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Abstract

Acoustic clutter produced by off-axis and multipath scattering is known to cause image 

degradation, and in some cases these sources may be the prime determinants of in vivo image 

quality. We have previously shown some success addressing these sources of image degradation 

by modeling the aperture domain signal from different sources of clutter, and then decomposing 

aperture domain data using the modeled sources. Our previous model had some shortcomings 

including model mismatch and failure to recover B-Mode speckle statistics. These shortcomings 

are addressed here by developing a better model and by using a general regularization approach 

appropriate for the model and data. We present results with L1 (lasso), L2 (ridge), and L1/L2 

combined (elastic-net) regularization methods. We call our new method aperture domain model 

image reconstruction (ADMIRE). Our results demonstrate that ADMIRE with L1 regularization, 

or weighted toward L1 in the case of elastic-net regularization, have improved image quality. L1 

by itself works well, but additional improvements are seen with elastic-net regularization over the 

pure L1 constraint. On in vivo example cases, L1 regularization showed mean contrast 

improvements of 4.6 and 6.8 dB on fundamental and harmonic images, respectively. Elastic net 

regularization (α = 0.9) showed mean contrast improvements of 17.8 dB on fundamental images 

and 11.8 dB on harmonic images. We also demonstrate that in uncluttered Field II simulations the 

decluttering algorithm produces the same contrast, contrast-to-noise ratio, and speckle SNR as 

normal B-mode imaging, demonstrating that ADMIRE preserves typical image features.

I. Introduction

Ultrasound’s low-cost and convenience make it the most widely used advanced clinical 

imaging modality in the United States [1]. Unfortunately, ultrasound’s broad utility belies its 

quality in many real clinical instances in which most exams are subjected to at least some 

level of image degradation and many fail altogether [2–6]. Often poor image-quality is 

attributable to penetration and resolution limitations, but acoustic clutter may be the most 

significant and widespread cause of image degradation [7].

Acoustic clutter is something of a catch-all term for non-diffraction limited image 

degradation, which includes multipath scattering, off-axis scattering, and phase-aberration 

induced degradation of the point spread function. Several methods have been proposed to 
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suppress these sources of degradation including correcting temporal wavefront distortions 

(e.g., phase-aberration correction [8–10], standard and adaptive apodization schemes [11–

15], and harmonic imaging [16–18]). With the exception of harmonic imaging, these 

techniques have had only mixed clinical success.

Although most beamforming methods in the literature have focused on restoring, 

optimizing, or surpassing diffraction limited beamforming, suppressing multipath scattering 

has also been explored. Several methods exist, but again harmonic imaging is the most 

clinically impactful [7], [17,18], although it still does not eliminate all clutter [19]. Time 

reversal is a classic method for suppressing multipath scattering if a point target or a rapidly 

changing speckle pattern are available [20,21], but it is harder to apply to attenuating media 

[22]. There are also several new methods that suppress multipath clutter. One new method is 

second-order ultrasound field (SURF) imaging, which takes advantage of nonlinear wave 

propagation by directly manipulating nonlinear propagation in a way that specifically targets 

the multipath scattering problem [19], [23–25]. SURF imaging is promising, but it may be 

some time before the necessary high-bandwidth transducers and arbitrary transmitters are 

readily available [19]. A second set of new methods are the aperture domain coherence-

based beamformers, which include short-lag spatial coherence imaging [26–29]. These 

methods suppress off-axis and multipath scattering and have translated very well to in vivo 

scenarios. Their biggest challenge may be that they create fundamentally different images 

compared with normal B-mode images, which may hinder clinical adoption. Aperture 

domain coherence methods also eliminate the RF signal, making them unsuitable for 

estimating displacement using conventional high-quality methods.

To address the problem of both multipath and off-axis clutter sources, we recently proposed 

a new model-based approach [30]. The primary goal of the approach is to preserve the 

ultrasound channel data (or RF data), while minimizing acoustic clutter. A secondary goal is 

to develop a tool that can characterize the spatial distribution of clutter from in vivo data. 

The method relies on linearizing the problem of multipath scattering by ignoring multipath 

propagation and considering multiple scattering as time-delayed wavefronts arriving from 

depths shallow to the normal region of interest. The initial model of this linearization 

applied the Fresnel approximation so that the signal sampled by a transducer array could be 

modeled as a summation of linear frequency modulated sinusoids,

(1)

where

and where each N is a scattering source at location (xn, zn) encoded by the chirp-rates, gn, 

and frequencies, kn. zf is the depth of the signal of interest, and k is the wavenumber. By 

using this model to decompose a signal into its scattering sites and reconstructing only the 

signals from the region of interest, we demonstrated image quality improvements. 
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Specifically, the method demonstrated significant improvements in contrast, but little 

change in contrast-to-noise ratio (CNR) on average. This seemingly paradoxical result was 

probably caused by the lower speckle SNR compared with normal B-mode imaging. To 

address these shortcomings and several open questions from the previous work, we present a 

new model and decomposition scheme, which we call aperture domain model image 

reconstruction (ADMIRE).

II. Methods

A. Received Wavefront Model

In our previous model, we made several approximations so that our model components were 

constant amplitude, linear-frequency-modulated sinusoids. The previous simplifications are 

ignored here, and the new model for ADMIRE incorporates

• the exact wavefront delay profile,

• the effect of dynamic receive beamforming on multipath sources,

• the impact of the axial short-time Fourier transform (STFT) window, and

• element directional sensitivity.

The model incorporating these effects can be presented generically as

(2)

where k is the wavenumber, x is the aperture position, t and ω localize the signal in time and 

frequency, τ(x; xn, zn, τn) is the wavefront delay for a signal arriving from point (xn, zn) at 

time τn and A(x; xn, zn, τn, ω) is the lateral amplitude modulation induced by the STFT and 

the element sensitivity. A(x; xn, zn, τn, ω) also depends on the signal’s pulse shape and τ(x, 

xn, zn, τn).

The new model produces similar predictors as (1) but is no longer restricted to producing 

just linear, frequency-modulated sinusoids. Before proceeding with a description of the 

various components of the model, several example wavefronts are shown in Fig. 1. The 

figure qualitatively compares new and old models against Field II simulated data to provide 

additional intuition and motivation for the new model.

To establish the specifics of (2), we first consider a scattered wavefront’s arrival-time 

profile. For the typical free-space diffraction case, this is

(3)

Usually, τn0 would be defined as zn/c, which models a ballistic wave propagating directly to 

the region of interest, scattering, and then propagating directly back to the array. However, 

τn0 is more general in our linearized representation of multipath scattering. In our 

representation, τn0 can be any value within the receive duration of the ultrasound system, but 
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practically, its value is limited based on the axial STFT window and the curvature for a 

given depth. We find it more convenient to define τn0 = (1/ c)(2zf − zn) + τn, and then 

parameterize the model space using τn.

Modeling the wavefront curvature from a given source location is straightforward and 

consistent with our previous approach. Here, we also introduce the impact of dynamic 

receive delays on the modeled wavefronts. In principal, applying dynamic receive delays is 

not necessary, but dynamically delaying the wavefronts and modeling this process has at 

least one clear benefit and another possible benefit. First, dynamic receive delays flatten the 

curvature of all wavefronts, including wavefronts resulting from multiple scattering. A 

flatter curvature means a wider segment of that wavefront falls within a given STFT window 

allowing for better estimation resolution. Second, dynamically delaying the wavefronts 

provides an opportunity to advantageously modulate the aperture domain signal to help 

better preserve the signal of interest.1

First, we consider the impact of applying dynamic receive delays to wavefronts originating 

from multipath scattering. The problem is that wavefronts arriving from depths besides the 

intended focus have different curvatures than the corresponding receive delay profiles, and 

therefore these multiply scattered wavefronts traverse several different dynamic receive 

profiles, as illustrated in Fig. 2. To model this effect, the perceived depth of each part of the 

sampled wavefront needs to be computed so that the correct delays can be used in (2). To 

accomplish this, we start with the usual dynamic receive delays across the aperture and 

through depth

(4)

where x is the aperture location and (xf, zf) are the dynamically updated focal locations. 

Next, we equate the multipath wavefront delays and the dynamic receive delays

(5)

and solve for zf. Purely by rearrangement, the result is

(6)

where

1This is consistent with concepts in spectral estimation where the Cramer-Rao lower bound for a given frequency estimate is a 
function of that frequency [31]. Of note here is that for spectral estimation problems the Cramer-Rao bound for the dc estimation 
variance is incredibly poor. In the application considered here without an additional modulation, the wavefronts from the region of 
interest will be nearly dc signals.

Byram et al. Page 4

IEEE Trans Ultrason Ferroelectr Freq Control. Author manuscript; available in PMC 2016 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Finally, the value for zf(x) can be inserted back into (4) to calculate the dynamic receive 

delay applied across each multiply scattered wavefront.

Next, we describe a method for intentionally modulating the aperture domain signal so that 

the primary region of interest is not near dc. The approach scales the depth dimension used 

for calculating the dynamic receive delay profile, which causes different receive delays than 

usual to be applied at a given depth. In this case, (4) is modified to

(7)

and to extend to the multipath wavefront we again solve for zf(x) using (5) to obtain

(8)

where γ is the scaling factor for the depth. As defined, negative γ creates curvatures 

corresponding to depths shallow to the usual focus, and the reverse for positive γ. Examples 

of the impact for several γ values on wavefront curvature are shown in Fig. 3.

The wavefront delays used in (2) are

(9)

The wavefront delay is important for establishing the signal’s phase across the aperture, but 

it is also important for calculating the amplitude modulation, A(x), across the aperture. Using 

the modeled delay and an estimate of the pulse shape the lateral amplitude modulation can 

be calculated as

(10)

where Δt is the width of the STFT window, tc is the center of the STFT window, wFT is the 

window used for the STFT, and wenv is the axial pulse envelope. For many relevant cases of 

wFT and wenv, AFT(x) can be calculated analytically, but it is also possible to calculate AFT(x) 

from sampled realizations of wFT and wenv. This second case may be useful for more exact 

representations of the pulse shape using empirical hydrophone measurements, or to 

adaptively estimate the pulse shape based on speckle statistics [32]. Here, for simplicity, we 

restrict ourselves to a rectangular window for wFT and a Gaussian envelope for wenv. This 

lateral modulation resulting from STFT windowing does not describe all of the potential 

amplitude variation across the aperture.

We also include the effect of element sensitivity as described by Selfridge et al. and 

expressed as
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(11)

where θ = tan−1((x − xn)/zn) [33]. Incorporating angular sensitivity is most important for 

shallow scatterers with high incidence angles of the received wavefront with transducer 

elements. Combining angular sensitivity with the STFT characteristics gives the amplitude 

modulation modeled here,

(12)

The accuracy of the model was determined using Field II simulations with the parameters in 

Table I.

B. Model Space

Using our linearized scattering model for ADMIRE, we can express the signal received at a 

specific time as

(13)

where y is a single frequency of the observed channel data from a given STFT window 

location constructed as

X is the model matrix of predictors constructed from (2),

and β contains the coefficients for the predictors in X.  and  denote the real and imaginary 

parts, respectively. The model matrix is formed by sampling the space from which scatterers 

are expected to return. There are many possible approaches to sampling the model space. 

Here, we identify a region ahead of time that will be the acceptance zone. Scatterers 

originating from within this zone will be used to reconstruct decluttered data, whereas 

scatterers outside this zone are discarded. In our experiments so far, it is most efficient to 

sample the model space finely within the region of acceptance and sample the model more 

coarsely in the rejection zone.

We define the acceptance zone based on the expected resolution of a model predictor 

centered in the region of interest. The lateral resolution is calculated based on the bandwidth 

of the signal originating from the center of the region of interest, i.e., 

, where F{| · |}BW denotes the lateral bandwidth of the 

model predictor and (xc, zc) denotes the center of the region of interest. The axial resolution 

of the region of interest is approximated as resaxl ≈ 2reslat, and comes from work on 
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parameter estimation of linear frequency modulated sinusoids [34]. The lateral and axial 

resolution are used to define an ellipsoidal acceptance region,

(14)

where cl and ca are scale factors selected to modify the size of the acceptance region, and xr 

and zr denote the center of the acceptance zone.

The sampling of the continuous parameter space of the ultrasound field can have a large 

outcome on the resulting decomposition. It is computationally advantageous to restrict the 

number of predictors in the model X, but an insufficiently populated model inhibits the 

ability of the model to suppress clutter and preserve the signal of interest. For all of the 

results here, we have two different sampling grids depending on whether intentional receive 

modulation is used. For both sampling grids, the phase parameter τn is the same with a 

spacing of 0.0485λ in the acceptance region and 0.2423λ outside the acceptance zone. For 

the case of normal receive delays (γ = 0), the lateral and axial grid sampling inside the 

acceptance zone is 0.0668reslat and 0.267resaxl, respectively, and the sampling outside the 

acceptance zone is 1.34reslat and 1.34resaxl, respectively. For the case of receive modulation 

with γ = 0.5, the sampling is finer. In this case the lateral and axial grid sampling within the 

acceptance region is 0.025reslat and 0.10resaxl, respectively. Outside the acceptance region, 

the grid sampling is 0.5reslat and 0.5resaxl, respectively. For the purposes of image 

reconstruction, a fixed grid is used throughout the image. This has the advantage of 

efficiency at the cost of increased decomposition error. For some applications not presented 

here, it may be desirable to incorporate model selection and regularization tuning into a 

more robust cross-validation scheme, which is beyond the scope of this paper.

C. Decomposition and Regularization

Depending on the specific model-space sampling, the imaging sequence, and the imaging 

depth, the ADMIRE model matrix could contain anywhere from several hundred predictors 

to over a million predictors. This is in contrast to the number of samples in the data vector, 

y, which will rarely have more than 256 elements for a 1-D array. The massive difference 

between the number of data points and the number of model predictors presents a challenge. 

Ideally, estimating β could be accomplished by minimizing the squared error: 

, but this is ill-posed. To address this problem, additional constraints 

must be added in the form of regularization terms. Regularization schemes constraining the 

solution with L1 or L2 norms are typical. L1 is useful because it promotes coefficient 

sparsity, but the final solution will have fewer nonzero predictors than observations, and the 

predictors will be nearly (if not totally) uncorrelated. This property of L1 regularized model-

fitting may be problematic for some in vivo ultrasound aperture-domain data sets because in 

many cases it will require multiple correlated model-predictors to reconstruct all scattering 

sources. Besides L1, the other typical scheme is L2 regularized model fitting. L2 is attractive 

because it allows for solutions with correlated model predictors, but whereas correlated 

predictors are useful, L2 performs coefficient shrinkage (not selection), so an L2 constrained 

solution may not have any coefficients equal to zero. Practically, this means that when using 
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an L2 constraint for data originating from inside an anechoic cyst (i.e., no expected 

scattering from within the cyst), the model fit will almost always predict that there is 

scattering originating from the region of interest.

L1 and L2 regularization both have shortcomings for the decomposition problem posed here. 

These shortcomings will be demonstrated empirically in the results. To overcome these, we 

use elastic-net regularization to perform the ADMIRE decomposition [35]. Elastic net 

regularization solves the following optimization problem,

(15)

where  is the L1 term,  is the L2 term, α is between 

0 and 1 and determines the relative weight between L1 and L2, and λ is the total 

regularization parameter. Elastic net regularization is attractive because it allows for 

correlated model predictors to be present simultaneously due to L2, but it also allows for 

nonzero model predictors due to the L1 term. These regularization schemes tends to 

introduce related sets of correlated model components as a cluster, which has been referred 

to as group selection. Elastic net regularization becomes an L1 problem if α = 1 and L2 if α 

= 0. The elastic net and the limiting L1 and L2 regularization problems are solved using the 

efficient software package glmnet [36].

To appropriately compare models with different α and λ values, it is useful to know the 

degrees of freedom for a given model. The general degrees of freedom for an elastic net 

regularized regression solution is

(16)

where  is a reduced model composed of only predictors with nonzero coefficient 

estimates and dn values are singular values of the reduced model [37]. The singular value 

decomposition was performed iteratively using an efficient memory approach to 

accommodate the potential for large model matrices [38].

D. Signal Reconstruction

Once the signal has been spatially decomposed using the model, the final step in ADMIRE 

is to reconstruct a clean signal. This is accomplished by identifying model predictors within 

the region of interest specified by (14), which we denote as . The signal from the region 

of interest is reconstructed as

(17)

The clutter suppressed signals are converted back to time-domain channel data using an 

inverse short-time Fourier transform (ISTFT).
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E. Short-Time Fourier Transform

The STFT used here is implemented as

(18)

where T denotes the time sampling period of the STFT, wFT(l) is the sliding window that 

selects the short-time segments, and ωp are the discrete frequencies, typically distributed as 

2πk/N for k = [0,…N − 1]. To make the connection back to the model clear, Si(mT, ωp) 

would be the STFT for a single channel of the aperture, where each channel is indexed by i, 

and this index corresponds to x in ps(x; t, ω).

An ISTFT is used to reconstruct the time-domain signal after the model decomposition and 

aperture domain signal reconstruction. The inverse transformation back into the original 

domain is accomplished using the least-squares ISTFT described by Yang [39], which is

(19)

F. Computational Complexity

Signal decomposition using elastic net regularization has a computational order of 

, where s is the number of predictors in the model matrix, X, and m is the 

number of steps in the L1 portion of the model fit [35]. (The computational complexity 

matches the complexity for a single ordinary least squares fit.)

G. Multipath Simulations for Regularization Tuning

The ADMIRE model fit described by (15) requires two different regularization parameters 

to be empirically determined, α and λ. These parameters are the total regularization weight 

(λ) and the balance between L1 and L2 (α). The tuning problem here is slightly different 

from conventional tuning problems because for imaging applications we are most interested 

in the error from only part of our signal, which is the signal returning from the region of 

interest. That is, after solving the elastic-net regularized optimization problem in (15), we 

obtain a set of non-zero predictors , and of these predictors, some additionally reduced 

set  will represent scatterers within the region of interest that will form the reconstructed 

signal. For imaging, the primary goal is to minimize the error of the signal of interest while 

maximizing suppression of energy originating outside of the acceptance zone. The error of 

the signal of interest is described as

(20)

where yROI is the wavefront formed by scattering only from the region of interest, and 

are the coefficients corresponding to the predictors within the ROI. To estimate the 
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reconstruction error, errROI, it is necessary to know the true wavefront of interest. The true 

wavefront is not knowable when using in vivo data, and using fully nonlinear simulations 

can also make knowing the true signal of interest difficult. Therefore, for model validation, 

basic image evaluation, and regularization tuning, we propose a pseudo-nonlinear approach 

to simulating multipath scattering induced signal corruption using the linear simulation 

package Field II [40], [41]. Field II already naturally simulates off-axis scattering and 

scattering from a specified region of interest, which means that once we introduce our 

extension, Field II can simulate all the degradation mechanisms of interest here.

To add our multipath Field II extension, we simulate multipath scattering by simulating 

channel data for scatterers arriving from a particular depth without any receive 

beamforming. We then shift the data to a later time by zero-padding and interpolating the 

data in the time domain to a specific time of interest. Once the multipath signals are 

simulated and delayed they are added to the signal of interest. The channel data from 

multipath scattering can be scaled to simulate various levels of clutter.

This approach allows for simulations with both off-axis and multipath clutter sources that 

are known exactly. For example, clutter from many different regions can be simulated, and 

then the amplitude of all of these clutter signals can be normalized relative to the signal of 

interest to create clutter with known power. Additionally, clutter from discrete scatterers can 

be simulated, or clutter from diffuse scatterer sites can be used to create a more complex and 

possibly more realistic clutter signal. Currently, each lateral line location is treated 

separately, which means that the lateral correlation does not mimic the expected behavior. In 

principle this can be accounted for, but we do not address this at this point because our 

algorithm is not affected by lateral correlation.

The motivation for this pseudo-nonlinear simulation approach was to easily calculate errROI, 

but the simulation scheme also allows for a simple contrast metric and provides more insight 

into regularization tuning. The contrast metric is calculated from clutter data with and 

without a signal of interest. This correlates to estimating the contrast of an anechoic cyst. 

The signal that contains both clutter and a signal of interest represents the background 

feature, and the signal with only clutter represents an anechoic lesion feature. The metric is 

calculated using

(21)

where w is a beamforming vector that corrects for intentional modulation before summing 

and H is the complex transpose. This metric provides insight into how well the signal of 

interest’s power is preserved compared with how well the power of the clutter is suppressed.

H. Field II Contrast Simulations

In addition to using Field II to help tune the regularization parameters, Field II is also used 

to evaluate the performance of ADMIRE on linear simulations of contrast phantoms. The 

motivation is to determine how well the decomposition algorithm preserves contrast and 
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contrast-to-noise ratio (CNR) in uncluttered data. This is important because in our previous 

model and decomposition scheme CNR was reduced in about half of the data; however, 

because most of the previous analysis was performed on in vivo data, the exact cause of the 

CNR decrease was impossible to determine because decreases in CNR could be due to 

increased structure such as blood vessels exposed in the background region. To address this, 

several Field II simulation experiments were conducted using the parameters in Table I. 

Contrast phantoms were simulated with lesion contrasts of totally anechoic, −20, −10, −5, 5, 

10, and 20 dB. Each contrast level was simulated with 12 independent speckle realizations. 

For each data set, we measured the contrast as

(22)

the CNR as

(23)

and the speckle SNR as

(24)

where μ and σ2 denote the indicated mean and variance, respectively, of the enveloped but 

uncompressed regions of the image data.

Field II was also used to simulate cluttered contrast phantoms. In this case anechoic lesions 

were simulated with signal to clutter ratios of 0, 10, and 20 dB. The clutter that was added to 

the anechoic lesion simulations was made using the multipath scattering approach described 

earlier. Approximately 8 diffuse clutter sites were added to the signal every 0.25 mm. The 

clutter sites could originate from anywhere shallow to the region where they would be added 

to the linear simulation and up to 1 cm on either side of the transmit beam’s axis. Each 

diffuse clutter site contained 25 scatterers. ADMIRE was applied with the parameters in 

Table II.

I. In Vivo Examples

We evaluated ADMIRE on three in vivo data sets acquired with a Siemens S2000 and 4C-1 

curvilinear array (Siemens Healthcare, Ultrasound Business Unit, Mountain View, CA, 

USA). Two of the data cases were acquired at 4 MHz, and the third was a harmonic pulse 

inversion sequence with a 1.8-MHz transmit frequency and a 3.6-MHz center frequency on 

receive. ADMIRE was applied to the data as described in Table II. The model sampling 

parameters for the region of interest were 0.167reslat, 0.688resaxl, and 0.0485λ for the 

lateral, axial, and phase dimensions, respectively. Outside the region of interest the sampling 

was 3.35reslat, 3.35resaxl, and 0.2423λ for the lateral axial and phase dimensions, 

respectively. For comparison, the data sets were beamformed with and without hamming 

apodization on receive. Apodization was applied after ADMIRE.
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III. Results

A. Model Error and Clutter Correlation Patterns

Model errors are shown in Fig. 4. The figure compares the model error for our previous 

model and two realizations of the current model. The region of interest is at 5 cm for the 

results shown in the figure. The current model is shown without an additional dynamic 

receive-based modulation and with an additional modulation. The results show that the error 

for the new model is similar regardless of the modulation, but the modulation does allow the 

region of interest to be decomposed with the lowest error predictors, and it increases the size 

of the region with error less than −20 dB. In addition to shifting the region of lowest model 

error, changing the modulation also expands the size of the zone where model error is below 

−20 dB. The model error for all the models becomes high in the very near-field, which may 

be related to the performance of Field II in the near-field.

B. Example of a Simulated Cluttered Wavefront

We show an example of simulated cluttered data using the approach described in the 

methods in Fig. 5. The figure shows an uncluttered Field II simulation and the same Field II 

simulation cluttered with simulated multipath and off-axis scattering. The cluttered 

simulation contains qualitative features similar to the in vivo data, which includes sharp 

discontinuities across the aperture and apparent suppression of the wavefront in some 

regions. From visual inspection of the in vivo data, there are likely also sound-speed 

variation (i.e., phase-aberration) errors, which is not currently included in the simulation 

approach introduced here.

C. Regularization Parameters

The results of varying α and λ from (15) are shown in Fig. 6. These results demonstrate 

several important ideas about the ADMIRE model fit, and the advantages of incorporating 

an elastic-net scheme instead of solely L1 (α = 1) or L2 (α = 0) regularization. Figs. 6(a) and 

6(c) show the decrease in the full signal error as a function of increasing degrees of freedom. 

(In this case plotting the independent axis using degrees of freedom instead of lambda more 

readily enables comparison between different values of α, which are each optimized with 

different λ values.) Displaying the data against degrees of freedom initially suggests that L1 

produces the best fit with the smallest error for small degrees of freedom. This result is 

usually desirable; however, in this case L1 does not always produce the lowest error of the 

wavefront of interest, which is shown in Figs. 6(b) and 6(d). We also show that L1 does not 

produce the best improvement in contrast, which is shown in Figs. 6(f) and 6(h). The end 

result is that although L1 results in the best decomposition of the cluttered signal, L1 does 

not lead to the best decluttered image.

For the task of reconstructing the wavefront of interest L2 can achieve the lowest mean 

square error with the fewest degrees of freedom. However, although L2 reconstructs the 

signal shape well, L2 by itself fails to effectively reject sources of clutter originating outside 

the region of interest as demonstrated in Figs. 6(e), 6(g), 6(f), and 6(h).
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Figs. 6(e) and 6(g) show the amount of energy in the signal of interest when the true signal 

is composed only of clutter sources (lower is better). This represents the scenario of a truly 

anechoic cyst. This is further emphasized in Figs. 6(f) and 6(h) showing the image contrast 

proxy, (21).

D. Image Quality

Example lesions of the uncluttered linear contrast simulations are shown in Fig. 7. These 

results show good qualitative agreement without clutter. The summary statistics for the 

contrast simulations are displayed in Fig. 8. These results compare normal B-Mode versus 

B-Mode images formed from several different sets of regularization parameters. The 

contrast simulation results are summarized using contrast, CNR, and speckle SNR. The 

primary result is that ADMIRE preserves normal B-mode imaging metrics when clutter is 

not present, and in a few cases ADMIRE does better, such as with the anechoic contrast 

simulation. This is important because it demonstrates that ADMIRE does not degrade or 

otherwise corrupt high-quality B-mode data.

Example lesions of cluttered anechoic contrast simulations are shown in Fig. 9. These results 

provide an example of how the Field II multipath clutter image degradation looks for 

various signal to clutter levels. The summary statistics in Fig. 10 demonstrate that the 

ADMIRE images largely have better image metrics. The change in CNR is modest, but this 

small improvement in CNR may be correlated with the relatively high variance inside the 

lesion even after decluttering.

To demonstrate that the simulation results translate to in vivo data two examples are shown 

in Fig. 11 with contrast and CNR metrics compiled in Table III. Results are shown for 

several sets of regularization parameters. For each set of parameters, the contrast is clearly 

better compared with the original data, but in some cases the CNR decreases. However, 

based on the previous CNR results from Field II simulations and visual inspection of the in 

vivo example case shown in Fig. 11 it is reasonable to attribute the decrease in CNR to 

additional structure introduced in the background region used to calculate the image metrics. 

Similar levels of improvement are encountered when ADMIRE is applied to fundamental or 

harmonic data. We also report the full run time for each of the in vivo cases using α = 0.9 

and γ = 0.5 and operating on a single core of an Intel Core i7-4790 3.60 GHz processor 

(Intel Corporation, Santa Clara, CA, USA). The total serial run times for the fundamental 

cases were 46 932 s and 46 540 s. The harmonic run time was 27 542 s.

IV. Discussion

We have presented a new model and decomposition approach for the ultrasound clutter 

problem, which we refer to as ADMIRE. ADMIRE solves many of the open questions from 

our previous method. These include preservation of image quality and decomposition issues. 

One significant question from before was how many model components to include in the 

final decomposition. This is now a function of the regularization constraints and can be 

tuned to maximize image quality. It should be noted that some of the image quality 

improvements are related to better STFT and ISTFT parameters compared with those 
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coupled to our previous algorithm, and therefore even the old model and decomposition 

scheme perform better than in the original implementation [30].

To support ADMIRE, a pseudo nonlinear modification to Field II was introduced. We 

presented a qualitative demonstration of this approach for generating realistic clutter, but the 

ultimate goal was to develop a useful tool for tuning the regularization parameters. To this 

end, the unique application of Field II to generate multipath scattering was successful at 

generating regularization parameters that translated successfully to both fundamental and 

harmonic in vivo data.

In our implementation of the model we assumed that a Gaussian envelope was a reasonable 

representation of the pulse shape. This assumption was not rigorously tested here, but 

qualitative inspection of the in vivo data does not reveal gross changes in the speckle pattern 

or the resolution between normal and decluttered B-mode images. Also, as mentioned 

previously, our algorithm is not dependent on the Gaussian pulse approximation, and if 

necessary future algorithms can implement more sophisticated approaches to better account 

for the pulse shape.

ADMIRE’s biggest drawback is run time. The reported run times for the example cases are a 

few hours per frame, which is the serial run time for a Matlab (The Mathworks Inc., Natick, 

MA, USA) implementation. The algorithm itself is easily parallelized, but even with a 

massively parallel graphical processing unit (GPU) based implementation this would likely 

still require several seconds per frame. Moving forward, it will be important to consider 

computational or algorithmic modifications that can reduce processing time without 

sacrificing the demonstrated improvements.

While the improvements realized in the in vivo examples shown in Figs. 11 and 12 are 

compelling, the reduced clutter could lead viewers to inappropriately put diagnostic 

emphasis on clutter that is not eliminated. It is important to realize that the current 

implementation is only designed to act on reverberation and off-axis scattering distributed 

along the axial and lateral dimensions. Image degradation from other sources such as 

diffraction limitations, phase aberration, or clutter from out of the imaging plane are not 

addressed here. These mechanisms of degradation could be integrated into ADMIRE in the 

future.

Finally, it is important to mention that although we are decomposing the received signal into 

a specific set of scatterers, there are multiple distributions of scatterers that can recreate any 

given wavefront. The specific scatterers that end up in the final model fit are a function of 

the model space sampling and the choice of regularization parameters. Based on this, we do 

not assume that there is any connection between the nonzero coefficients from the model fit 

and the actual scatterers in the imaged media. We do assume that the collection of scatterers 

within a given region considered as a whole are representative of the actual wavefront 

returning from a given region of tissue.
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V. Conclusions

The problem of acoustic clutter is unresolved, and is still responsible for failed exams in 

many patients. To resolve this issue we proposed a new model-based approach, ADMIRE. 

The approach declutters and preserves the RF-channel data, which means it should be able 

to function in conjunction with other classic ultrasound algorithms. Our results show that 

ADMIRE preserves B-mode image quality and acts as an all-pass filter when clutter levels 

are minimal; however, as clutter levels increase ADMIRE effectively suppresses clutter 

energy, restoring image quality. Finally, it is worth noting that the final output is still a B-

mode image, which is consistent with the training of current healthcare workers.
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Fig. 1. 
Three examples are shown for the time-domain channel data and the corresponding aperture 

domain data after the STFT has been applied axially. The examples show several cases of 

xn, zn, and τn for a region of interest centered about 5 cm. Comparisons are made between 

the data, the new model, and the old model in each of the bottom graphs.
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Fig. 2. 
When multipath scattering does occur, the wavefront will extend across multiple dynamic 

receive delay profiles. This is demonstrated in the graph above with several receive delay 

profiles shown as thin lines, and a wavefront delay profile from modeled multipath 

scattering shown as a black line.
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Fig. 3. 
Three examples are shown for different dynamic receive γ scales. When γ is negative, the 

dynamic receive foci are shallower than normal so the wavefront becomes inverted, and 

when γ is positive the curvature from path-length differences is not entirely removed so 

some of the original curvature remains. (a) γ = 0, (b) γ = −0.5, (c) γ = 0.5.
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Fig. 4. 
Model error power is shown for the old model (a), the proposed model without additional 

modulation (b), and the new model with an additional modulation corresponding to γ = 0.5 

(c). The new model has distinctly lower model error compared with the old model. The new 

model has low error for both cases, but the case of the intentional receive modulation has 

slightly lower error.
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Fig. 5. 
An example of the multipath Field II simulations is shown. In (a), a normal Field II 

simulation is shown. In (b), the same Field II simulation corrupted by Field II simulated 

multipath scattering is shown. In (c), an in vivo example featuring several distinct 

wavefronts is shown. The Field II simulation with simulated multipath and off-axis clutter 

features some similarities to the in vivo data that are not present in the usual Field II 

simulation. For example, in the in vivo and cluttered simulation, there are apparent sharp 

discontinuities in the wavefront that are not apparent in the first Field II simulation.
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Fig. 6. 
Several different errors are shown as a function of degrees of freedom for several values of 

α between L1 (lasso regression) and L2 (ridge regression) regularized model fits. Figs. 6(a) 

and 6(c) imply that L1 is the best scheme for minimizing the error of the complete aperture 

domain signal; however, Figs. 6(b) and 6(d) demonstrate that L2 produces the lowest error 

for the wavefront returning from the region of interest. These results are mitigated by the 

results in Figs. 6(e), 6(g), 6(f), and 6(h), which demonstrate that an α value between 0 and 1 

performs better at suppressing signals outside the region of interest and adequately 

reconstructing the wavefront originating from the region of interest. (a) Complete signal 

error, (b) region of interest error, (c) complete signal error, (d) region of interest error, (e) 

region of interest without signal, (f) contrast, (g) region of interest without signal, (h) 

contrast.
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Fig. 7. 
4-mm lesions are visualized using a 3-MHz F/2 imaging system. The contrast of the 

simulated phantoms goes from completely anechoic to +20 dB. For all cases there is little 

change between the decluttered and normal B-mode data. The full summary of all the 

simulations is shown in Fig. 8, but the result is that the decluttering algorithm does not 

produce images with worse image metrics in the absence of clutter.
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Fig. 8. 
The results of 12 speckle realizations are shown as boxplots for several levels of lesion 

contrast and CNR. Results are also shown for speckle SNR. Results are shown for normal B-

mode, and the new and old models. In these results, the shortcomings of the old model are 

clearly evident in the CNR and speckle SNR data, but in contrast the new model does not 

have worse CNR or speckle SNR than normal B-mode imaging. In some instances, the CNR 

may be slightly better compared with B-mode imaging. (a) Contrast, (b) CNR, (c) speckle 

SNR.
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Fig. 9. 
4-mm lesions are visualized using a 3-MHz F/2 imaging system. The contrast of the 

simulated phantoms goes from completely anechoic to +20 dB. For all cases there is little 

change between the decluttered and normal B-mode data. The full summary of all the 

simulations is shown in Fig. 10, but the result is that ADMIRE does not produce images 

with worse image metrics in the absence of clutter.
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Fig. 10. 
The results of cluttered anechoic lesion simulations are shown as boxplots for several levels 

of signal-to-clutter ratio. (a) Contrast, (b) contrast-to-noise ratio. Results are shown for 

several different sets of regularization parameters. The results mostly show that ADMIRE 

images are better, but with very high or very low levels of signal-to-clutter ratio, the 

improvement is not substantial. The largest improvement are seen from the images formed 

using α = 0.9 and γ = 0.5.
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Fig. 11. 
Two in vivo examples are shown to demonstrate that ADMIRE translates to clinical data. 

The results are qualitatively promising, and quantitative image metrics presented in Table III 

support the qualitative improvements. Hypoechoic regions of the image presumed to be 

vessels are indicated with V, and the regions used to calculate image metrics are outlined 

and denoted with an L or B indicating lesion or background, respectively. In both cases, 

image improvements in the large structures are clear. In the first example, there is evidence 

that previously unvisualizable vessels (upper left corner) become visible after 
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decomposition. (a) Mask regions, (b) normal B-mode, (c) α = 1, γ = 0, (d) α = 0.9, γ = 0, (e) 

α = 0.9, γ = 0.5, (f) mask regions, (g) normal B-mode, (h) α = 1, γ = 0, (i) α = 0.9, γ = 0, (j) 

α = 0.9, γ = 0.5, (k) mask regions, (l) harmonic B-mode, (m) α = 1, γ = 0, (n) α = 0.9, γ = 0, 

(o) α = 0.9, γ = 0.5.
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Fig. 12. 
The effect of applying a hamming apodization window on receive is shown on the 

fundamental and harmonic B-mode images and the corresponding data after ADMIRE with 

the α = 0.9 and γ = 0.5 case. The in vivo examples show that apodization only results in 

modest improvements compared with ADMIRE. The matched contrast and CNR results are 

shown in Table III. (a) Normal B-mode, (b) α = 0.9, γ = 0.5, (c) normal B-mode, (d) α = 0.9, 

γ = 0.5, (e) harmonic B-mode, (f) α = 0.9, γ = 0.5.
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TABLE I
Field II Simulation Parameters

Parameter Value

Center frequency (fc) 3 MHz

Bandwidth 60%

Lateral pitch 0.257 mm

Elevation width 2 mm

Samp. freq. (simulation) 640 MHz

Samp. freq. (downsampled) 40 MHz

Transmit focal depth 3 cm

Transmit f-number 1.8

Receive f-number 2

Lesion radius 2 mm

Lesion center depth 3 cm
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TABLE II
Decomposition Parameters

Parameter Value

STFT window length (8log(2))/(2πBWf0)

STFT padded window length 2 × window length

STFT window type Rectangular

STFT window overlap 90%

Decomposed bandwidth 120%

cl 6

ca 2

γ Variable

α Variable

λ Variable

Sampling grid Variable
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TABLE III
In Vivo Image Metrics

Contrast (dB) CNR (dB)

Parameters Rect. Hamm. Rect. Hamm.

Case #1 (fundamental)

 Normal B-mode 12.4 13.1 0.76 0.49

 α = 1, γ = 0 17.6 19.9 0.17 0.30

 α = 0.9, γ = 0 20.9 23.6 0.50 0.61

 α = 0.9, γ = 0.5 37.2 41.2 1.38 0.64

Case #2 (fundamental)

 Normal B-mode 13.9 14.3 1.28 1.70

 α = 1, γ = 0 17.8 18.3 1.40 1.98

 α = 0.9, γ = 0 18.5 19.1 1.48 2.10

 α = 0.9, γ = 0.5 24.7 25.1 2.06 2.30

Case #3 (harmonic)

 Normal B-mode 12.2 12.6 −1.15 −0.95

 α = 1, γ = 0 19.0 19.2 −0.47 −0.42

 α = 0.9, γ = 0 19.8 20.0 −0.35 −0.29

 α = 0.9, γ = 0.5 24.0 24.7 0.05 0.10
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