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Smchd1 is an epigenetic repressor with important functions in healthy cellular processes and disease. To
elucidate its role in transcriptional regulation, we performed two independent genome-wide RNA-
sequencing studies comparing wild-type and Smchd1 null samples in neural stem cells and lymphoma
cell lines. Using an R-based analysis pipeline that accommodates observational and sample-specific weights
in the linear modeling, we identify key genes dysregulated by Smchd1 deletion such as clustered
protocadherins in the neural stem cells and imprinted genes in both experiments. Here we provide a de-
tailed description of this analysis, from quality control to read mapping and differential expression analysis.
These data sets are publicly available from the Gene Expression Omnibus database (accession numbers
GSE64099 and GSE65747).

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Direct link to deposited data

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE64099
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE65747

2. Introduction

Smchd1 (structural maintenance of chromosomes hinge do-
main containing 1) is an important epigenetic modifier that has a
critical role in X inactivation [1,2] and genomic imprinting [3,4]. Al-
though initial studies of Smchd1 used these two classic models of
epigenetic control, it has become clear that Smchd1 has a broader
role in regulating gene expression during normal development
[5], in cancer [6] and in the development of facioscapulohumeral
muscular dystrophy (FSHD) [7–9].

We were particularly interested to look at the role of Smchd1 in
regulating gene expression via RNA sequencing (RNA-seq), as
Smchd1 is a repressor protein, and so the very low level of expres-
sion of Smchd1 repressed genes best lends itself to RNA-seq over
array-based platforms. To this end, we conducted RNA-seq experi-
ments in two model systems, the first was in neural development
using neural stem cells and the second was in a cancer model using
lymphoma cell lines. In both experiments, samples with wild-type
levels of Smchd1 are compared to samples with a null allele of this
gene. This article describes our analyses of these two data sets,
using a consistent, R-based pipeline that can deal with both observa-
tional and sample-level heterogeneity.
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3. Experimental design, materials and methods

3.1. Mouse strains and sample information

MommeD1 mutant mice were maintained on the FVB/N inbred
background, and backcrossed with C57BL/6 mice for more than 15 gen-
erations to produce C57BL/6 MommeD1 congenic mice (as previously
described in [1]). Neural stem cells were isolated and cultured from
the brains of FVB/C57BL/6J F1 E14.5 male embryos, homozygous or
wild-type for the Smchd1MommeD1 mutation as described in [5].
Lymphoma cell lines were derived from a gene trap allele of Smchd1,
described in [6]. This allelewas backcrossed onto C57BL/6J, then crossed
onto the Eμ-Myc transgenic background to generate Smchd1gt/gt Eμ-
MycTg/+ embryos and their wild-type controls, for transplant and gen-
eration of lymphomas. Genotyping was carried out as described in [1,2]
and [6]. Experimental animals were treated in accordance with the
Australian Government National Health and Medical Research Council
guidelines under the approval from the animal ethics committees of
the Walter and Eliza Hall Institute (WEHI AEC 2011.027).
3.2. RNA-seq sample preparation and sequencing

Qiagen RNeasy Mini kits were used to extract RNA from
Smchd1MommeD1/MommeD1 and Smchd1+/+ wild-type NSCs according
to the manufacturer's instructions. RNA was quantified using the
NanoDrop 1000 Spectrophotometer (ThermoScientific) and RNA integ-
rity assessed with the Agilent Bioanalyzer 2100 (Agilent Technologies).
Illumina's TruSeq total RNA sample preparation kit was used to prepare
libraries for sequencing, which was performed by the Australian
Genome Research Facility (Melbourne, Australia) on the Illumina
HiSeq 2000 platform to obtain 100 bp paired-end reads.

For the Lymphoma data set, Qiagen RNeasy Mini kits were used
to extract RNA from Smchd1MommeD1/MommeD1;EμMycTg/+ and
Smchd1+/+;EμMycTg/+ lymphoma cells. Samples were prepared
for sequencing at the Australian Genome Research Facility where
quality control, library preparation (using Illumina's TruSeq RNA
sample preparation kit) and sequencing on the Illumina HiSeq 2000
platform was performed to obtain 100 bp paired-end (for 6 out of 7
samples) or single-end (for 1 sample) reads.
Fig. 1. Quality assessment at the read level. Boxplots of base-calling Phred scores at different
Lymphoma cell line RNA-seq (B) experiments generated by FastQC. The box represents 25% a
the 10% and 90% quantiles and blue lines show the mean quality score.
3.3. Quality control and data pre-processing

The FastQC software [10] was used to assess the quality of the raw
sequence data. Fig. 1 displays the distribution of sequencing quality
(Phred) scores at each base position across reads from a representative
RNA-seq sample fromeach data set. Although variation in base quality is
observed across the read, with slightly lower quality at the beginning
and end, median quality is above 34 (corresponding to a probability of
an incorrect base call below 0.0004) for the entire read. Similar boxplots
of base quality scores were observed for other samples (data not
shown).

Sequences were then mapped to the mouse reference genome
(mm10) using the Rsubread program [11] and gene-level counts were
obtained by the featureCounts procedure [12].

Further analysis was carried out using the edgeR [13] and limma [14]
R/Bioconductor packages. Counts-per-million (CPM) were calculated
for each gene to standardize for differences in library-size and filtering
was carried out to retain genes with a baseline expression level of at
least 0.5 CPM in 3 or more samples. For each data set, TMM normaliza-
tion [15] was applied and a multidimensional scaling (MDS) plot based
on the log2(CPM) was generated to show relationships between sam-
ples (Fig. 2). In both data sets, we observe samples that do not cluster
well with their respective replicates of the same genotype. Sample 6
in the NSC data (Fig. 2A) and samples 1 and 7 in the Lymphoma data
(Fig. 2B) are more variable than the other replicates of the same type.
For NSC sample 6 and Lymphoma sample 7, there was no experimental
factor that could be identified to explain this phenomenon. Lymphoma
sample 1 on the other hand was the only single-end sample in this ex-
periment that was processed on a different day to the other samples,
leading us to conclude that batch processing differences was the likely
cause of the additional variation.

3.4. Differential expression analysis

Based on inspection of the MDS plots, which showed variability
between replicate samples, linear models [16] with combined obser-
vational and sample weights [17,18] were fitted to the log2(CPM) to
summarize over replicate samples. This strategy, implemented in the
voomWithQualityWeights function, down-weights low abundance
observations, which are systematically more variable (Fig. 2C) and
base positions across all the reads in representative libraries from NSC RNA-seq (A) and
nd 75% quantiles of the scores with median score marked by the red line. Whiskers mark



Fig. 2.Quality assessment at the sample level. Multi-dimensional scaling (MDS) plots of the NSC (A) and Lymphoma (B) data sets, with samples numbered and color coded by genotype.
Distances correspond to the mean log2fold-change for the top 500 genes that best discriminate each pair of samples. In both experiments, one or more samples cluster poorly with
replicates of the same genotype, motivating the use sample weights (D) in the regression modeling to detect differential expression. Panel C shows a scatterplot of the mean–variance
relationship in abundance estimated from biological replicates from the NSC data set using the voommethod. Panel D shows the sample weights estimated for the NSC data set that
are combined with voom's abundance-related weights in the voomWithQualityWeights function and used in the linear model analysis to detect differentially expressed genes.

Fig. 3. Summary of theRNA-seq results. Volcano plot representation of differential expression analysis of genes in the Smchd1wild-type versus Smchd1null comparison for theNSC (A) and
Lymphoma RNA-seq (B) data sets. Red and blue points mark the genes with significantly increased or decreased expression respectively in Smchd1 wild-type compared to Smchd1
null samples (FDR b 0.01). The x-axis shows log2fold-changes in expression and the y-axis the log odds of a gene being differentially expressed. In both data sets, Smchd1 is the top
ranked gene.
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observations from entire samples that show higher variation
(Fig. 2D) to get more precise estimates of gene expression and in-
crease power to detect changes. Moderated t-statistics were used to
assess differential expression between Smchd1+/+ wild-type and
Smchd1MommeD1/MommeD1 samples, with genes ranked according to
their false discovery rate [19]. Log-odds of differential expression [20]
were also calculated. Both raw and summary-level count data for
these experiments are available under GEO series accession numbers
GSE64099 and GSE65747.

4. Results

At a false discovery rate (FDR) cut-off of 1%, there are 2838 differen-
tially expressed genes (1282 up-regulated and 1556 down-regulated)
in the comparison of Smchd1 wild-type and Smchd1 null NSC samples.
The same comparison in the Lymphoma data set detected 90 genes
(45 up-regulated and 45 down-regulated). These genes are highlighted
in Fig. 3A and B respectively. In both analyses, Smchd1 is the top ranked
gene with log2fold-change greater than 3.1.

The NSC analysis revealed that a number of protocadherin genes, es-
pecially those from the alpha and beta clusters,were significantly differ-
entially expressed, with down-regulation of 11 alpha cluster genes and
20 beta cluster genes. This finding is in line with studies performed in
other tissues and cell lines where Smchd1-deficiency is concomitant
with increased expression of protocadherin genes [3,4,6]. However,
the widespread impacts observed in this analysis suggest that Smchd1
plays a critical role in regulating the protocadherin clusters in NSCs.
Imprinted genes, such as Ndn, Mkrn3 and Peg12 were down-regulated
by almost 2-fold, indicative of loss of imprinting in the absence of
Smchd1, also in agreement with results of previous studies [3,4,6].

Genes uncovered in the Lymphoma analysis are consistentwith pre-
vious reports in a different system that profiled male embryos [2],
where the expression of imprinted genes such as Peg12 and Mkrn3
was shown to be disturbed in the absence of Smchd1. However it is
interesting to note that Peg12 and Mkrn3 are much more strikingly
down-regulated in the Lymphoma data set than in the NSCs as they
are normally only very lowly expressed in the lymphoma cell lines.
Thismay represent not just loss of imprinting, as has been shown previ-
ously [2,3], but also potential activation independent of imprinting
status.

The modest number of differentially expressed genes identified in
the Lymphoma data set is influenced in part by a suspected batch pro-
cessing difference mentioned earlier, but also by the increased genetic
heterogeneity present in profiles obtained from tumor samples. In con-
trast, many more genes are detected in the NSC experiment, where the
samples are genetically equivalent and much less heterogeneous and
genetically unstable than the lymphoma cell lines.

5. Discussion

In this report we provide a detailed description of the analysis of the
RNA-seq data from [5,18] made possible using an R-based processing
pipeline in the Rsubread and limma packages. In particular, the
voomWithQualityWeights function in limma allows more variable sam-
ples to be down-weighted in the analysis [18]. In each case, the decision
to use this approach was guided by inspection of theMDS plot to assess
how well replicate samples clustered. This methodology is generally
applicable to analyses of designed RNA-seq experiments, where varia-
tions in sample quality are frequently observed and the source of such
variation is generally unknown. Scripts and data to reproduce this anal-
ysis are available from http://bioinf.wehi.edu.au/folders/smchd1/.
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