylation 
and activation of the downstream intracellular 
substrates: insulin receptor-substrates 1, 2, and 4 
(IRS1, IRS2, and IRS4)[3-5] as well as src homology 2 
domain containing (SHC) protein, which is responsible 
for the stimulation of growth factor receptor-bound 
protein 2 (Grb2)[6] binding. The phosphatidylinositol 
3-kinase (PI3K)[7] pathway is another downstream 
pathway that is stimulated by IGF ligands. Via the 
PI3K pathway, PKB/Akt suppresses many apoptosis-
stimulating proteins, such as Bad[8] and caspases 9[9], 
or mitosis-promoting signals through GSK-3β reduction 
mediated β-catenin degredation[10]. Signaling of Sos/
Ras/Raf/MAPK-ERK kinase 1 (MEK1)/extracellular-
signal kinase (ERK)[11,12] and translocation of signal 
transducer and activator of transcription 3 (STAT-3) 
into the nucleus[13] transmit additional anti-apoptotic 
and mitogenic stimuli. This triggered regulatory 
network ends up over stimulating the expression of 
multiple target genes, such as p27Kip1, c-fos, c-myc, 
cyclin B, and vascular endothelial growth factor (VEGF). 
Thus, critical cellular processes are managed via IGF/
IGF-1R signaling network, including apoptosis and 
proliferation. 

IGF signaling is important during development, 
where some mutations in IGF-Ⅰ and IGF-Ⅱ have been 
shown to impair normal birth weight in igfI-null[14,15] 

and igfII-null mice[15], respectively. On the contrary, 
overexpression of IGF axis members in some tissues 
led to drastic outcomes. For example; overexpression 
of IGF-Ⅰ protein led to non-small-cell-lung cancer[16], 
while IGF-Ⅱ overexpression led to breast cancer[17] 

and hepatocellular carcinoma (HCC)[18]. 

EPIGENETIC REGULATION OF OUR 
GENOME 
It is clear that regulation of the IGF axis is quite 
important, although the precise mechanisms of this 
regulation remain unclear. Many attempts, however, 
are being made to target components of the IGF 
pathway to alleviate various types of pathology. 

Epigenetic regulation refers to any changes in 
genetic phenotype or expression due to mechanisms 
other than DNA sequence mutations, for example, 
microRNAs and gene methylation. IGF-2R was 
imprinted in humans due to fetal overgrowth, terato
genesis, and carcinogenesis [19]. IGF-Ⅱ is also highly 
affected by epigenetic mechanism and is found to be 
highly upregulated in liver tissues of HCC patients due 
to hypomethylation of its promoter (P4)[20]. 

DNA methylation
Of the types of epigenetic modification in mammals, 
DNA methylation is considered to be the most ex
tensively analyzed. DNA methylation maintains the 
stability of gene silencing, a key process in the regulation 
of gene expression. DNA methylation in mammals takes 
place almost exclusively by covalent modification of 
cytosine residues. This modification is done by adding 
a methyl group to a cytosine ring at the fifth position 
in CpG dinucleotides and is mediated by a family of 
enzymes called DNA methyltransferases (DNMTs)[21]. 
The majority of CpG dinucleotides are localized in so-
called “CpG islands” rather than being evenly distributed 
across the human genome[22,23]. CpG islands are short 
DNA stretches that are preferentially found at the 5’ end 
of genes and comprise about 60% of the sequence of 
the promoters of human gene[24]. During developmental 
stages as well as tissue differentiation, most of the CpG 
islands remain unmethylated. Under normal conditions, 
these CpG sites are mostly in the methylated state[25]. 
Interestingly, some CpG sites in some promoters were 
found to be methylated during development, which 
resulted in long-term transcriptional silencing. 

MicroRNAs
MicroRNAs are small noncoding RNAs that also 
contribute to the epigenetic regulation of the IGF axis. 
These non-coding RNAs consist of non-coding DNA 
sequences that are in full control of gene expression 
and function, as they collectively target up to 90% of 
human genes[26]. In addition, some studies revealed 
that one cluster of two to five microRNAs was able 
to regulate as much as 14% of all genes[27]. MiRNA 
transcription depends on genomic localization. MiRNAs 
can be located in introns of coding or non-coding genes 
or in exons. Transcription is dependent on the host 
gene[28,29]. miRNAs that are independently expressed 
have their own promoter; however, some miRNAs are 
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naturally organized in clusters that share the same 
transcriptional regulation [30]. The biogenesis of miRNAs 
involves several processing and trimming steps by 
RNA endonucleases, with Drosha and dicers giving rise 
to mature microRNAs (approximately 22 nucleotides), 
after being transcribed by RNA polymerase Ⅱ to 
form its genomic sequence. Mature miRNAs are then 
incorporated into RNA-induced silencing complex 
(RISC) through which miRNAs mainly exert their 
regulatory function by base pairing to a complementary 
target region in the 3’ untranslated region (3’UTR) of 
their target gene transcript. Transcripts are regulated 
either through their degradation or translational 
repression[31]. More or less, perfect complementarities 
lead to complete target mRNA degradation. However, 
imperfect complementarities result in decreased 
translational expression of the target gene without 
affecting mRNA level[32,33]. 

In this review, we shed light on the epigenetic 
regulation of the IGF axis in HCC and provid a 
summary of most of the microRNAs involved in the 
process (Table 1). This information may provide insight 
on means to restore the expression of those aberrantly 
expressed microRNAs and the normal expression of 
IGF axis members. 

IGF-Ⅰ
IGF-Ⅰ is a potent and crucial growth factor in the 
IGF signaling network. IGF-Ⅰ is released by different 
tissues, including the liver[34]. IGF-Ⅰ is the key 
mediator of growth hormone (GH) function in different 
developmental stages[35]. GH is secreted by the 
pituitary gland, and it binds to GH receptors in the 

liver to activate several signaling pathways leading 
to transcription of several genes, including IGF-Ⅰ. 
Hepatocytes are the fundamental source of IGF-
Ⅰ in the liver, with a minimal contribution from non-
parenchymal cells[36]. Maximum levels of circulating 
IGF-Ⅰ are reached starting from birth up to puberty 
and then they significantly decline thereafter with 
age[37]. IGF-Ⅰ is a crucial ligand for the IGF pathway, 
and it is highly expressed and known to highly promote 
the growth of several tumors. Interestingly, this is not 
the case in liver cancer, where it has been strongly 
suggested that IGF-Ⅰ is an anti-tumorgenic factor 
in HCC. These suggestions were based on several 
findings: (1) in cases with liver cirrhosis as the type of 
chronic liver damage, IGF-Ⅰ expression was minimal 
or even totally blocked in the most severe cases[38]. 
Despite minimal IGF-Ⅰ, cirrhosis progressed into HCC, 
which suggests that decreased expression of IGF-Ⅰ is 
a protumorigenic signal for hepatocarcinogenesis[39]; 
(2) Low IGF-1 expression levels were also seen in 
HCC compared to healthy volunteers[40], regardless 
of the extent of liver function impairment[39]; and (3) 
decreased IGF-Ⅰ expression was strongly associated 
with high tumor invasiveness and poor prognosis[41]. 

Despite its importance in growth and differentiation, 
epigenetic regulation of IGF-Ⅰ has not been yet exten
sively researched.

microRNAs and IGF-I in HCC
To date, miR-190b is the only microRNA described to 
regulate IGF-Ⅰ directly in HCC cells. Ectopic expression 
of miR-190b resulted in decreased IGF-Ⅰ expression in 
hepatoma cell lines. Insulin resistance may be a part 
of the physiopathologic significance of decreased IGF-
Ⅰ expression in HCC development and progression[42]. 
Interestingly, one study demonstrated a reciprocal 
relationship between IGF-Ⅰ and anti-miR-122. HepG2 
cells secreted IGF-I that was able to suppress miR-122 
expression in Huh-7 cells. In this experiment, IGF-I 
hindered intercellular exosomal transfer of miR-122, 
thereby ensuring its own proliferative signals by 
repressing growth by retarding miR-122 in neighboring 
cells[43]. 

In a recent study by our group, overexpression of 
the tumor suppressor miR-486-5p in natural killer cells 
of HCC patients resulted in elevated expression of IGF-
Ⅰ mRNA, and this was directly correlated with induced 
perforin and NKG2D activating receptor expression(a 
representatives of natural killer cell cytotoxicity)[44].

IGF-Ⅱ  
IGF-Ⅱ is a well described growth factor that is 
involved in neonatal development and progression of 
many cancers[45]. In contrast to IGF-Ⅰ, GH does not 
regulate IGF-Ⅱ release[2]. Both parenchymal and non-
parenchymal liver cells can produce IGF-Ⅱ[36], and 
IGF-Ⅱ expression reaches its maximal level during the 
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Table 1  microRNAs that regulate key players of the insulin-
like growth factor axis in hepatocellular carcinoma

Downstream IGF 
member

Upstream microRNAs Net effect on IGF member 
expression

IGF-Ⅰ miR-190b Downregulated
miR-486-5p Upregulated

IGF-Ⅱ miR-615-5p
Let-7a Downregulated
miR-96
miR-182 Upregulated
miR-155

IGFBPs: miR-17-5p Downregulated
IGFBP3
IGF-1R miR-145

miR-122
miR-99a
miR-223 Downregulated

miR-486-5p
miR-182
miR-1275
miR-181a
miR-96
miR-155 Upregulated

IGF-2R miR-211 Downregulated

IGF: Insulin-like growth factor.
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defects had no impact on post-transcriptional IGF-
Ⅱ expression regulation in intrauterine growth 
restriction [61], it was reported that miR-483-5p was 
downregulated after Hepa1-6 cells treatment with 
chromeceptin (IGF-Ⅱ transcripts inhibitor), since 
the expression of the entire transcript of IGF-Ⅱ was 
silenced. 

We reported on several microRNAs that highly 
controlled IGF-Ⅱ; beginning with miR-615-5p, 
which is exclusively expressed in HCC tissues as a 
compensatory anti-tumor mechanism and totally 
absent in healthy liver tissues. miR-615-5p intended 
overexpression was able to markedly suppress IGF-
Ⅱ expression in HuH-7 and HepG2 cells, resulting 
in inhibited cellular viability, migration, proliferation, 
and colony-forming ability[62]. MicroRNAs are known 
to knock down the expression of their target gene. 
However, in HuH-7 and HepG2 cells, our results showed 
that overexpression of the oncomiR-155 remarkably 
induced the expression of IGF-Ⅱ, which was a highly 
predicted downstream target by several computational 
algorithmic tools. The concomitant overexpression of 
miR-155 and its predicted downstream target IGF-Ⅱ 
was highly correlated with enhanced cell proliferation, 
migration, viability, and clonogenicity[63-65] in addition 
to the single-clustered hepatic metastamiRs, miR-96 
and miR-182, which induced IGF-Ⅱ mRNA expression 
following overexpression in HuH-7 cells[66].

The expression of IGF-Ⅱ is regulated by mecha
nisms other than gene imprinting and miRNAs. A 
recently discovered family of mRNA binding proteins 
called IGF-Ⅱ mRNA binding proteins (IGF2BPs) was 
shown to greatly influence IGF-Ⅱ expression. Of the 
three IGF2BPs, IGF2BP-1 was reported to repress the 
IGF-Ⅱ mRNA translation in growing chicken by binding 
to its 5’-UTR at multiple sites[67]. Both IGF2BP-2 and 
3 are upregulated in HCC, and their expression is 
strongly correlated with tumor grade, poor prognosis, 
and metastasis[68]. The regulatory effects of IGF2BP-2 
and 3 on IGF-Ⅱ expression have never been inves
tigated in HCC.

Our research group performed bioinformatics 
analysis, and it was predicted that let-7a can target 
both IGF2BP-2 and 3 with a very promising score. This 
was confirmed via forced expression of let-7a in Huh7 
cells, which resulted in a significant downregulation 
of both IGF2BP-2 and 3 mRNAs. Furthermore, 
transfecting Huh7 cells with inhibitors of let-7a resulted 
in restored expression of both IGF2BP-2 and 3 mRNAs. 
These finding show that let-7a can also downregulate 
IGF-Ⅱ indirectly through targeting its regulators, the 
IGF2BPs[69-70].

microRNA-DNA methylation interplay in IGF-Ⅱ  
regulation
Previously, we showed that the let-7a gene was more 
hypermethylated in HCC tissues than in healthy liver 
biopsies. The relationship between hypermethylated 

fetal stage, where it functions in a pivotal role in fetal 
development [46]. Nevertheless, after birth, IGF-Ⅱ levels 
decline gradually and reach a constant steady state for 
life[47]. IGF-Ⅱ has high affinity towards IGF-1R through 
which it regulates cell growth[2]. More interestingly, 
IGF-Ⅱ binds to IGF-2R to induce IGF-Ⅱ internalization 
and breakdown[48]. Extensive research has found that 
the IGF-Ⅱ ligand is the most epigenetically regulated 
member among the IGF family.

IGF-Ⅱ overexpression has been evidenced in 
16%-40% of human HCC[49]. Experimental induction 
of IGF-Ⅱ expression was positively correlated with 
enhanced cell growth; moreover, its inhibition promoted 
apoptosis [50,51]. 

DNA methylation and IGF-Ⅱ  in HCC
Genomic imprinting is a genetic phenomenon where 
genes are expressed in a parent-of-origin-specific 
manner. The IGF-Ⅱ  gene is maternally imprinted 
in humans[52-53], which emphasizes the importance 
of gene dosage; and normal development requires 
controlled accurate expression of IGF2. Moreover, Loss 
Of Imprinting (i.e., bi-allelic expression) of the IGF-
Ⅱ  gene in different tumors explains dysregulation 
of IGF-Ⅱ  imprinting, which plays a major role in 
tumorigenesis. IGF-Ⅱ  LOI has been demonstrated 
in colorectal carcinomas[54], Wilms tumor[55], juvenile 
nasopharyngeal angiofibromas[56], and childhood acute 
lymphoblastic leukemia[57]. In the case of bi-allelic 
expression of IGF-Ⅱ from both parental IGF-Ⅱ alleles, 
the incline in IGF-Ⅱ production was believed to be the 
major carcinogenic mechanism[58]. In HCC, IGF-Ⅱ  LOI 
has been frequently reported to be involved in tumor 
development. In a study where 71 HCC tissues were 
analyzed, LOI of the IGF-Ⅱ  locus was reported in 89% 
of the tissues[59]. This observation suggests that loss 
of parental-specific imprinting at the IGF-Ⅱ  locus is 
associated with HCC.

microRNAs and IGF-Ⅱ  in HCC
Emerging studies on the regulation of IGF-Ⅱ by 
microRNA are a step towards a new therapeutic 
approach for the control of many cancers and de
velopmental abnormalities. A link between IGF-Ⅱ and 
its intronic-derived miR-483 has been revealed. The 
miR-483 sequence is located in intron 2 of the IGF-
Ⅱ  gene, and the relationship between the intronic 
miR-483 and its host gene is quite uncommon. miR-
483-3p was found to be co-expressed with its host 
gene IGF-Ⅱ , although some tumors exhibited a high 
expression of miR-483-3p without a concomitant 
increase in IGF-Ⅱ. Therefore, it was suggested that 
miR-483-3p might work in cooperation with IGF-
Ⅱ or independently of IGF-Ⅱ, where it acts as an 
autonomous oncogene. In addition, inhibition of 
miR-483-3p by oligonucleotides did not affect IGF-
Ⅱ expression and led to miR-483-3p inhibition only 
in HepG2 cell lines[60]. While miR-483-3p expression 
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let-7a3 and IGF-Ⅱ was further investigated, and 
it was shown that their expression in HCC tissues 
demonstrated an inverse relationship. This relationship 
was further confirmed by forced expression of let-7a 
in HuH-7 cells, which resulted in IGF-Ⅱ expression 
repression[71]. 

The impact of reactivation of the let-7a-3 gene was 
determined by utilizing the demethylating drug 5-aza-
2’-deoxycytidine (Decitabine). Decitabine passively 
removes methylation patterns by inhibiting DNMT-1[71]. 
DNMT-1 is called the maintenance DNMT as it is 
responsible for the inheritance of methylation patterns 
in cells over cell divisions[72]. Thus, inhibition of DNMT-1 
by Decitabine caused gradual loss of methylation and 
relief of expression of epigenetically silenced genes[71]. 
In our work, treating Huh7 cells with high doses of 
Decitabine for 5 d resulted in significant upregulation 
of let-7a. Interestingly, the reactivation of let-7a 
expression resulted in a significant downregulation of 
IGF-Ⅱ[69].

IGFBPs
IGFBPs are six high affinity binding proteins (IGFBP1-6) 
that share 36% homology[73,74]. IGFBPs genes are 
transcribed in a cell specific manner under tight 
hormonal and growth factor control[75]. Although 
IGFBPs are expressed widely among tissues, one 
or two classes are preferentially produced in each 
tissue[76]. Liver is the principle source of IGFBPs[36], 
and circulating IGFBPs bind efficiently to IGF-Ⅰ and 
IGF-Ⅱ[76-77]. Since IGBPs are abundantly expressed, 
99% of circulating IGF-Ⅰ is bound to IGFBPs[75,78]. 
IGFBPs function by decreasing the bioavailability of 
IGF ligands, weakening IGF-1R axis. Therefore, some 
IGFBPs have anti-proliferative effects in human HCC. 
For instance, ectopic treatment of HepG2 cells by 
IGFBP3 was able to reverse the carcinogenic effect of 
exogenously-supplied IGF-Ⅰ[79]. Consequently, as a 
cancer hallmark of HCC, IGFBPs were poorly expressed 
in human HCC[80]. 

microRNAs and IGFBPs
Recently, research on the biological roles of IGFBPs has 
expanded. Continuous accumulation of data indicates 
that IGFBPs are not just responsible for modulating 
IGF bioactivity but are also responsible for important 
biological actions independent of their abilities to bind 
IGFs[81]. 

Our previous work described miR-17-5p as an 
oncomiR in HCC that contributed to increase in the 
proliferation and migration of HuH-7 cells upon miR-
17-5p overexpression[82]. In further studies, our group 
demonstrated a direct relationship between miR-17-
5p and IGFBP-3 mRNA expression in HCC patients. 
However, bioinformatics as well as gain and loss of 
function experiments of miR-17-5p in HuH-7 cells 
showed downregulation of IGFBP-3 mRNA following 
overexpression of miR-17-5p in HuH-7 cells[83]. In 

addition, miR-96 and miR-182 forced overexpression in 
HuH-7 cells resulted in IGFBP-3 mRNA expression[65].

IGF-1R 
IGF-1R is an important transmembrane gate for 
IGFs that opens the way for IGF mitogenic pathway 
activation through its intrinsic tyrosine kinase activity[84]. 
Binding of IGF-Ⅰ and IGF-Ⅱ potently activates the IGF-
1R [85]. Consequently, IGF-1R undergoes conformational 
changes, autophosphorylation of specific tyrosines, and 
activation of certain docking proteins, insulin-receptor 
substrate proteins (IRS-1 to -4)[1]. 

Healthy mature hepatocytes do not express IGF-
1R, whereas HCC cells exhibit overexpression and 
overactivation IGF-1R[86]. Overexpression of IGF-
1R in HCC has been extended to its downstream 
components, such as IRS-1, which correlates with 
tumor growth [87]. 

microRNAs and IGF-1R
IGF1R is widely regulated by microRNAs in HCC. 
miR-145 was shown to be downregulated in HCC, 
and restoration of its expression in an in vitro model, 
HKCl-C2, was associated with inhibition of cellular 
viability and proliferation. The underlying tumor 
suppressing mechanism of miR-145 was reported to 
be via targeting IGF-1R together with its downstream 
docking proteins IRS1 and IRS2 (24690171)[88] and an 
important circuit involving GSK-3p and CCAAT enhancer 
binding protein (C/EBP)α. IGF-1R and miR-122 
relationship was unveiled, where IGF-1R results in 
activation of the downstream Akt that led to GSK-3p 
kinases activation (via de-phosphorylation), which then 
phosphorylated the transactivator C/EBPα that bound 
to miR-122 promoter, inducing miR-122 expression. 
Authors have experimentally validated IGF-1R as a 
direct target of miR-122 in HepG2 cells, where miR-122 
overexpression resulted in IGF-1R downregulation. 
More interestingly, miR-122 was able to abolish growth 
signaling through the IGF-1R/Akt/GSK-3p/cyclin 
D1 pathway, which subsequently resulted in DNA 
replication and cell cycle progression [89]. miR-99a was 
also suggested to target IGF-1R in HCC cells. Forced 
overexpression of miR-99a downregulated IGF-1R, 
which led to cell cycle arrest, inhibited colonigenicity, 
and growth of HCC cells[90]. Moreover, overexpression 
of miR-223 in hepatoma, leukemia, and HeLa cells 
revealed potent IGF-1R downregulation that resulted 
in suppressed proliferation, growth rate, and colony 
formation in vitro and in vivo tumorigenicity in nude 
mice[91]. 

In our research group, several microRNAs were 
described that regulate IGF-1R in HCC. The single-
clustered hepatic metastamiRs miR-96 and miR-182 
were able to regulate the expression of IGF-IR in 
a paradoxical manner in Huh-7 cell lines, where 
forced expression of miR-96 induced IGF-IR mRNA 
expression in contrast to miR-182, which inhibited 
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IGF-IR mRNA expression in HuH-7 cells[66], in 
addition to oncomiR-155 that induced IGF-1R mRNA 
expression upon miR-155 intended overexpression 
in HuH-7 cells. This finding was closely correlated 
to increased HuH-7 cell viability, proliferation, 
migration, and clonogenicity[64,66]. Additionally, we 
demonstrated that forced overexpression of miR-
181a negatively regulated IGF-1R and an IGF-1R 
regulatory protein, Decorin, in HCC cell lines[92]. Using 
an immunomodulatory approach, our group showed 
for the first time that forced expression of miR-486-
5p in natural killer cells isolated from HCC patients 
was able to downregulate IGF-1R together with its 
downstream signaling proteins STAT3 and mTOR. 
This downregulation was inversely correlated with the 
cytotoxicity of HCC-NK cells, which was represented 
by overexpression of perforin and NKG2D activating 
receptor upon miR-486-5p overexpression[44].

IGF-2R
IGF-2R is expressed from the IGF-ⅡR gene, and only 
10% of IGF-2Rs are expressed on the cell surface[93]. 
Its extracellular domain has 15 homologous tandem 
repeats that enable the receptor to bind to M6P 
containing proteins as well as M6P free factors[94]. 
IGF-Ⅱ is among the M6P free proteins[95] in addition 
to IGF-I that binds the receptor with lower affinity[95]. 
The IGF-Ⅱ-IGF2R complex travels to the endosomal 
compartment; where the IGF-Ⅱ is degraded, and 
the receptor is re-expressed on the cell membrane to 
capture more ligands[96]. Therefore, in the IGF axis, 

IGF-2R is the scavenger receptor that regulates IGF-Ⅱ 
bioavailability. Accordingly, IGF-2R was demonstrated 
as a tumor suppressor factor among the mitogenic IGF 
family [97-99].

IGF-2R expression profile in HCC meets the 
features of a tumor suppressor, as it is downregulated 
and closely related with increased IGF-Ⅱ expression 
and cellular proliferation in vitro and in vivo[100, 101]. 

DNA methylation of IGF2R
IGF2R gene imprinting profile varies among spe
cies[99,102]. Polymorphic expression of IGF2R was 
evidenced in humans, where the majority showed a 
biallelic IGF2R expression while some showed imprinted 
expression[19,103]. These individuals with imprinted 
expression were liable to develop HCC due to decreased 
expression and function of IGF2R protein[104]. 

IGF-2R regulation by microRNAs 
IGF-2R regulation by microRNAs exhibits the lowest 
records to date. This finding might be due to the 
lack of an intrinsic tyrosine kinase activity, making it 
not involved in many processes of cellular division or 
development. 

Based on an algorithmic analysis, it was found 
that miR-453 needs less energy for binding to the 3’
UTR of IGF-2R than miR-657, which shows a stronger 
hybridization of the former to IGF-2R[105]. In malignant 
melanomas, miR-211 was found to be silenced; and 
IGF2R, as shown by its expression induction in cell 
lines, was suppressed. Therefore, silencing of miR-211 

miR-486-5p
miR-122
miR-99a
miR-145
miR-223
miR-182

IGFBP-3
miR-615-5p

miR-17-5p
miR-155

miR-190b
miR-486-5p

IGF-2R

miR-211

Let-7a

IGF-1R

miR-155
miR-96miR-1275

IGF2BP-1

IGF2BP-2

IGF2BP-3

IGF-ⅠIGF-Ⅱ

Cy
to

pl
as

m
  
  
  
  
  
 E

xt
ra

-c
el

lu
la

r 
Sp

ac
e

Figure 1  Regulation of insulin-like growth factor signaling pathway by microRNAs in hepatocellular carcinoma. A schematic representation indicating the 
insulin-like growth factor (IGF) signaling pathway with its different members. MicroRNAs were shown to impact differentially IGF members. Some microRNAs induce 
the expression of their downstream IGF target (showed as an arrow), while others inhibit the expression of their downstream targets (showed as dash-ended line). 
Interestingly, some microRNAs showed an inhibitory effect on their downstream target directly as well as indirectly, such as miR-1275 and Let-7a.
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may lead to melanoma invasiveness and further 
progression through loss of control on IGF-2R[106]. 

CONCLUSION
In the new and rapidly emerging field of microRNAs, 
implementation of the short non-coding RNAs and 
RNA interference based treatment in clinical practice 
is becoming a possibility. In conclusion, the UTRs of 
IGFs, IGFBP, and IGF receptors have been shown to 
be targeted by numerous microRNAs that ultimately 
regulate their targets at the mRNA and/or protein 
level. This regulation by a big group of upstream 
microRNAs could be a potentially new area of research 
for harnessing the undesirable effects of IGF network 
deregulation, or on the other hand, inducing their 
developmental functions. It was remarkable to 
find several microRNAs that can regulate multiple 
targets solely within one pathway, such as miR-155, 
miR-96, miR-182, and let-7a (Figure 1). Regulation 
of such crucial IGF signaling pathway components 
by microRNAs is still considered a new area for 
research that needs further investigation. Since most 
of the studies that investigated IGF axis regulation 
by microRNAs were done in cancers associated with 
upregulated mitogenic IGF members, correction of this 
pathway could potentially tame the wild effects of the 
IGF proteins. 
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