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Abstract

In peripheral tissues insulin activates signaling cascades to facilitate glucose uptake from the 

blood into tissues like liver, muscle and fat. While insulin appears to play a minor role in the 

regulation of glucose uptake in the central nervous system (CNS), insulin is known to play a major 

role in regulating synaptic plasticity in brain regions like the hippocampus. The concept that 

insulin regulates hippocampal neuroplasticity is further supported from animal models of type 2 

diabetes (T2DM) and Alzheimer's disease (AD). The goal of this review is to provide an overview 

of these studies, as well as the studies that have examined whether deficits in hippocampal insulin 

signaling are amenable to intervention strategies.

Introduction

Insulin signaling in the CNS

Insulin is synthesized by pancreatic β cells and is released into circulation in response to 

increases in plasma glucose levels. Once released into circulation, insulin binds to and 

activates insulin receptors to promote glucose uptake and utilization in peripheral tissues 

such as liver, muscle and fat. While the central nervous system was once viewed as an 

insulin-insensitive organ, studies by Woods and coworkers demonstrated that 

intracerebroventricular administration of insulin suppressed food intake and body weight in 

a dose-dependent manner [1]. These seminal observations shed light on a role for insulin in 

the CNS and ultimately lead to a greater understanding of the role of hypothalamic peptide 

systems in the regulation of food intake, body weight and metabolism [2;3]. Beyond the 

hypothalamus, it is clear that the actions of insulin extend into other regions of the CNS 

including the hippocampus. Insulin receptors are expressed in the hippocampus [4;5] and 

activate similar signaling cascades as have been identified in peripheral tissues [6] In this 
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regard, insulin crosses the blood-brain barrier (BBB) by a carrier facilitated process [7] and 

binds to insulin receptors expressed in the CNS, including the hippocampus. The insulin 

receptor is a heterotetrameric protein complex consisting on 2 α subunits that provide the 

insulin binding site and the membrane spanning β subunits that stimulate 

autophosphorylation of the β subunits. This initiates several signaling cascades, including 

the PI3-kinase/Akt pathway and MAPK/Erk signaling pathway (See Figure 1). It is 

important to note that these insulin-stimulated signaling cascades exhibit significant cross-

talk and also that these signaling pathways are not the exclusive domain of insulin receptor 

activation. For example, leptin also facilitates hippocampal synaptic plasticity through 

activation of these pathways [8]. Conversely, hippocampal insulin resistance (i.e. ‘stop 

signs’ in insulin signaling; Figure 1) contributes to neuroplasticity deficits in T2DM, obesity 

and AD. The sections below will describe causes and consequences of this biphasic 

relationship between hippocampal insulin signaling and neuroplasticity, with a particular 

emphasis on how hippocampal insulin resistance contributes to the structural, functional and 

behavioral deficits observed in T2DM, obesity and AD.

Insulin, cognition and behavior

Clinical and preclinical studies support the hypothesis that insulin is a critical regulator of 

structural and functional plasticity in the hippocampus, including cognitive function. In this 

regard, studies by Alkon and co-workers demonstrated that spatial learning increases insulin 

receptor expression and signaling in the rat hippocampus [9]. In addition, a number of 

studies have reported that increasing hippocampal insulin levels increases behavioral 

performance in control rats. For example, intracerebroventicular insulin administration 

improves behavioral performance in the passive avoidance task [10], while 

intrahippocampal administration of insulin improves spatial learning and memory in control 

rodents [11-13]. Intranasal insulin administration also increases both short and long term 

memory retrieval in mice [14]. Interestingly, these studies also demonstrated that activation 

of hippocampal insulin signaling participates in the memory-enhancing properties of insulin 

[11] and that increasing brain insulin levels does not impact peripheral glucose metabolism 

[12;14]. These rodent studies correlate nicely with clinical studies demonstrating that the 

cognitive-enhancing effects of intranasal insulin are not associated with changes in 

peripheral glucose homeostasis in humans [15].

Stop signs in CNS insulin signaling

The accumulated data from both clinical and preclinical studies support the hypothesis that 

hippocampal insulin resistance contributes to neuroplasticity deficits in T2DM, obesity and 

AD. For example, deficits in hippocampal insulin receptor signaling (i.e. hippocampal 

insulin resistance) have been identified at each step in this cascade, including impairments in 

BBB transport of insulin [16-18], reduced insulin-stimulated phosphorylation events [19-22] 

and reduced trafficking of insulin sensitive glucose transporters [20;23;24]. In addition, 

increased serine phosphorylation of insulin receptor substrate 1 (IRS-1), which is a hallmark 

feature of peripheral insulin resistance, is also observed in the hippocampus of mice fed a 

high fat diet [22]. Collectively, these studies demonstrate that deficits in insulin receptor 

signaling can occur at all steps in the cascade, from the transport of insulin into the CNS to 

the level of transcription. More importantly, these results support the hypothesis that 
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hippocampal insulin resistance is a keystone mechanistic mediator of neuroplasticity deficits 

observed in experimental models of T2DM and obesity.

Cellular and Molecular underpinnings of hippocampal insulin resistance

Diabetes and obesity are characterized by a wide variety of metabolic and endocrine 

abnormalities, many of which may elicit hippocampal insulin resistance (Figure 2). This 

includes dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis that is 

characterized by elevated levels of glucocorticoids [23;25]. Our previous studies have 

demonstrated that exposure to glucocorticoids elicits peripheral insulin resistance, as well as 

hippocampal insulin resistance [20]. Additional support is provided by Stranahan and 

coworkers, who showed that deficits in hippocampal synaptic plasticity observed in db/db 

mice could be reversed by adrenalectomy and replacement with physiological levels of 

glucocorticoids [26]. In addition to HPA axis dysregulation, impairment in mitochondrial 

function leading to increased production of reactive oxygen species (ROS) and lipid 

peroxidation products is also suggested to contribute to the neurological complications 

associated with metabolic disorders [27], including the development of hippocampal insulin 

resistance [28]. Pro-inflammatory cytokines may also elicit hippocampal insulin resistance; 

indeed, chronic mild inflammation is a characteristic feature of metabolic disorders [29]. In 

metabolic disorders associated with increases in adiposity, it is proposed that macrophages 

infiltrate adipocytes thereby leading to increases in the production and secretion of pro-

inflammatory cytokines. Increases in pro-inflammatory cytokines are proposed to transduce 

their signal across the BBB and induce neuroinflammation. In support of this hypothesis, 

immunohistochemical indices of increased microglial activation and increases in pro-

inflammatory cytokines are observed in the hippocampus of experimental models of T2DM 

and obesity [30;31]. More recent studies have identified a critical role for IL-1 signaling in 

the behavioral deficits associated with obesity and diabetes phenotypes [32•]. Interestingly, 

neuroinflammation-induced insulin resistance has also been proposed as a potential 

mechanism that links metabolic disorders with AD [33]. Amyloid β oligomers (AβO) may 

similarly link insulin resistance in T2DM with AD. In this regard, intrahippocampal AβO 

administration decreases spatial memory performance [34•] and mechanistically these 

impairments in spatial learning are proposed to result from AβO-mediated decreases in 

hippocampal insulin receptor expression and signaling [34•,35••,36]. While it is likely that 

these factors also act more directly to impair hippocampal synaptic plasticity, these studies 

identify HPA axis dysregulation, mitochondrial dysfunction, neuroinflammation and AβO as 

factors that elicit hippocampal insulin resistance.

Behavioral consequences of hippocampal insulin resistance

The concept that hippocampal insulin resistance contributes to neurobehavioral deficits is 

supported by rodent models of insulin resistance. This includes studies in rodents fed a high 

fat diet (HFD), experimental models of T2DM/obesity (such as Zucker rats, db/db and ob/ob 

mice) and molecular approaches to reduce brain insulin receptor expression. Behavioral 

deficits in hippocampal-dependent learning are consistently observed in these experimental 

models of T2DM and obesity [28], including deficits in spatial learning in the water maze 

[37-40], object recognition testing [26;41], discrimination testing [42;43], contextual fear 

conditioning [44] and the variable interval delayed alternation task [23;45-47]. In addition to 
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deficits in learning and memory tasks, increases in depressive-like behaviors and anxiety-

like behaviors are observed in animal models of T2DM and obesity [48-51]. These findings 

are consistent with clinical observations that patients with metabolic disorders exhibit 

cognitive deficits [52] and also have increased risk of developing neuropsychiatric disorders 

like depressive illness [53;54]. Importantly, these studies support the concept that 

hippocampal insulin resistance contributes to deficits in hippocampal-dependent function.

Structural and functional consequences of hippocampal insulin resistance

Additional studies have begun to identify the structural and functional neuroplasticity 

deficits that may contribute to the behavioral deficits observed in experimental models of 

insulin resistance, including decreases in neurogenesis in the dentate gyrus [55;56], 

decreases in spine density [57], alterations in synapse formation [44] and decreased BBB 

integrity [58]. Importantly, these structural changes are associated with behavioral deficits in 

diabetes/obesity phenotypes [38;39;43;44]. Similarly, functional deficits in hippocampal 

synaptic transmission, specifically impairments in stimulus-evoked long term potentiation 

(LTP), are associated with spatial memory deficits in experimental models of insulin 

resistance, including Zucker rats [37;40], db/db mice [26;40] and rodents fed a high fat diet 

[38]. Insulin receptor haploinsufficient (i.e. IR+/-) mice also exhibit deficits in LTP that are 

accompanied by spatial learning deficits [41]. These electrophysiological deficits are likely 

driven in part by alterations in glutamate receptor expression and subunit composition (For 

reviews see [59;60]). Histochemical features normally associated with AD-like pathology, 

such as hyperphosphorylated tau protein, are also observed in the hippocampus of rodents 

with insulin resistance [61-64], which provides another example of where the causes and 

consequences of insulin resistance may overlap in AD and T2DM.

Causal relationship for hippocampal insulin resistance and neuroplasticity deficits

While these studies involving experimental models illustrate that hippocampal insulin 

resistance is correlated with structural, functional and behavioral deficits, they cannot 

demonstrate a causal link between hippocampal insulin resistance and these neuroplasticity 

deficits. As noted above, experimental models of T2DM and obesity exhibit a wide array of 

metabolic and endocrine changes in addition to insulin resistance, including leptin 

resistance, glucose intolerance, HPA axis dysregulation and increases in pro-inflammatory 

cytokines. Moreover, the key loci of insulin resistance that mediate hippocampal 

neuroplasticity deficits in diabetes/obesity phenotypes remain unclear. More simply, does 

peripheral insulin resistance, CNS insulin resistance or a combination of peripheral and 

central insulin resistance contribute to hippocampal neuroplasticity deficits in metabolic 

disorders like T2DM? To address this issue, we recently developed an animal model of 

hippocampal-specific insulin resistance. Using virus-mediated gene transfer, we 

downregulated insulin receptor expression in the hippocampus without affecting 

hypothalamic insulin receptor expression. In addition, rats with hippocampal-specific insulin 

resistance did not exhibit changes in body weight, body adiposity or peripheral insulin 

sensitivity. However, rats with hippocampal-specific insulin resistance exhibited changes in 

glutamate receptor subunit expression, decreases in stimulus-evoked LTP and impairments 

in spatial learning [65••]. These results demonstrate that hippocampal insulin resistance may 

occur independent of peripheral insulin resistance and glucose dysregulation and supports 
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the concept that hippocampal insulin resistance contributes to the development of cognitive 

deficits observed in patients with metabolic disorders like T2DM and obesity.

Restoration of hippocampal insulin signaling

Restoration of insulin signaling has shown promise in reversing hippocampal neuroplasticity 

deficits in rodents with insulin resistance. For example, while insulin sensitivity was reduced 

in diet-induced obese rats provided a high fat diet, higher doses of intrahippocampal insulin 

effectively reversed spatial learning in this model of insulin resistance [11]. Several studies 

have also examined the ability of anti-diabetic drugs to reverse hippocampal synaptic 

plasticity deficits, with mixed results. Specifically, the PPAR-γ ligand rosiglitazone reversed 

HFD-induced deficits in spatial memory [66] while metformin administration did not rescue 

operant learning behavioral deficits in HFD rats [67]. Studies aimed at increasing CNS 

activity of the incretins (i.e. glucagon-like peptide and glucose dependent insulinotropic 

polypeptide) have yielded more consistent findings. In this regard, incretin analogs restore 

brain insulin activity and behavioral performance in experimental models of insulin 

resistance [68-70]. Similarly, inhibition of dipeptidyl peptidase-4 activity, which is 

responsible for incretin degradation, reversed HFD-induced decreases in hippocampal 

insulin signaling and impairments in spatial learning [71]. Collectively, these 

pharmacological approaches support the concept that restoration of behavioral performance 

in experimental models of insulin resistance involves enhancement of hippocampal insulin 

activity.

Conclusions and translational perspectives

While this review has focused on experimental models of diabetes and obesity, these 

findings provide insight into the observations in patients with metabolic disorders. Indeed, 

structural and functional deficits are observed in the hippocampus of patients with insulin 

resistance, including cognitive dysfunction [28]. These rodent studies also support the 

concept that activation of hippocampal insulin signaling contributes to the pro-cognitive 

effects of intranasal insulin administration in normal healthy adults [72;73] in T2DM 

patients [74;75••] and in AD patients [76;77]. Similarly, the pro-cognitive effects of the 

incretin analogs may result at least in part from the ability of these compounds to cross the 

BBB and activate hippocampal incretin signaling to promote cognition in patients with 

metabolic disorders [78;79]. Increased physical activity [57;80;81] and weight loss 

approaches [82-84] also restore behavioral performance in rodent models of T2DM and 

obesity, thereby supporting data indicating that lifestyle interventions enhance cognitive 

performance in patients with metabolic disorders. This includes aerobic exercise [85;86] and 

weight loss achieved through bariatric surgical procedures [87•]. While these lifestyle 

approaches improved peripheral insulin sensitivity in these patient populations, it remains to 

be determined whether the pro-cognitive effects of these interventions involves 

enhancement of hippocampal insulin signaling. However, if the preclinical studies are truly 

‘translatable’, the rodent studies support the hypothesis that restoration of hippocampal 

insulin signaling is responsible for improved cognitive performance in these clinical 

settings. More importantly, these studies illustrate that pharmacological and lifestyle 
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approaches represent promising treatment strategies that have the potential to attenuate or 

reverse cognitive deficits in T2DM, obesity and AD.
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Highlights

• Insulin signaling in the central nervous system (CNS) facilitates cognition

• CNS insulin resistance (IR) reduces cognition and neuroplasticity

• Hippocampal IR impairs cognition and neuroplasticity independent of peripheral 

IR

• Restoration of hippocampal insulin activity improves cognition and 

neuroplasticity
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Figure 1. Insulin receptor signaling in the hippocampus
Insulin crosses the blood brain barrier (BBB) via a carrier facilitated process to activate 

insulin receptors in the CNS and stimulate similar signaling cascades as has been described 

in peripheral tissues such as skeletal muscle and adipose tissue. These insulin signaling 

cascades diverge following autophosphorylation of the β subunits of the insulin receptor and 

include the MEK/Erk pathway and the PI3/Akt pathway. Dysregulation of these pathways 

may occur at several sites (shown as Stop signs) and in doing so contribute to the 

development of hippocampal insulin resistance, including impaired BBB transport of 

insulin, decreased expression and/or activity of the insulin receptor, as well as modulation of 

the phosphorylation state of insulin receptor substrate (IRS) proteins. Decreased insulin-

stimulated phosphorylation of Akt will also impact several downstream components of 

insulin signaling, including the trafficking of the insulin-sensitive glucose transporter 

GLUT4 and the activity of GSK-3β, which regulates the phosphorylation state of the 
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microtubule associated protein Tau and the activity of FOX01 family of transcription 

factors. Figure adapted from [28].
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Figure 2. Hippocampal neuroplasticity deficits in experimental models of IR: causes and 
consequences
In experimental models, the complications of peripheral insulin resistance extend to the 

central nervous system and elicit neuroplasticity deficits in the hippocampus, including 

impairments in the dentate gyrus (DG) and the CA1 and CA3 regions of Ammon's Horn 

(Panel A). An important mechanism in hippocampal neuroplasticity deficits is the 

development of hippocampal IR, which results from a combination of decreases in BBB 

transport of insulin and insulin receptor signaling (Panel B). The cellular underpinnings of 

hippocampal IR are also likely to include mitochondrial dysfunction leading to increased 

production of reactive oxygen species (ROS) and neuroinflammation, including increased 

levels of pro-inflammatory cytokines. The consequences of hippocampal IR include 

morphological changes (decreases in spine density and neurogenesis and disruption of 

neuronal circuitry), as well as deficits in synaptic transmission (LTP). While these IR-

induced hippocampal neuroplasticity deficits are associated with impairments in the 

performance of hippocampal-dependent behaviors (Panel C), a variety of intervention 

strategies are known to effectively restore neuroplasticity in models of hippocampal IR. See 

text for details.
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